Articles de revues sur le sujet « Localization analysis »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Localization analysis.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Localization analysis ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Suwannawach, Piyapan, et Sorawat Chivapreecha. « Reduce RSSI Variance for Indoor Localization System Using Frequency Analysis ». International Journal of Future Computer and Communication 8, no 2 (juin 2019) : 34–38. http://dx.doi.org/10.18178/ijfcc.2019.8.2.536.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Lei, Lili, et Jeffrey S. Whitaker. « Model Space Localization Is Not Always Better Than Observation Space Localization for Assimilation of Satellite Radiances ». Monthly Weather Review 143, no 10 (1 octobre 2015) : 3948–55. http://dx.doi.org/10.1175/mwr-d-14-00413.1.

Texte intégral
Résumé :
Abstract Covariance localization is an essential component of ensemble-based data assimilation systems for large geophysical applications with limited ensemble sizes. For integral observations like the satellite radiances, where the concepts of location or vertical distance are not well defined, vertical localization in observation space is not as straightforward as in model space. The detailed differences between model space and observation space localizations are examined using a real radiance observation. Counterintuitive analysis increments can be obtained with model space localization; the magnitude of the increment can increase and the increment can change sign when the localization scale decreases. This occurs when there are negative background-error covariances and a predominately positive forward operator. Too narrow model space localization can neglect the negative background-error covariances and result in the counterintuitive analysis increments. An idealized 1D model with integral observations and known true error covariance is then used to compare errors resulting from model space and observation space localizations. Although previous studies have suggested that observation space localization is inferior to model space localization for satellite radiances, the results from the 1D model reveal that observation space localization can have advantages over model space localization when there are negative background-error covariances. Differences between model space and observation space localizations disappear as ensemble size, observation error variance, and localization scale increase. Thus, large ensemble sizes and vertical localization length scales may be needed to more effectively assimilate radiance observations.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Cordero, Elena, et Karlheinz Gröchenig. « Time–Frequency analysis of localization operators ». Journal of Functional Analysis 205, no 1 (décembre 2003) : 107–31. http://dx.doi.org/10.1016/s0022-1236(03)00166-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

von Brecht, James H. « Localization and vector spherical harmonics ». Journal of Differential Equations 260, no 2 (janvier 2016) : 1622–55. http://dx.doi.org/10.1016/j.jde.2015.09.041.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Bindel, David, et Amanda Hood. « Localization Theorems for Nonlinear Eigenvalue Problems ». SIAM Journal on Matrix Analysis and Applications 34, no 4 (janvier 2013) : 1728–49. http://dx.doi.org/10.1137/130913651.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Pushnitski, Alexander, et Dmitri Yafaev. « Localization principle for compact Hankel operators ». Journal of Functional Analysis 270, no 9 (mai 2016) : 3591–621. http://dx.doi.org/10.1016/j.jfa.2015.10.018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Elgart, Alexander, et Abel Klein. « An eigensystem approach to Anderson localization ». Journal of Functional Analysis 271, no 12 (décembre 2016) : 3465–512. http://dx.doi.org/10.1016/j.jfa.2016.09.008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Faris, William G. « A localization principle for multiplicative perturbations ». Journal of Functional Analysis 67, no 1 (juin 1986) : 105–14. http://dx.doi.org/10.1016/0022-1236(86)90045-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Taliaferro, J. Matthew, Eric T. Wang et Christopher B. Burge. « Genomic analysis of RNA localization ». RNA Biology 11, no 8 (3 août 2014) : 1040–50. http://dx.doi.org/10.4161/rna.32146.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Wallace, John S., Donald L. Fisher et John Collura. « Sound Localization : Information Theory Analysis ». Proceedings of the Human Factors and Ergonomics Society Annual Meeting 40, no 18 (octobre 1996) : 905–9. http://dx.doi.org/10.1177/154193129604001808.

Texte intégral
Résumé :
Three experiments were performed which examined the applicability of the Hick-Hyman law to the design of an auditory interface for a vehicle collision avoidance warning system. All trials used a single broadband noise signal emanating from one of a subset of six loudspeakers equally spaced around the subject in the azimuthal plane. Both the size of the sub-set and the balance of relative probabilities from speaker to speaker were altered to evaluate the relationship between information content and the dependent variable, choice reaction time. Choice reaction time was found to be related to the information content of the sound stimulus in all cases. It was also found to be related to the presence of pairs of speakers which were symmetrically opposed to one another in front of and behind the subject.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Jirásek, Milan. « Mathematical analysis of strain localization ». Revue Européenne de Génie Civil 11, no 7-8 (août 2007) : 977–91. http://dx.doi.org/10.1080/17747120.2007.9692973.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Farrer, Lindsay A. « Gene Localization By Linkage Analysis ». Otolaryngologic Clinics of North America 25, no 5 (octobre 1992) : 907–22. http://dx.doi.org/10.1016/s0030-6665(20)30914-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Jirásek, Milan. « Mathematical analysis of strain localization ». Revue européenne de génie civil 11, no 7-8 (1 octobre 2007) : 977–91. http://dx.doi.org/10.3166/regc.11.977-991.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Wallace, John S., et Donald L. Fisher. « Sound Localization : Information Theory Analysis ». Human Factors : The Journal of the Human Factors and Ergonomics Society 40, no 1 (mars 1998) : 50–68. http://dx.doi.org/10.1518/001872098779480532.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Barata, J. C. A., et D. A. Cortez. « Perturbative analysis of dynamical localization ». Journal of Mathematical Physics 44, no 5 (mai 2003) : 1937–60. http://dx.doi.org/10.1063/1.1562750.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Wharton, John. « Localization and analysis of receptors ». Histochemical Journal 28, no 11 (novembre 1996) : 727–28. http://dx.doi.org/10.1007/bf02272146.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Joshi, Dr Shreedhar A. « Analysis of RSSI and CLS based Localization Algorithms in Wireless Sensor Networks ». Bonfring International Journal of Research in Communication Engineering 6, Special Issue (30 novembre 2016) : 16–19. http://dx.doi.org/10.9756/bijrce.8192.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Arakaki, Atsushi, Daiki Kikuchi, Masayoshi Tanaka, Ayana Yamagishi, Takuto Yoda et Tadashi Matsunaga. « Comparative Subcellular Localization Analysis of Magnetosome Proteins Reveals a Unique Localization Behavior of Mms6 Protein onto Magnetite Crystals ». Journal of Bacteriology 198, no 20 (1 août 2016) : 2794–802. http://dx.doi.org/10.1128/jb.00280-16.

Texte intégral
Résumé :
ABSTRACTThe magnetosome is an organelle specialized for inorganic magnetite crystal synthesis in magnetotactic bacteria. The complex mechanism of magnetosome formation is regulated by magnetosome proteins in a stepwise manner. Protein localization is a key step for magnetosome development; however, a global study of magnetosome protein localization remains to be conducted. Here, we comparatively analyzed the subcellular localization of a series of green fluorescent protein (GFP)-tagged magnetosome proteins. The protein localizations were categorized into 5 groups (short-length linear, middle-length linear, long-length linear, cell membrane, and intracellular dispersing), which were related to the protein functions. Mms6, which regulates magnetite crystal growth, localized along magnetosome chain structures under magnetite-forming (microaerobic) conditions but was dispersed in the cell under nonforming (aerobic) conditions. Correlative fluorescence and electron microscopy analyses revealed that Mms6 preferentially localized to magnetosomes enclosing magnetite crystals. We suggest that a highly organized spatial regulation mechanism controls magnetosome protein localization during magnetosome formation in magnetotactic bacteria.IMPORTANCEMagnetotactic bacteria synthesize magnetite (Fe3O4) nanocrystals in a prokaryotic organelle called the magnetosome. This organelle is formed using various magnetosome proteins in multiple steps, including vesicle formation, magnetosome alignment, and magnetite crystal formation, to provide compartmentalized nanospaces for the regulation of iron concentrations and redox conditions, enabling the synthesis of a morphologically controlled magnetite crystal. Thus, to rationalize the complex organelle development, the localization of magnetosome proteins is considered to be highly regulated; however, the mechanisms remain largely unknown. Here, we performed comparative localization analysis of magnetosome proteins that revealed the presence of a spatial regulation mechanism within the linear structure of magnetosomes. This discovery provides evidence of a highly regulated protein localization mechanism for this bacterial organelle development.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Damanik, David, et Zheng Gan. « Limit-periodic Schrödinger operators onZd : Uniform localization ». Journal of Functional Analysis 265, no 3 (août 2013) : 435–48. http://dx.doi.org/10.1016/j.jfa.2013.05.020.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Stolz, Günter. « Localization for Schrödinger Operators with Effective Barriers ». Journal of Functional Analysis 146, no 2 (juin 1997) : 416–29. http://dx.doi.org/10.1006/jfan.1996.3043.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Naor, Assaf, et Terence Tao. « Random martingales and localization of maximal inequalities ». Journal of Functional Analysis 259, no 3 (août 2010) : 731–79. http://dx.doi.org/10.1016/j.jfa.2009.12.009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Chulaevsky, Victor. « From Fixed-Energy Localization Analysis to Dynamical Localization : An Elementary Path ». Journal of Statistical Physics 154, no 6 (13 février 2014) : 1391–429. http://dx.doi.org/10.1007/s10955-014-0937-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Aladro, G. « Localization of the Kobayashi Distance ». Journal of Mathematical Analysis and Applications 181, no 1 (janvier 1994) : 200–204. http://dx.doi.org/10.1006/jmaa.1994.1014.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Requejo, B. « Topological Localization in Fréchet Algebras ». Journal of Mathematical Analysis and Applications 189, no 1 (janvier 1995) : 160–78. http://dx.doi.org/10.1006/jmaa.1995.1010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Liimatainen, Kaisa, Riku Huttunen, Leena Latonen et Pekka Ruusuvuori. « Convolutional Neural Network-Based Artificial Intelligence for Classification of Protein Localization Patterns ». Biomolecules 11, no 2 (11 février 2021) : 264. http://dx.doi.org/10.3390/biom11020264.

Texte intégral
Résumé :
Identifying localization of proteins and their specific subpopulations associated with certain cellular compartments is crucial for understanding protein function and interactions with other macromolecules. Fluorescence microscopy is a powerful method to assess protein localizations, with increasing demand of automated high throughput analysis methods to supplement the technical advancements in high throughput imaging. Here, we study the applicability of deep neural network-based artificial intelligence in classification of protein localization in 13 cellular subcompartments. We use deep learning-based on convolutional neural network and fully convolutional network with similar architectures for the classification task, aiming at achieving accurate classification, but importantly, also comparison of the networks. Our results show that both types of convolutional neural networks perform well in protein localization classification tasks for major cellular organelles. Yet, in this study, the fully convolutional network outperforms the convolutional neural network in classification of images with multiple simultaneous protein localizations. We find that the fully convolutional network, using output visualizing the identified localizations, is a very useful tool for systematic protein localization assessment.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Patil, Miss Prajakta B., et Dr A. N. Jadhav. « Comparative Analysis of AODV Base and RSSI Base Wireless Sensor Node Localization Techniques ». International Journal of Trend in Scientific Research and Development Volume-2, Issue-4 (30 juin 2018) : 1348–53. http://dx.doi.org/10.31142/ijtsrd14301.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Hyun, Yoonsuk, et Doory Kim. « Development of Deep-Learning-Based Single-Molecule Localization Image Analysis ». International Journal of Molecular Sciences 23, no 13 (21 juin 2022) : 6896. http://dx.doi.org/10.3390/ijms23136896.

Texte intégral
Résumé :
Recent developments in super-resolution fluorescence microscopic techniques (SRM) have allowed for nanoscale imaging that greatly facilitates our understanding of nanostructures. However, the performance of single-molecule localization microscopy (SMLM) is significantly restricted by the image analysis method, as the final super-resolution image is reconstructed from identified localizations through computational analysis. With recent advancements in deep learning, many researchers have employed deep learning-based algorithms to analyze SMLM image data. This review discusses recent developments in deep-learning-based SMLM image analysis, including the limitations of existing fitting algorithms and how the quality of SMLM images can be improved through deep learning. Finally, we address possible future applications of deep learning methods for SMLM imaging.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Cvetković, LJ, V. Kostić et J. M. Peña. « Eigenvalue Localization Refinements for Matrices Related to Positivity ». SIAM Journal on Matrix Analysis and Applications 32, no 3 (juillet 2011) : 771–84. http://dx.doi.org/10.1137/100807077.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Beattie, Christopher, et David W. Fox. « Localization Criteria and Containment for Rayleigh Quotient Iteration ». SIAM Journal on Matrix Analysis and Applications 10, no 1 (janvier 1989) : 80–93. http://dx.doi.org/10.1137/0610006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Criado, Alberto, et Fernando Soria. « Localization and dimension free estimates for maximal functions ». Journal of Functional Analysis 265, no 10 (novembre 2013) : 2553–83. http://dx.doi.org/10.1016/j.jfa.2013.06.015.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Kachkovskiy, Ilya. « Localization for quasiperiodic operators with unbounded monotone potentials ». Journal of Functional Analysis 277, no 10 (novembre 2019) : 3467–90. http://dx.doi.org/10.1016/j.jfa.2019.03.017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Damanik, David, Robert Sims et Günter Stolz. « Localization for discrete one-dimensional random word models ». Journal of Functional Analysis 208, no 2 (mars 2004) : 423–45. http://dx.doi.org/10.1016/j.jfa.2003.07.011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Fang, Quanlei, et Jingbo Xia. « Commutators and localization on the Drury–Arveson space ». Journal of Functional Analysis 260, no 3 (février 2011) : 639–73. http://dx.doi.org/10.1016/j.jfa.2010.10.013.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

TAKEMASA, Fumio, et Akihiko SUZUKI. « Preliminary investigation for damage localization analysis ». Proceedings of The Computational Mechanics Conference 2000.13 (2000) : 531–32. http://dx.doi.org/10.1299/jsmecmd.2000.13.531.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Jin, Yunye, Wee-Seng Soh et Wai-Choong Wong. « Error analysis for fingerprint-based localization ». IEEE Communications Letters 14, no 5 (mai 2010) : 393–95. http://dx.doi.org/10.1109/lcomm.2010.05.092152.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Zurek, Patrick M., et Barbara G. Shinn‐Cunningham. « Analysis of phantom source localization cues ». Journal of the Acoustical Society of America 101, no 5 (mai 1997) : 3085. http://dx.doi.org/10.1121/1.418802.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Mourikis, A. I., et S. I. Roumeliotis. « Performance analysis of multirobot Cooperative localization ». IEEE Transactions on Robotics 22, no 4 (août 2006) : 666–81. http://dx.doi.org/10.1109/tro.2006.878957.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Aharonov, Ranit, Lior Segev, Isaac Meilijson et Eytan Ruppin. « Localization of Function via Lesion Analysis ». Neural Computation 15, no 4 (1 avril 2003) : 885–913. http://dx.doi.org/10.1162/08997660360581949.

Texte intégral
Résumé :
This article presents a general approach for employing lesion analysis to address the fundamental challenge of localizing functions in a neural system. We describe functional contribution analysis (FCA), which assigns contribution values to the elements of the network such that the ability to predict the network's performance in response to multilesions is maximized. The approach is thoroughly examined on neurocontroller networks of evolved autonomous agents. The FCA portrays a stable set of neuronal contributions and accurate multilesion predictions that are significantly better than those obtained based on the classical single lesion approach. It is also used for a detailed synaptic analysis of the neurocontroller connectivity network, delineating its main functional backbone. The FCA provides a quantitative way of measuring how the network functions are localized and distributed among its elements. Our results question the adequacy of the classical single lesion analysis traditionally used in neuroscience and show that using lesioning experiments to decipher even simple neuronal systems requires a more rigorous multilesion analysis.
Styles APA, Harvard, Vancouver, ISO, etc.
39

Noachtar, S. « ME7 Movement analysis for seizure localization ». Clinical Neurophysiology 119 (mai 2008) : S3. http://dx.doi.org/10.1016/s1388-2457(08)60014-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Mazzaferri, Javier, et Silvia Ledesma. « Optical multiresolution analysis with spatial localization ». Optics Communications 283, no 10 (mai 2010) : 2056–60. http://dx.doi.org/10.1016/j.optcom.2010.01.018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Mass-Sanchez, Joaquin, Erica Ruiz-Ibarra, Ana Gonzalez-Sanchez, Adolfo Espinoza-Ruiz et Joaquin Cortez-Gonzalez. « Factorial Design Analysis for Localization Algorithms ». Applied Sciences 8, no 12 (17 décembre 2018) : 2654. http://dx.doi.org/10.3390/app8122654.

Texte intégral
Résumé :
Localization is a fundamental problem in Wireless Sensor Networks, as it provides useful information regarding the detection of an event. There are different localization algorithms applied in single-hop or multi-hop networks; in both cases their performance depends on several factors involved in the evaluation scenario such as node density, the number of reference nodes and the log-normal shadowing propagation model, determined by the path-loss exponent (η) and the noise level (σdB) which impact on the accuracy and precision performance metrics of localization techniques. In this paper, we present a statistical analysis based on the 2k factorial methodology to determine the key factors affecting the performance metrics of localization techniques in a single-hop network to concentrate on such parameters, thus reducing the amount of simulation time required. For this proposal, MATLAB simulations are carried out in different scenarios, i.e., extreme values are used for each of the factors of interest and the impact of the interaction among them in the performance metrics is observed. The simulation results show that the path-loss exponent (η) and noise level (σdB) factors have the greatest impact on the accuracy and precision metrics evaluated in this study. Based on this statistical analysis, we recommend estimating the propagation model as close to reality as possible to consider it in the design of new localization techniques and thus improve their accuracy and precision metrics.
Styles APA, Harvard, Vancouver, ISO, etc.
42

Magowe, Kagiso, Andrea Giorgetti, Sithamparanathan Kandeepan et Xinghuo Yu. « Accurate Analysis of Weighted Centroid Localization ». IEEE Transactions on Cognitive Communications and Networking 5, no 1 (mars 2019) : 153–64. http://dx.doi.org/10.1109/tccn.2018.2874452.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Chen, Liyong, Lu Qian, Zhiyi Zhang, Ming Shi, Yuhua Song, Guogang Yuan, Hao Zhang et al. « Mutational analysis of ErbB2 intracellular localization ». Histochemistry and Cell Biology 128, no 5 (12 septembre 2007) : 473–83. http://dx.doi.org/10.1007/s00418-007-0329-z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Benallal, Ahmed, et Claudia Comi. « Localization analysis via a geometrical method ». International Journal of Solids and Structures 33, no 1 (janvier 1996) : 99–119. http://dx.doi.org/10.1016/0020-7683(95)00018-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Fornasier, Massimo, et Karlheinz Gröchenig. « Intrinsic Localization of Frames ». Constructive Approximation 22, no 3 (8 avril 2005) : 395–415. http://dx.doi.org/10.1007/s00365-004-0592-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Kovács, Bálint Barna H., Dániel Varga, Dániel Sebők, Hajnalka Majoros, Róbert Polanek, Tibor Pankotai, Katalin Hideghéty, Ákos Kukovecz et Miklós Erdélyi. « Application of Lacunarity for Quantification of Single Molecule Localization Microscopy Images ». Cells 11, no 19 (2 octobre 2022) : 3105. http://dx.doi.org/10.3390/cells11193105.

Texte intégral
Résumé :
The quantitative analysis of datasets achieved by single molecule localization microscopy is vital for studying the structure of subcellular organizations. Cluster analysis has emerged as a multi-faceted tool in the structural analysis of localization datasets. However, the results it produces greatly depend on the set parameters, and the process can be computationally intensive. Here we present a new approach for structural analysis using lacunarity. Unlike cluster analysis, lacunarity can be calculated quickly while providing definitive information about the structure of the localizations. Using simulated data, we demonstrate how lacunarity results can be interpreted. We use these interpretations to compare our lacunarity analysis with our previous cluster analysis-based results in the field of DNA repair, showing the new algorithm’s efficiency.
Styles APA, Harvard, Vancouver, ISO, etc.
47

Wang, Zhuo, Wei Ming Yan et Lie Ping Ye. « Experimental Analysis on Mode Localization of Damaged Reticulated Shell Structures ». Advanced Materials Research 243-249 (mai 2011) : 1301–4. http://dx.doi.org/10.4028/www.scientific.net/amr.243-249.1301.

Texte intégral
Résumé :
The damage of reticulated shell structure will arouse structural mode localization. The quantitative assessment index of mode localization is defined. A scale model experiment for mode localization is carried out on a Kiewit single-layer spherical reticulated shell structure, and the features of mode localization are studied. Four cases about structural stiffness’ change are constructed in the experiment, and three structural modals are obtained at random. The localization of the three modes is analyzed under each case. The results show that slight changes of physical parameters are likely to arouse obvious localization of some modes for reticulated shell structure.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Hayward, Thomas J. « Bayesian localization of acoustic sources with information-theoretic analysis of localization performance ». Journal of the Acoustical Society of America 132, no 3 (septembre 2012) : 2055. http://dx.doi.org/10.1121/1.4755565.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Damanik, D., et P. Stollmann. « Multi-scale analysis implies strong dynamical localization ». Geometric and Functional Analysis 11, no 1 (avril 2001) : 11–29. http://dx.doi.org/10.1007/pl00001666.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Li, Jinzhou, Shouye Lv, Liujie Lv, Sheng Wu, Yang Liu, Jing Nie, Ying Jin et Chenglin Wang. « Joint TDOA, FDOA and PDOA Localization Approaches and Performance Analysis ». Remote Sensing 15, no 4 (7 février 2023) : 915. http://dx.doi.org/10.3390/rs15040915.

Texte intégral
Résumé :
Multi-station joint localization has important practical significance. In this paper, phase difference of arrival (PDOA) information is introduced into the joint time difference of arrival (TDOA) and frequency difference of arrival (FDOA) localization method to improve the target localization accuracy. First, the Cramer–Rao lower bound (CRLB) of the joint TDOA, FDOA and PDOA localization approach with multi-station precise phase synchronization is derived. Then, the CRLB of the joint TDOA, FDOA and differential PDOA (dPDOA) localization method for the case of phase asynchronization between observation stations is also presented. Furthermore, the authors analyze the influence of the phase wrapping problem on localization accuracy and propose solutions to solve the phase wrapping problem based on cost functions of grid search. Finally, iterative localization algorithms based on maximum likelihood (ML) are proposed for both TDOA/FDOA/PDOA and TDOA/FDOA/dPDOA scenarios, respectively. Simulation results demonstrate the localization performance of the proposed approaches.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie