Thèses sur le sujet « Litium ion batteries »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleures thèses pour votre recherche sur le sujet « Litium ion batteries ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.
Smaldone, Antonella. « Phisical chemistry of plasmas and applications to cultural heritage and material science ». Doctoral thesis, Universita degli studi di Salerno, 2018. http://hdl.handle.net/10556/3115.
Texte intégralIn this project, the attention has been focused on the laser ablation process and on laser induced plasmas spectroscopic study for two different technological applications. First of all, the analytical LIBS (Lase Induced Breakdown Spectroscopy) technique, which allows to obtain qualitative and quantitative information on the elemental composition of the materias analyzed, has been used and developed. The LIBS has been applied to the study of bronze and silver archaelogical findings, coming from three different sites in Basilicata and dated VI century B.C.. The inverse Calibration Free method, that is new a method, that is new a method of quantitative analysis, has been optimized. … [edited by Author]
XXX ciclo
Rohde, Michael [Verfasser], et Ingo [Akademischer Betreuer] Krossing. « New conducting salts for rechargeable lithium-ion batteries = Neue Leitsalze für wiederaufladbare Lithium-Ionen Batterien ». Freiburg : Universität, 2014. http://d-nb.info/1123481490/34.
Texte intégralBjörkman, Carl Johan. « Detection of lithium plating in lithium-ion batteries ». Thesis, KTH, Kemiteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-266369.
Texte intégralMed en ökande efterfråga på hållbara transportlösningar så finns det ett behov av elektrifierade fordon. Ett sätt att lagra energi ombord ett elektrifierat fordon är att använda et litium-jon-batteri. Denna batteriteknologi har många fördelar: t.ex. är dessa batterier återladdningsbara, och de kan leverera höga uteffekter samtidigt som de kan ha ett stort energiinnehåll. för att säkerställa en säker drift av litium-jon-batterier måste batteriets styrsystem vara designat med hänsyn till den elektrokemiska dynamiken inuti batteriet. Dock åldras batteriet med tiden, vilket innebär att denna dynamik ändras med tiden, vilket innebär att styrningen av batteriet måste anpassa sig till denna föråldring. Det är möjligt att förutspå åldring av batterier, men vissa åldringsmekanismer kan ske slumpartat, t.ex. via slumpmässiga förändringar i tillverkningsprocessen av batteriet, eller variationer i användningen av batteriet. Genom att därmed bevaka dessa åldringsmekanismer in situ så kan styrsystemets algoritm anpassa sig utmed batteriåldringen, trots dessa slumpartade effekter. En åldringmekanism hos litium-jon-batterier är s.k. litiumplätering. Denna mekanism innebär att litium-joner elektrokemiskt pläteras i form av metalliskt litium på ytan av litium-jon-batteriets negativa elektrod. Mekanismen kan också inducera andra åldringsmekanismer, t.ex. gasutveckling eller elektrolytreduktion. Detta projekt har undersökt en metod för att detektera litiumplätering in situ efter att plätering har skett, genom att både analysera öppencellspänningens (OCV) förändring med tiden direkt efter uppladdning samt analysera de svällande krafterna som uppstår under uppladdning av batteriet. Resultaten visar på en korrelation mellan en hög sannolikhet för litiumplätering och observationen av en topp i svällningskraft och en platå i OCV-kurvan. resultaten visar också en möjlig korrelation mellan påbörjandet av litium-plätering och påbörjandet av toppen i svällningskraft. Vidare visar även resultaten ett troligt samband mellan signalernas magnitud och mängden pläterat litium. Slutligen visar resultaten också ett möjligt samband mellan irreversibelt pläterat litium och ett svällningstryck som ackumuleras med varje uppladdningscykel. Dock krävs det en validering med mer avancerade analysmetoder för att säkerställa användningsbarheten av dessa två signaler, vilket ej var möjligt inom detta projekt.
Adelhelm, Philipp. « From Lithium-Ion to Sodium-Ion Batteries ». Diffusion fundamentals 21 (2014) 5, S.1, 2014. https://ul.qucosa.de/id/qucosa%3A32397.
Texte intégralHerstedt, Marie. « Towards Safer Lithium-Ion Batteries ». Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-3542.
Texte intégralXu, Chao. « All silicon lithium-ion batteries ». Licentiate thesis, Uppsala universitet, Strukturkemi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-261626.
Texte intégralChinyama, Luzendu Gabriel. « Recovery of Lithium from Spent Lithium Ion Batteries ». Thesis, Luleå tekniska universitet, Institutionen för samhällsbyggnad och naturresurser, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-59866.
Texte intégralBurch, Damian. « Intercalation dynamics in lithium-ion batteries ». Thesis, Massachusetts Institute of Technology, 2009. http://hdl.handle.net/1721.1/54233.
Texte intégralThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (p. 153-160).
A new continuum model has been proposed by Singh, Ceder, and Bazant for the ion intercalation dynamics in a single crystal of rechargeable-battery electrode materials. It is based on the Cahn-Hilliard equation coupled to reaction rate laws as boundary conditions to handle the transfer of ions between the crystal and the electrolyte. In this thesis, I carefully derive a second set of boundary conditions--necessary to close the original PDE system--via a variational analysis of the free energy functional; I include a thermodynamically-consistent treatment of the reaction rates; I develop a semi-discrete finite volume method for numerical simulations; and I include a careful asymptotic treatment of the dynamical regimes found in different limits of the governing equations. Further, I will present several new findings relevant to batteries: Defect Interactions: When applied to strongly phase-separating, highly anisotropic materials such as LiFePO4, this model predicts phase-transformation waves between the lithiated and unlithiated portions of a crystal. This work extends the analysis of the wave dynamics, and describes a new mechanism for current capacity fade through the interactions of these waves with defects in the particle. Size-Dependent Spinodal and Miscibility Gaps: This work demonstrates that the model is powerful enough to predict that the spinodal and miscibility gaps shrink as the particle size decreases. It is also shown that boundary reactions are another general mechanism for the suppression of phase separation.
(cont.) Multi-Particle Interactions: This work presents the results of parallel simulations of several nearby crystals linked together via common parameters in the boundary conditions. The results demonstrate the so-called "mosaic effect": the particles tend to fill one at a time, so much so that the particle being filled actually draws lithium out of the other ones. Moreover, it is shown that the smaller particles tend to phase separate first, a phenomenon seen in experiments but difficult to explain with any other theoretical model.
by Damian Burch.
Ph.D.
Ranom, Rahifa. « Mathematical modelling of lithium ion batteries ». Thesis, University of Southampton, 2014. https://eprints.soton.ac.uk/375538/.
Texte intégralNazari, Ashkan. « HEAT GENERATION IN LITHIUM-ION BATTERIES ». University of Akron / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=akron1469445487.
Texte intégralBarrett, Lawrence Kent. « Silicon Carbon Nanotube Lithium Ion Batteries ». BYU ScholarsArchive, 2015. https://scholarsarchive.byu.edu/etd/6172.
Texte intégralZhu, Juner. « Mechanical failure of lithium-ion batteries ». Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/122143.
Texte intégralCataloged from PDF version of thesis.
Includes bibliographical references (pages 223-244).
The commercialization of lithium-ion batteries has accelerated the electrification process of vehicles. In the past decade, one could see great advances in the life span, cost, performance, specific energy, and specific power of batteries. At the same time, the safety of batteries has not been adequately addressed by most stakeholders in the Electric Vehicle market. The present thesis systematically investigates the deformation mechanisms of the multi-layered structure of lithium-ion battery cells subjected to various loading conditions with particular emphasis on predicting the onset of the electrical short circuit. It starts with a comprehensive testing and modeling study of all the components of the cell, including the current collectors, the separator, the pouch/shell casing, and particularly, the coatings of electrodes.
A detailed computational model for quasi-static loading is subsequently established in Abaqus/explicit, which is very effective to predict the load-displacement response, peak load, displacement to fracture and short circuit, as well as the shear fracture phenomenon. The computational model is then extended to cover the effect of strain rate dependence by introducing the poro-mechanical theory. Darcy's law is used to describe the flow of the electrolyte inside the granular structure of the coating, and the Kozeny-Carman equation is adapted to calculate the permeability of the porous media of the battery cell. The model is shown to accurately predict the strengthening effect of the battery cell under low-speed dynamic loading, observed in experiments. The effect of mechanical deformations of a battery cell on its electrochemical performance is investigated next through a series of control tests on the coin-cell type batteries made of deformed electrodes.
The batteries are tested with ten cycles of charge-discharge, and a clear capacity fade in the damaged cells compared with the undamaged ones is observed. Electrochemical impedance spectroscopy tests are then performed, and the possible mechanism of the capacity fade is proposed. In the last part of the thesis, two applications of the developed computational modeling strategy are exhibited. One is the axial deformation of the 18650 cylindrical cells, and the other is the protective structural design of EV battery pack subjected to a "ground impact".
by Juner Zhu.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Mechanical Engineering
El, Baradai Oussama. « Elaboration of flexible lithium - ion electrodes by printing process ». Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENI036/document.
Texte intégralThe work presented in this manuscript describes the manufacturing of lithium-ion batteries on papers substrates by printing technique. Its aim is the development of new up scalable and large area techniques as screen printing for the fabrication of lithium-ion batteries and the replacement of conventional toxic components by bio-sourced one and water based solvent. First results shows how it is possible to formulate cellulose based ink tailored for screen printing technology with suitable properties for lithium-ion batteries requirements. Electrodes were manufactured and tested from a physical and electrochemical point of view and two strategies were proposed to enhance performances. Finally, by considering results obtained for the electrodes, a full cell was manufactured with a new assembling strategy based on: front / reverse printing approach and the embedding of the current collectors during printing stage. As a final point cells were characterized and compared with others obtained by conventional assembling strategies
Popovic, Jelena. « Novel lithium iron phosphate materials for lithium-ion batteries ». Phd thesis, Universität Potsdam, 2011. http://opus.kobv.de/ubp/volltexte/2011/5459/.
Texte intégralKonventionelle Energiequellen sind weder nachwachsend und daher nachhaltig nutzbar, noch weiterhin langfristig verfügbar. Sie benötigen Millionen von Jahren um gebildet zu werden und verursachen in ihrer Nutzung negative Umwelteinflüsse wie starke Treibhausgasemissionen. Im 21sten Jahrhundert ist es unser Ziel nachhaltige und umweltfreundliche, sowie möglichst preisgünstige Energiequellen zu erschließen und nutzen. Neuartige Technologien assoziiert mit transportablen Energiespeichersystemen spielen dabei in unserer mobilen Welt eine große Rolle. Li-Ionen Batterien sind in der Lage wiederholt Energie aus entsprechenden Prozessen nutzbar zu machen, indem sie reversibel chemische in elektrische Energie umwandeln. Die Leistung von Li-Ionen Batterien hängen sehr stark von den verwendeten Funktionsmaterialien ab. Aktuell verwendete Elektrodenmaterialien haben hohe Produktionskosten, verfügen über limitierte Energiespeichekapazitäten und sind teilweise gefährlich in der Nutzung für größere Bauteile. Dies beschränkt die Anwendungsmöglichkeiten der Technologie insbesondere im Gebiet der hybriden Fahrzeugantriebe. Die vorliegende Dissertation beschreibt bedeutende Fortschritte in der Entwicklung von LiFePO4 als Kathodenmaterial für Li-Ionen Batterien. Mithilfe einfacher Syntheseprozeduren konnten eine vollkommen neue Morphologie (mesokristallines LiFePo4) sowie ein nanostrukturiertes Material mit exzellenten elektrochemischen Eigenschaften hergestellt werden. Die neu entwickelten Verfahren zur Synthese von LiFePo4 sind einschrittig und bei signifikant niedrigeren Temperaturen im Vergleich zu konventionellen Methoden. Die Verwendung von preisgünstigen und umweltfreundlichen Ausgangsstoffen stellt einen grünen Herstellungsweg für die large scale Synthese dar. Mittels des neuen Synthesekonzepts konnte meso- und nanostrukturiertes LiFe PO4 generiert werden. Die Methode ist allerdings auch auf andere phospho-olivin Materialien (LiCoPO4, LiMnPO4) anwendbar. Batterietests der besten Materialien (nanostrukturiertes LiFePO4 mit Kohlenstoffnanobeschichtung) ergeben eine mögliche Energiespeicherung von 94%.
Jouhara, Alia. « De la conception de matériaux d'électrode organiques innovants à leur intégration en batteries "tout organique" ». Thesis, Nantes, 2018. http://www.theses.fr/2018NANT4026/document.
Texte intégralMeeting the ever-growing demand for electrical storage devices, without depleting natural resources, requires both superior and “greener” battery technologies. Developing organic batteries could well provide part of the solution since the richness of organic chemistry affords us a multitude of avenues for uncovering innovative electrode materials based on abundant, low-cost chemical elements. Nearly 40 years after the discovery of conductive polymers, long cycling stability in Li-organic batteries has now been achieved. However, the synthesis of high-voltage lithiated organic cathode materials and the synthesis of low-voltage p type organic anode materials is still rather challenging, so very few examples of all-organic cells currently exist. Herein, we first present an innovative approach consisting in the substitution of spectator cations and leading to a significant increase of the redox potential of lithiated organic electrode materials thanks to an inductive effect. These results enable developing an all-organic Li-ion battery able to deliver an output voltage above 2.5 V for more than 300 cycles. We then design two p type organic electrode materials able of being charged at low potentials for developing all-organic Anion-ion batteries able to deliver an output voltage at least 1.5 V. Finally, we present a preliminary study of a new family of potentially bipolar compounds
Slaven, Simon. « Thin film carbon for lithium ion batteries / ». Thesis, Connect to Dissertations & ; Theses @ Tufts University, 1996.
Trouver le texte intégralAdviser: Ronald B. Goldner. Submitted to the Dept. of Electrical Engineering. Includes bibliographical references. Access restricted to members of the Tufts University community. Also available via the World Wide Web;
Zhao, Kejie. « Mechanics of Electrodes in Lithium-Ion Batteries ». Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10551.
Texte intégralEngineering and Applied Sciences
Foreman, Evan. « Fluidized Cathodes for Flexible Lithium-Ion Batteries ». University of Akron / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=akron1493375732158489.
Texte intégralCroci, Lila. « Gestion de l'énergie dans un système multi-sources photovoltaïque et éolien avec stockage hybride batteries/supercondensateurs ». Phd thesis, Université de Poitiers, 2013. http://tel.archives-ouvertes.fr/tel-00943296.
Texte intégralHein, Smon [Verfasser]. « Modeling of lithium plating in lithium-ion-batteries / Smon Hein ». Ulm : Universität Ulm, 2018. http://d-nb.info/1162539917/34.
Texte intégralDamen, Libero <1980>. « Advanced lithium and lithium-ion rechargeable batteries for automotive applications ». Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2011. http://amsdottorato.unibo.it/3427/1/Damen_Libero_Tesi.pdf.
Texte intégralDamen, Libero <1980>. « Advanced lithium and lithium-ion rechargeable batteries for automotive applications ». Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2011. http://amsdottorato.unibo.it/3427/.
Texte intégralToigo, Christina Verena <1986>. « Towards eco-friendly batteries : concepts for lithium and sodium ion batteries ». Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amsdottorato.unibo.it/10067/1/Thesis%20CT_final.pdf.
Texte intégralGENTILE, ANTONIO. « MXene-based materials for alkaline-ion batteries : synthesis, properties, applications ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/382748.
Texte intégralThe ever-increasing production of portable devices and electric cars asks to the market to produce efficient devices that can store electrical energy. For these types of technologies, where device miniaturization is essential, lithium-ion batteries (LIBs) have become leaders as energy storage systems. The research on the lithium-ion batteries is focused to obtain more performing devices with high gravimetric and volumetric capacities of the electrode materials. In addition to the technological aspect, related to the optimization of materials, there is the supply chain of active components of the battery to consider, starting from lithium. At the moment, the problem is tackled by studying batteries with other alkaline metal ions, i.e. Na+ and K+. However, there are no standardized active materials for these devices, especially on sodium-ion batteries (SIBs), started only a few years later than that of LIBs; therefore, today these technologies are intended to support the LIBs in order to satisfy the enormous market demand of the batteries for the future vehicles. The goal of this work was to develop MXene-based anode materials to obtain efficient anodes for sodium and lithium-ion batteries. MXenes are a family of inorganic transition metal carbides, nitrides, and carbonitrides with a 2D structure that would seem promising for the intercalation of different ions due to a great flexibility and adaptability towards several intercalating ions. The ion intercalations occur by a pseudocapacitive mechanism whereby the materials have limited capacity, but they have great electrochemical stability over thousands of cycles and coulombic efficiencies near to 100%. The production of this material was done by HF etching of a precursor called MAX phase. This is the easiest and fastest method to obtain the material in laboratory scale, but it has many criticalities when the process has to be scale-up to industrial scale. A large part of this work was spent studying the synthetic technique to obtain MXenes for SIB by reducing or replacing HF in the chemical synthesis. The materials have been characterized by various techniques such as X-ray diffractometry, electron microscopy, X-ray photoelectron spectroscopy, etc., and by electrochemical tests, such as cyclic voltammetry and galvanostatic cycling. Thanks to the 2D structure, a common use of MXene in the literature is in nanocomposite syntheses for SIBs and LIBs, in order to produce high-capacity materials, as required in the battery market. Therefore, two nanocomposites based on antimony-MXene and tin oxide-MXene tested for SIB and for LIB respectively, were synthesized. Antimony and tin oxide are two materials with high theoretical capacity when used as anodes in batteries, but at the same time, they are extremely fragile and tend to pulverize during charging and discharging processes. MXene is used as a buffer to limit or prevent cracking and separation of alloys from the electrode surface.
Ponnuchamy, Veerapandian. « Towards A Better Understanding of Lithium Ion Local Environment in Pure, Binary and Ternary Mixtures of Carbonate Solvents : A Numerical Approach ». Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GRENY004/document.
Texte intégralDue to the increasing global energy demand, eco-friendly and sustainable green resources including solar, or wind energies must be developed, in order to replace fossil fuels. These sources of energy are unfortunately discontinuous, being correlated with weather conditions and their availability is therefore strongly fluctuating in time. As a consequence, large-scale energy storage devices have become fundamental, to store energy on long time scales with a good environmental compatibility. Electrochemical energy conversion is the key mechanism for alternative power sources technological developments. Among these systems, Lithium-ion (Li+) batteries (LIBs) have demonstrated to be the most robust and efficient, and have become the prevalent technology for high-performance energy storage systems. These are widely used as the main energy source for popular applications, including laptops, cell phones and other electronic devices. The typical LIB consists of two (negative and positive) electrodes, separated by an electrolyte. This plays a very important role, transferring ions between the electrodes, therefore providing the electrical current. This thesis work focuses on the complex materials used as electrolytes in LIBs, which impact Li-ion transport properties, power densities and electrochemical performances. Usually, the electrolyte consists of Li-salts and mixtures of organic solvents, such as cyclic or linear carbonates. It is therefore indispensable to shed light on the most important structural (coordination) properties, and their implications on transport behaviour of Li+ ion in pure and mixed solvent compositions. We have performed a theoretical investigation based on combined density Functional Theory (DFT) calculations and Molecular Dynamics (MD) simulations, and have focused on three carbonates, cyclic ethylene carbonate (EC) and propylene carbonate (PC), and linear dimethyl carbonate (DMC). DFT calculations have provided a detailed picture for the optimized structures of isolated carbonate molecules and Li+ ion, including pure clusters Li+(S)n (S=EC, PC, DMC and n=1-5), mixed binary clusters, Li+(S1)m(S2)n (S1, S2 =EC, PC, DMC, with m+n=4), and ternary clusters Li+(EC)l(DMC)m(PC)n with l+m+n=4. Pure solvent clusters were also studied including the effect of PF6- anion. We have investigated in details the structure of the coordination shell around Li+ for all cases. Our results show that clusters such as Li+(EC)4, Li+(DMC)4 and Li+(PC)3 are the most stable, according to Gibbs free energy values, in agreement with previous experimental and theoretical studies. The calculated Gibbs free energies of reactions in binary mixtures suggest that the addition of EC and PC molecules to the Li+-DMC clusters are more favourable than the addition of DMC to Li+-EC and Li+-PC clusters. In most of the cases, the substitution of solvent to binary mixtures are unfavourable. In the case of ternary mixtures, the DMC molecule cannot replace EC and PC, while PC can easily substitute both EC and DMC molecules. Our study shows that PC tends to substitute EC in the solvation shell. We have complemented our ab-initio studies by MD simulations of a Li-ion when immersed in the pure solvents and in particular solvents mixtures of interest for batteries applications, e.g. , EC:DMC (1:1) and EC:DMC:PC(1:1:3). MD is a very powerful tool and has allowed us to clarify the relevance of the cluster structures discovered by DFT when the ion is surrounded by bulk solvents. Indeed, DFT provides information about the most stable structures of isolated clusters but no information about their stability or multiplicity (entropy) when immersed in an infinite solvent environment. The MD data, together the DFT calculations have allowed us to give a very comprehensive picture of the local structure of solvent mixtures around Lithium ion, which substantially improve over previous work
Chaouachi, Oumaima. « Up-scaling methodology for lithium-ion battery modelling ». Thesis, Université Grenoble Alpes, 2021. http://www.theses.fr/2021GRALI011.
Texte intégralLi-ion battery technology has a great success and is widely used in various portable technologies and for transport. However, giving the diversity of battery chemistry and the numerous aging phenomena, it remains critical for battery pack designers to resort to simulation of battery performance and aging in order to optimize the module design. Li-ion batteries are multiscale systems where modifications at microscopic length scales have a large impact on global cell characteristics. Mathematical models of these systems must therefore be able to link the global cell characteristics to the description of the physical phenomena at microscopic scales. The aim of the thesis is to develop an up-scaling methodology able to connect the microscopic multi-physic models to the simplified equivalent electrical circuit models used by battery module's designers. This up-scaling methodology will be implemented based on physical model at the electrode scale and validated with experimental measurements in the beginning of life of the battery and during its lifetime
Deng, Junwen. « Strain engineered nanomembranes as anodes for lithium ion batteries ». Doctoral thesis, Universitätsbibliothek Chemnitz, 2015. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-159972.
Texte intégralChen, Mengyuan. « A Closed Loop Recycling Process for the End-of-Life Electric Vehicle Li-ion Batteries ». Digital WPI, 2020. https://digitalcommons.wpi.edu/etd-dissertations/605.
Texte intégralYao, Yueping Jane. « Carbon based anode materials for lithium-ion batteries ». Access electronically, 2003. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20050111.120602/index.html.
Texte intégralHellqvist, Kjell Maria. « Performance of Conventional and Structural Lithium-Ion Batteries ». Doctoral thesis, KTH, Tillämpad elektrokemi, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-122875.
Texte intégralQC 20130529
Ren, Shengru. « A nonlinear circuit model for lithium-ion batteries ». Thesis, University of British Columbia, 2013. http://hdl.handle.net/2429/45621.
Texte intégralDrewett, Nicholas E. « Novel routes to high performance lithium-ion batteries ». Thesis, University of St Andrews, 2013. http://hdl.handle.net/10023/3513.
Texte intégralKlett, Matilda. « Electrochemical Studies of Aging in Lithium-Ion Batteries ». Doctoral thesis, KTH, Tillämpad elektrokemi, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-145057.
Texte intégralQC 20140512
Tsikourkitoudi, Vasiliki P. « Development of advanced nanomaterials for lithium-ion batteries ». Thesis, Kingston University, 2016. http://eprints.kingston.ac.uk/37347/.
Texte intégralKhomenko, V. G., I. V. Senyk et V. Z. Barsukov. « Advanced nanostructured anode materials for lithium-ion batteries ». Thesis, Sumy State University, 2011. http://essuir.sumdu.edu.ua/handle/123456789/20598.
Texte intégralCheekati, Sree Lakshmi. « GRAPHENE BASED ANODE MATERIALS FOR LITHIUM-ION BATTERIES ». Wright State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=wright1302573691.
Texte intégralSharma, Kripa. « Bilevel Equalizer Drivers for Large Lithium-Ion Batteries ». University of Toledo / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1564677943667852.
Texte intégralSotta, Dane. « Liquides ioniques gélifiés pour les batteries lithium-ion ». Amiens, 2011. http://www.theses.fr/2011AMIE0115.
Texte intégralLithium batteries are promising electrical energy storage devices for application in electric vehicles. In these systems the nature of the electrolyte is a key point to control the temperature range of use and the security conditions of the battery. In this context, this work is aimed at developing new gel polymer electrolytes for lithium-ion batteries. The first part of this study has been devoted to formulation and characterization of gelled electrolytes based on an epoxy-amine resin, an ionic liquid and a lithium salt. Physico-chemical properties of these ternary systems have been discussed according to their composition. Gels with high ionic liquid contents exhibit satisfactory ionic conductivity for the considered application. Gel polymer membranes have ben processed and coupled to insertion electrodes to study their electrochemical properties in appropriate prototype cells. In a parallel study, we have focused our investigation on transport properties of charged species in these gels. Besides classical measurements based on Electrochemical Impedance Spectroscopy, several Nuclear Magnetic Resonance Spectroscopy methods have been implemented to study local and long range ion mobility. They have shown that particular interactions are established in the gels between the resin and the lithium ions with reduced mobility for the latter. This work has highlighted the link between molecular interactions and electrical properties in the ternary gels and thus it has enabled a better knowledge of the inner limitations of these systems. Finally, further routes have been proposed to optimize gel polymer electrolytes in lithium-ion batteries
Reynier, Yvan. « Thermodynamique et cinétique d'électrodes pour batteries lithium-ion ». Grenoble INPG, 2005. http://www.theses.fr/2005INPG0039.
Texte intégralStructural changes in lithium ion battery electrodes are a central issue to understand their electrochemical behavior. In this study a new system using the open circuit voltage evolution as a function of temperature was developed to measure the thermodynamics of lithium intercalation. X-ray diffractometry was also used to correlate the thermodynamic profiles to the structure. Clear results also showed that liquid like stage 2 appears at LiC24. The effect of the graphitization degree on lithium intercalation was also considered and clarified. The hexagonal phase in LixCoO2 was found to extend up to x~0. 83 instead of 0. 75 as previously thought. A detailed survey of the possible sources of entropy was carried out for this compound. The effect of over stoichiometry in LiMn2O4 was also studied. The open circuit voltage method can give valuable information on the structural evolution of electrode materials and is easy to setup, making it an interesting mean of structural characterization
Takeno, Mitsuhiro. « Studies on Electrode-slurry for Lithium-ion Batteries ». Kyoto University, 2017. http://hdl.handle.net/2433/225964.
Texte intégralNg, See How. « Nanostructured materials for electrodes in lithium-ion batteries ». Access electronically, 2007. http://www.library.uow.edu.au/adt-NWU/public/adt-NWU20080313.142752/index.html.
Texte intégralWang, Shijun. « Iron phosphates as cathodes for lithium-ion batteries ». Diss., Online access via UMI:, 2009.
Trouver le texte intégralAlotaibi, Nouf. « Rutile-TiO2 based materials for lithium ion batteries ». Thesis, University of Sheffield, 2015. http://etheses.whiterose.ac.uk/11130/.
Texte intégralAmigues, Adrien Marie. « New metastable cathode materials for lithium-ion batteries ». Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/276299.
Texte intégralAllart, David. « Gestion et modélisation électrothermique des batteries lithium-ion ». Thesis, Normandie, 2017. http://www.theses.fr/2017NORMC261/document.
Texte intégralThis thesis work focuses on the electrothermal modeling of high-power Lithium-ion batteries, applied for electric vehicles and the energy storage connected to the the grid. A particular approach is given on the thermal modeling of the battery and its connectors in order to anticipate the thermal behaviors under dynamic charge and discharge current, which is very useful for the thermal management systems of the batteries. Numerous investigations have been carried out in order to determine the different electrical and thermal parameters of the accumulator, we have also tried to compare several different methods.The first part of the manuscript is dedicated to characterization and electrical modeling.The second part presents the thermal characterization and the thermal model of the battery. We propose a coupled approach of different thermal models, with the aim of predicting the thermal behaviors at the level of the surface and the core of the cell, but also at the level of the connectors and the wire.Finally, the last part presents the electrothermal modeling of a small assembled module of three cells in series. The results of simulations have been validated on constant current regimes, as well as on dynamic current regimes.The work aims to integrate the thermal models in a simulation platform of energy systems and opens up paths towards tools to help in the design of battery packs, assistance with the dimensioning of cooling systems and the development of thermal diagnostic tool for batteries
ANDREOLI, ALFREDO. « Nano-structured Germanium anodes for Lithium-ion batteries ». Doctoral thesis, Università degli studi di Ferrara, 2021. http://hdl.handle.net/11392/2488288.
Texte intégralLe Batterie agli Ioni di Litio sono la tecnologia di punta tra i sistemi di accumulo dell’energia attuali e ci si aspetta che giocheranno un ruolo fondamentale nella transizione verso una economia verde e sostenibile. Tuttavia, la tecnologia odierna è vicina al raggiungimento dei propri limiti teorici e sono pertanto richiesti nuovi materiali con densità energetica superiore e una migliore risposta ad elevati ratei di carica e scarica. Tra le varie possibilità, il germanio è particolarmente interessante per rimpiazzare il materiale attualmente utilizzato come standard negli anodi delle batterie, rappresentato dalla grafite. Il germanio ha infatti una capacità teorica superiore e promettenti performance elettrochimiche lo renderebbero particolarmente adatto per applicazioni di potenza. Il principale limite che ne impedisce lo sfruttamento diretto è rappresentato da una forte variazione volumetrica durante i cicli di carica e scarica, che porta alla polverizzazione del materiale massiccio nell’arco di pochi cicli. Una possibile soluzione per risolvere questo problema consiste nella nano-strutturazione del materiale, per creare strutture in grado di accomodare reversibilmente le deformazioni. In questo lavoro di tesi si presentano due processi articolati in due fasi per la realizzazione di anodi nano-strutturati a base di germanio con capacità superiori e migliori performance ad elevati ratei di carica e scarica, presentando anche una approfondita campagna di caratterizzazioni fisiche ed elettrochimiche dei campioni realizzati. I processi di fabbricazione in due fasi fanno ricorso a tecniche che rappresentano già degli standard nell’industria dei semiconduttori, ma che non sono ancora diffusi in quella delle batterie. In particolare, si tratta di approcci “top-down” nei quali si realizza in primis un film sottile di germanio ricorrendo a una deposizione chimica da fase vapore assistita da un plasma a bassa energia, per poi realizzare la nano-struttura ricorrendo a una delle due tecniche tra l’attacco elettrochimico con acido fluoridrico o l’impiantazione ionica. Gli elettrodi così prodotti non necessitano di additivi per incrementare l’adesione o la conducibilità, e non occorrono deposizioni preliminari per assisterne la crescita: questi costituiscono aspetti importanti per incrementare la capacità per unità di massa degli elettrodi oltre a semplificare i processi di fabbricazione. I dettagli dei processi di realizzazione degli elettrodi e una rassegna dei risultati sperimentali sono illustrati e confrontati con precedenti lavori, con modelli teorici e con la letteratura. Le caratterizzazioni fisiche ed elettrochimiche effettuate sono presentate in appositi capitoli, fornendo brevi introduzioni delle tecniche e delle metodologie di analisi utilizzate. Gli elettrodi hanno dimostrato ottime capacità, superiori alla grafite, che vengono mantenute per centinaia o migliaia di cicli. L’elevata capacità degli elettrodi è mantenuta anche ad elevati ratei di carica e scarica ed in un ampio range di temperature. Inoltre, si dimostra che i promettenti risultati osservati sono ascrivibili esclusivamente al germanio nano-strutturato, e sono indipendenti dal materiale substrato, dalla tecnica di nano-strutturazione usata e dal particolare test elettrochimico effettuato. Gli anodi presentati in questo lavoro risultano particolarmente promettenti per applicazioni aerospaziali. Parte delle attività presentate è stata svolta nell’ambito di un progetto finanziato dall’Agenzia Spaziale Italiana e denominato ANGELS. In virtù dei risultati ottenuti sin dai primi prototipi, il processo di realizzazione degli anodi tramite la deposizione e la successiva nano-strutturazione mediante dissoluzione anodica è stato protetto da una famiglia di brevetti, con capostipite il brevetto italiano IT201800006103A.
Jeschull, Fabian. « Functional Binders at the Interface of Negative and Positive Electrodes in Lithium Batteries ». Licentiate thesis, Uppsala universitet, Strukturkemi, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-267557.
Texte intégralAli, Haider Adel Ali, et Ziad Namir Abdeljawad. « THERMAL MANAGEMENT TECHNOLOGIES OF LITHIUM-ION BATTERIES APPLIED FOR STATIONARY ENERGY STORAGE SYSTEMS : Investigation on the thermal behavior of Lithium-ion batteries ». Thesis, Mälardalens högskola, Akademin för ekonomi, samhälle och teknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-48904.
Texte intégralZou, Haiyang. « Development of a Recycling Process for Li-Ion Batteries ». Digital WPI, 2012. https://digitalcommons.wpi.edu/etd-theses/260.
Texte intégralSantos-Ortiz, Reinaldo. « Thin Films As a Platform for Understanding the Conversion Mechanism of FeF2 Cathodes in Lithium-Ion Microbatteries ». Thesis, University of North Texas, 2015. https://digital.library.unt.edu/ark:/67531/metadc804977/.
Texte intégral