Littérature scientifique sur le sujet « Liquid metal batteries »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Liquid metal batteries ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Liquid metal batteries"

1

Horstmann, G. M., N. Weber et T. Weier. « Coupling and stability of interfacial waves in liquid metal batteries ». Journal of Fluid Mechanics 845 (20 avril 2018) : 1–35. http://dx.doi.org/10.1017/jfm.2018.223.

Texte intégral
Résumé :
We investigate the coupling dynamics of interfacial waves in liquid metal batteries and its effects on the battery’s operation safety. Similar to aluminium reduction cells, liquid metal batteries can be highly susceptible to magnetohydrodynamically exited interfacial instabilities. The resulting waves are capable of provoking short-circuits. Owing to the presence of two metal-electrolyte interfaces that may step into resonance, the wave dynamics in liquid metal batteries is particularly complex. In the first part of this paper, we present a potential flow analysis of coupled gravity–capillary interfacial waves. While we are focusing here on liquid metal batteries with circular cross-section, the theory is applicable to arbitrary stably stratified three-layer systems. Analytical expressions for the amplitude ratio and the wave frequencies are derived. It is shown that the wave coupling can be completely described by two independent dimensionless parameters. We further provide a decoupling criterion that suggests that wave coupling will be present in most future liquid metal batteries. In the second part, the theory is validated by comparing it with multiphase direct numerical simulations. An accompanying parameter study is conducted to analyse the system stability for interfaces coupled to varying degrees. Three different coupling regimes are identified involving characteristic coupling dynamics. For strongly coupled interfaces we observe novel instabilities that may have beneficial effects on the operational safety.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Herreman, W., C. Nore, L. Cappanera et J. L. Guermond. « Tayler instability in liquid metal columns and liquid metal batteries ». Journal of Fluid Mechanics 771 (15 avril 2015) : 79–114. http://dx.doi.org/10.1017/jfm.2015.159.

Texte intégral
Résumé :
In this paper we investigate the Tayler instability in an incompressible, viscous and resistive liquid metal column and in a model of a liquid metal battery (LMB). Detailed comparisons between theory and numerics, both in linear and nonlinear regimes, are performed. We identify the timescale that is well adapted to the quasi-static (QS) regime and find the range of Hartmann numbers where this approximation applies. The scaling law $\mathit{Re}\sim \mathit{Ha}^{2}$ for the amplitude of the Tayler destabilized flow is explained using a weakly nonlinear argument. We calculate a critical electrolyte height above which the Tayler instability is too weak to disrupt the electrolyte layer in a LMB. Applied to present day Mg-based batteries, this criterion shows that short circuits can occur only in very large batteries. Finally, preliminary results demonstrate the feasibility of direct numerical multiphase simulations of the Tayler instability in a model battery.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Bojarevics, V., et A. Tucs. « Large scale liquid metal batteries ». Magnetohydrodynamics 53, no 4 (2017) : 677–86. http://dx.doi.org/10.22364/mhd.53.4.9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Ota, Hiroki. « (Invited) Application of Liquid Metals in Battery Technology ». ECS Meeting Abstracts MA2024-02, no 35 (22 novembre 2024) : 2502. https://doi.org/10.1149/ma2024-02352502mtgabs.

Texte intégral
Résumé :
Stretchable devices have many potential applications, including wearable electronics, robotics, and health monitoring. These mechanically adaptable devices and sensors can seamlessly integrate with electronics on curved or soft surfaces. Given that liquids are more deformable than solids, sensors and actuators utilizing liquids encased in soft templates as sensing elements are particularly suited for these applications. Such devices, leveraging ultra-flexible conductive materials, are referred to as stretchable electronics. Liquid metals (LMs) have emerged as one of a leading material in this field. In recent years, interest in liquid metals has surged, notably in flexible and soft electronics. When considering liquid metals, mercury often comes to mind due to its fluid state at room temperature. However, its high toxicity precludes its use in wearable technology. Instead, gallium-based liquid metals are preferred due to their safety in such applications. Gallium alone melts at about 30°C, but an alloy of 75% gallium and 25% indium lowers the melting point to 15°C. Adding 10% tin further reduces it to -19°C. These gallium-based liquid metals, which form low-viscosity eutectic alloys, have extremely low melting points and high biocompatibility. In addition, they rapidly form a thin oxide layer on their surface, which complicates patterning on substrates. To address this, metal nanoparticles like nickel can be blended using ultrasonic probing to create a malleable paste. These materials are still under research to explore additional functionalities. Liquid metals are particularly promising for self-healing materials and advanced wiring technologies for sensors and smart devices in stretchable electronics. More recently, their application in battery technologies in addition to sensors and wiring has been proposed. With ongoing advancements in flexible and stretchable electronics, the flexibility of lithium-ion batteries, essential for powering these devices, is also under investigation. This presentation discusses research on flexible battery electrodes using liquid metal and on materials for stretchable battery packages. In our first study, liquid metal served as a battery electrode, integrating the reaction and current collecting layers into a single process, thus simplifying manufacturing. However, this integration results in lower conductivity compared to traditional two-layer electrodes. By employing materials such as Li4Ti5O12 (LTO) or Li2TiS3 (LTS) with liquid metal, we developed a high-conductivity, printable liquid metal electrode ink that combines both functions. In a second application, liquid metal was used as an package for stretchable batteries. Recent studies on batteries have primarily focused on enhancing their stability and lifespan, with less attention to packaging. Conventionally, aluminum laminate film is used to prevent moisture and gas permeation in highly deformable batteries. Our study introduced a novel approach using a layer-by-layer technique to apply a thin liquid metal coating on a gold-coated thermoplastic polyurethane film, resulting in a stretchable packaging film with excellent gas barrier properties. This innovation not only enhances the battery's operational stability but also allows it to function reliably in atmospheric condition. The applications for liquid metals are extensive and hold promise for further exploration in various fields.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Weber, N., P. Beckstein, V. Galindo, W. Herreman, C. Nore, F. Stefani et T. Weier. « Metal pad roll instability in liquid metal batteries ». Magnetohydrodynamics 53, no 1 (2017) : 129–40. http://dx.doi.org/10.22364/mhd.53.1.14.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Stefani, F., V. Galindo, C. Kasprzyk, S. Landgraf, M. Seilmayer, M. Starace, N. Weber et T. Weier. « Magnetohydrodynamic effects in liquid metal batteries ». IOP Conference Series : Materials Science and Engineering 143 (juillet 2016) : 012024. http://dx.doi.org/10.1088/1757-899x/143/1/012024.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Tian, Yuhui, et Shanqing Zhang. « The Renaissance of Liquid Metal Batteries ». Matter 3, no 6 (décembre 2020) : 1824–26. http://dx.doi.org/10.1016/j.matt.2020.10.031.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Bhardwaj, Ravindra Kumar, et David Zitoun. « Recent Progress in Solid Electrolytes for All-Solid-State Metal(Li/Na)–Sulfur Batteries ». Batteries 9, no 2 (3 février 2023) : 110. http://dx.doi.org/10.3390/batteries9020110.

Texte intégral
Résumé :
Metal–sulfur batteries, especially lithium/sodium–sulfur (Li/Na-S) batteries, have attracted widespread attention for large-scale energy application due to their superior theoretical energy density, low cost of sulfur compared to conventional lithium-ion battery (LIBs) cathodes and environmental sustainability. Despite these advantages, metal–sulfur batteries face many fundamental challenges which have put them on the back foot. The use of ether-based liquid electrolyte has brought metal–sulfur batteries to a critical stage by causing intermediate polysulfide dissolution which results in poor cycling life and safety concerns. Replacement of the ether-based liquid electrolyte by a solid electrolyte (SEs) has overcome these challenges to a large extent. This review describes the recent development and progress of solid electrolytes for all-solid-state Li/Na-S batteries. This article begins with a basic introduction to metal–sulfur batteries and explains their challenges. We will discuss the drawbacks of the using liquid organic electrolytes and the advantages of replacing liquid electrolytes with solid electrolytes. This article will also explain the fundamental requirements of solid electrolytes in meeting the practical applications of all solid-state metal–sulfur batteries, as well as the electrode–electrolyte interfaces of all solid-state Li/Na-S batteries.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Arzani, Mehran, Sakshi Singh et Vikas Berry. « Modified Liquid Electrolyte with Porous Liquid Type-II for Lithium-Metal Batteries ». ECS Meeting Abstracts MA2024-01, no 1 (9 août 2024) : 96. http://dx.doi.org/10.1149/ma2024-01196mtgabs.

Texte intégral
Résumé :
Liquid electrolytes modified by adding type-II porous liquid (PL) were designed and prepared to study its effect on the performance of lithium-metal batteries. Porous liquids provide internal, permanent, and empty porosity which are capable of coordinating and transporting Li+. The potential of the porous liquid to capture and transport ions with high mobility leads to enhancement in battery performance. In this study, the physicochemical properties of electrolytes, mechanism of solvation, transport, and electrical conductivity of lithium ions through the new electrolytes will be presented, and the potential of the liquid electrolyte based on the type-II porous liquid to develop the battery performance was investigated. This modification effectively improved the Li ionic conductivity of the electrolyte because of the Li+ ion solvation by type-II PL. The dissociation of Li+-TFSI− ion pairs and the formation of complexes with Li+ ions (Li-PL) were improved by using the type-II PL, resulting in an increase in the ionic conductivity of the electrolyte. Our findings suggest that the use of PL electrolytes can be a good candidate for improvement in physicochemical properties of electrolytes leading to an enhancement in Lithium-Metal Batteries.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Godinez Brizuela, Omar Emmanuel, Daniel Niblett et Kristian Etienne Einarsrud. « Pore-Scale Micro-Structural Analysis of Electrode Conductance in Metal Displacement Batteries ». ECS Meeting Abstracts MA2022-01, no 1 (7 juillet 2022) : 148. http://dx.doi.org/10.1149/ma2022-011148mtgabs.

Texte intégral
Résumé :
Metal displacement batteries (MDBs), or liquid metal batteries, are an emerging technology with significant potential in providing high capacity, low-cost energy storage solutions, capable of addressing many of the challenges associated with storing energy from renewable sources. The key characteristic of metal displacement batteries is that at least one of the electrodes is in liquid state and a molten salt is used as an electrolyte. Since its original proposal in the 1960’s liquid metal batteries have re-emerged in recent years and different battery chemistries and designs have been explored, including Ca-Bi, Na-Sb, and many others [2,10]. Recently, Na-Zn liquid metal batteries have been studied as an alternative to other configurations, showing significant potential in achieving good performance for large-scale energy storage, while avoiding the high cost associated with some electrode materials such as Nickel or Lithium [7,8]. In past years, alternatives to all-liquid cells have emerged in the form of designs where the cell materials are a mixture of solids and liquids. Examples of this include the commercially available Zebra battery, where a Na-NiCl electrode pair is used [1,6]. These designs offer some of the advantages of all-liquid cells, while simultaneously mitigating many of the disadvantages of handling and operating a very high temperature system. Na-Zn have also been proposed for solid cathode designs, taking advantage of the lower cost of Zn over Ni [4,3]. The cathode in these designs is composed of a porous structure, within which multiple chemical species can co-exist. Electrolyte components share the space with metal deposits,salt crystals, and other electrochemical reaction products. As a result, the micro-porous structure of this composite system is an important factor in determining the performance of the cell, as the spatial distribution of different materials can have an impact on the effective conductivity of the electrode [5,9]. The porous structure hosts complex multi-component mass transfer phenomena as well, potentially having an impact on the mass-transfer overpotential of the cell. This work aims to study the impact of the microstructural properties of the solid electrode in a liquid displacement battery, and their importance to the effective conductivity of the system. We have developed a computational tool that enables us to create randomized microstructures in 3D, representing the electrode-electrolyte assembly. We are able to preserve the desired physical characteristics by using target pore-size distributions and volume fraction input as seed parameters. We use this tool to generate representative structures and analyze their effective bulk conductivity by solving Laplace’s equation over the resulting domain, accounting for the different local conductivity of each material. This methodology is applied to a novel Na-Zn cell in order to assess the importance of the pore-scale properties of the cathode, as well as its material components, including solid Zn metal, solid NaCl deposits, and molten salt components. It is expected that different material arrangement configurations will induce heterogeneous current distributions in this system. Furthermore, the ionic composition of the electrolyte would be different at different charge levels, leading to additional variation through its charge/discharge cycle. Using this methodology, the range of different electrode phase configurations produced during operation can be studied in the absence of microstructure imaging data. A representative elementary volume for the Zn electrode assembly is analyzed to determine the best approach for up-scaled performance predictions of the Na-Zn cell. With this method, it is possible to acquire data to elucidate desirable or undesirable electrode structure properties of this system, providing insight which can be used for improving manufacture and operation of the cell. [1] Dustmann. “Advances in ZEBRA batteries”. J. Power Sources (2004). [2] Kim et al. “Liquid metal batteries: Past, present, and future”. Chemical Reviews (2013). [3] Lu et al. “An Intermediate-Temperature High-Performance Na-ZnCl2 Bat- tery”. ACS Omega (2018). [4] Lu et al. “Liquid-metal electrode to enable ultra-low temperature sodium- beta alumina batteries for renewable energy storage”. Nature Communications (2014). [5] Qiu et al. “Pore-scale analysis of effects of electrode morphology and electrolyte flow conditions on performance of vanadium redox flow batteries”. J. Power Sources (2012). [6] Sudworth. “The sodium / nickel chloride ( ZEBRA ) battery”. J. Power Sources (2001). [7] Xu et al. “Electrode Behaviors of Na-Zn Liquid Metal Battery”. Journal of The Electrochemical Society (2017). [8] Xu et al. “Na-Zn liquid metal battery”. Journal of Power Sources (2016). [9] Zhang et al. “Progress in 3D electrode microstructure modelling for fuel cells and batteries: transport and electrochemical performance”. Progress in Energy (2019). [10] Zhang et al. “Liquid Metal Batteries for Future Energy Storage”. Energy Environmental Science (2021). Figure 1
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Liquid metal batteries"

1

Bradwell, David (David Johnathon). « Liquid metal batteries : ambipolar electrolysis and alkaline earth electroalloying cells ». Thesis, Massachusetts Institute of Technology, 2011. http://hdl.handle.net/1721.1/62741.

Texte intégral
Résumé :
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Materials Science and Engineering, 2011.
Cataloged from PDF version of thesis.
Includes bibliographical references (p. 198-206).
Three novel forms of liquid metal batteries were conceived, studied, and operated, and their suitability for grid-scale energy storage applications was evaluated. A ZnlITe ambipolar electrolysis cell comprising ZnTe dissolved in molten ZnCl 2 at 500 0C was first investigated by two- and three-electrode electrochemical analysis techniques. The electrochemical behavior of the melt, thermodynamic properties, and kinetic properties were evaluated. A single cell battery was constructed, demonstrating for the first time the simultaneous extraction of two different liquid metals onto electrodes of opposite polarity. Although a low open circuit voltage and high material costs make this approach unsuitable for the intended application, it was found that this electrochemical phenomenon could be utilized in a new recycling process for bimetallic semiconductors. A second type of liquid metal battery was investigated that utilized the potential difference generated by metal alloys of different compositions. MgjlSb cells of this nature were operated at 700 °C, demonstrating that liquid Sb can serve as a positive electrode. Ca,MgIIBi cells also of this nature were studied and a Ca,Mg liquid alloy was successfully used as the negative electrode, permitting the use of Ca as the electroactive species. Thermodynamic and battery performance results suggest that Ca,MgIISb cells have the potential to achieve a sufficient cell voltage, utilize earth abundant materials, and meet the demanding cost and cycle-life requirements for use in grid-scale energy storage applications.
by David J. Bradwell.
Ph.D.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Spatocco, Brian Leonard. « Investigation of molten salt electrolytes for low-temperature liquid metal batteries ». Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/101461.

Texte intégral
Résumé :
Thesis: Ph. D., Massachusetts Institute of Technology, Department of Materials Science and Engineering, 2015.
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 202-211).
This thesis proposes to advance our ability to solve the challenge of grid-scale storage by better positioning the liquid metal battery (LMB) to deliver energy at low levelized costs. It will do this by rigorously developing an understanding of the cost structure for LMBs via a process-based cost model, identifying key cost levers to serve as filters for system down-selection, and executing a targeted experimental program with the goal of both advancing the field as well as improving the LMB's final cost metric. Specifically, cost modelling results show that temperature is a key variable in LMB system cost as it has a multiplicative impact upon the final $/kWh cost metric of the device. Lower temperatures can reduce the total cost via simultaneous simplifications in device sealing, packaging, and wiring. In spite of this promise, the principal challenge in reducing LMB operating temperatures (>400°C) lies in identifying high conductivity, low-temperature electrolytes that are thermally, chemically, and electrochemically stable with pure molten metals. For this reason, a research program investigating a promising low-temperature binary molten salt system, NaOH-NaI, is undertaken. Thermodynamic studies confirm a low eutectic melting temperature (219°C) and, together with the identification of two new binary compounds via x-ray diffraction, it is now possible to construct a complete phase diagram. These phase equilibrium data have then been used to optimize Gibbs free energy functions for the intermediate compounds and a two-sublattice sub-regular solution framework to create a thermodynamically self-consistent model of the full binary phase space. Further, a detailed electrochemical study has identified the electrochemical window (>2.4 V) and related redox reactions and found greatly improved stability of the pure sodium electrode against the electrolyte. Results from electrochemical studies have been compared to predictions from the solution model and strong agreement supports the physicality of the model. Finally, a Na[/]NaOH-NaI[/]Pb-Bi proof-of-concept cell has achieved over 100 cycles and displayed leakage currents below 0.40 mA/cm℗ø. These results highlight an exciting new class of low-melting molten salt electrolytes and point to a future Na-based low-temperature system that could achieve costs that are 10-15% less than those of existing lithium-based LMBs.
by Brian Leonard Spatocco.
Ph. D.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Feldmann, Martin C. (Martin Christopher). « Development, implementation and analysis of the first recycling process for alkaline liquid metal batteries ». Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/93844.

Texte intégral
Résumé :
Thesis: M. Eng., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2014.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 166-168).
Increasing energy prices, new environmental laws and geopolitical interests demand for new, more efficient and cheaper grid level energy storage solutions. Grid level energy storage refers to large scale energy storage applications that are connected to the power grid. Ambri Inc. is a MIT startup that develops liquid metal batteries for grid level energy storage. Their liquid metal battery operates at elevated temperatures and uses molten metals as electrodes thereby exhibiting a very low fade rate over hundreds of charging and discharging cycles. Ambri cooperated with MIT to develop a new recycling process for their unique battery chemistry to implement a sustainable end of life management for their product. This thesis describes the process development, implementation and analysis of a hydrometallurgical recycling process for a liquid metal battery. According to jointly developed process requirements, the MIT team build a process that is capable of recycling 5 liquid metal batteries per batch with an estimated processing time of 60 minutes. This will increase Ambri's profit by several hundred thousands of dollars even during the first year of production. The performed analysis of the process investigated safe and stable operating conditions, cost efficiency and scalability. The MIT team concluded that the newly developed recycling process best accommodates for Ambri's current needs and future growth compared to the only competing process, the full cell incineration with following hazardous waste landfill deposition.
by Martin C. Feldmann.
M. Eng.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Hiremath, Anupam Mahantayya. « Τheοretical study οf thermal cοnvectiοn in a liquid metal battery : Linear stability analysis ». Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMLH33.

Texte intégral
Résumé :
Les développements rapides dans l'énergie renouvelable ont conduit à une forte demande de systèmes de stockage d'énergie. Parmi les systèmes proposés, les batteries aux métaux liquides (BML) sont des nouveaux systèmes de stockage d'énergie proposés pour stocker l'énergie électrique crée par des sources d'énergie intermittentes telles que les éoliennes, les panneaux photovoltaïques, etc.,Les BML sont composées de métaux alcalins liquides dans l'électrode supérieure, de sels fondus comme électrolyte et d'alliages comme électrodes inférieures. Ces liquides sont immiscibles et superposés dans une stratification de densité stable. Lors de l'application du courant à travers les batteries, plusieurs phénomènes physico-chimiques se produisent. L'objectif de cette thèse consiste à étudier la convection thermique induite par le chauffage volumétrique de l'électrolyte par effet Joule.L'étude a d'abord été réalisée sur une seule couche avec chauffage volumétrique soumis à différentes conditions aux limites thermiques et cinématiques. Plus tard, un champ magnétique horizontal a été appliqué pour observer l'évolution des seuils de convection thermique.Des études ont ensuite été réalisées pour trois batteries différentes pour calculer les seuils de convection thermique pure. Ces seuils dépendent du rapport des propriétés fluides des électrodes à l'électrolyte. Une influence est observée en faisant varier l'épaisseur des tailles d'électrodes et pour une très grande épaisseur des électrodes supérieures, un nouveau mode d'instabilité thermique est observé et il est appelé modes d'électrode-A. Une étude a également été menée en ajoutant un coefficient d'échange thermique aux limites supérieure et inférieure et on voit que la convection est produite rapidement lorsqu'il y a un échange thermique avec l'environnement extérieur. Les effets des forces sur les interfaces ont montré qu'ils diminuaient les seuils de convection thermique. Ces forces sont plus influentes pour l'électrolyte peu profonde et montrent une transition des modes d'électrode-A aux modes d'électrolyte. Un champ magnétique externe appliqué le long de la direction-x a montré qu'il augmentait les seuils de convection thermique pour les perturbations le long de la même direction et montre un allongement des cellules de convection. Tous les modes d'instabilité sont stationnaires
Rapid developments in harnessing the natural sources of energy has lead to a strong demand of efficient energy storage techniques. Among the proposed systems, liquid metal battery (LMB) is a novel system of energy proposed to store the electrical outputs from intermittent sources of energy such as wind energy, solar energy, etc.,LMBs are composed of liquid alkali metals in top electrode, molten salts as electrolyte and alloys as bottom electrode. These liquids are immiscible and super imposed in a stable density stratification. With the application of current across the battery, several physico-chemical phenomena occurs. The objective of this thesis consists in the investigations of thermal convection induced due to Joule's volumetric heating in the electrolyte.Initial study has been done on a single layer with volumetric heating subject to different thermal and kinematic boundary conditions. Later a horizontal magnetic field has been applied to detect its effects on the critical parameters of thermal convection.Equations governing thermal convection induced by Joule heating in the whole battery have been formulated together with the boundary conditions including the interfaces. A numerical code has been developed to solve these equations. These thresholds are found to depend on the ratio of fluid properties of electrodes to those of the electrolyte. The variation of the ratio of electrodes thicknesses to that of the electrolyte leads to a new mode of thermal instability in the upper electrode for very large thickness. The effect of heat exchange of the battery with its ambient environment is to destabilize the conduction state and to facilitate thermal convection. Joule heating in the electrolyte can affect the interfacial tension at both the interfaces and induce thermocapillary (Marangoni) convection, threshold of which depends on the ratio of the electrodes thicknesses. In shallow electrolytes, thermoconvection can appear in the upper electrode before it occurs in the electrolyte. An applied external magnetic field along the horizontal plane increases the threshold of thermal convection elongates the convection cells. All the modes of thermal convection induced by Joule heating are stationary
Styles APA, Harvard, Vancouver, ISO, etc.
5

Hwang, Jinkwang. « A Study on Enhanced Electrode Performance of Li and Na Secondary Batteries by Ionic Liquid Electrolytes ». Kyoto University, 2019. http://hdl.handle.net/2433/245327.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Ngo, Hoang Phuong Khanh. « Développement et caractérisation des électrolytes plus sûrs et versatiles pour les batteries au lithium métallique ou post-lithium ». Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAI076.

Texte intégral
Résumé :
Les problèmes de sécurité liés aux fuites de produits chimiques, au chauffage externe ou aux explosions sont un frein au développement de dispositifs de stockage renouvelables à base d’électrolytes liquides. La sécurité des batteries nécessite le développement de nouvelles technologies telles que les électrolytes à base de liquide ionique ou de membranes polymères conductrices. Simultanément, et face à l’épuisement des ressources en lithium, la tendance énergétique cherche à privilégier le développement de piles rechargeables à base d’éléments abondants, tels que les métaux alcalins / alcalino-terreux. Une meilleure compréhension du comportement conducteur cationique de ces électrolytes est nécessaire pour développer des batteries au lithium et post-lithium de haute sécurité.Le premier objectif de ce travail était axé sur les propriétés de transport dans des électrolytes liquides ioniques obtenus en dissolvant des sels alcalin/alcalino-terreux dans un liquide ionique, le BMIm TFSI. Ces mélanges possèdent des caractéristiques prometteuses telles qu'une faible tension de vapeur, une ininflammabilité, une stabilité thermique élevée et une bonne conductivité ionique. Ces électrolytes ont été étudiés par une appoche multitechnique pour une description thermodynamique (propriétés thermiques), dynamique (viscosité, conductivité ionique, coefficients d'auto-diffusion des différentes espèces) et structurale (spectroscopies IR et Raman). Ces travaux ont permis de montrer que le comportement du transport cationique dans ces électrolytes liquide-ionique est fortement influencé par la natutre et la concentration des cations. Ces variations dépendent de la viscosité, qui sont reliés à la sphère de coordination des ions alcalins/alcalino-terreux dissous.Un autre partie de ce travail présente le développement de nouveaux ionomères à base de POE comme électrolytes solides pour des batteries rechargeables au lithium ou de génération post-lithium. Ces matériaux, ionomères réticulés et copolymères, présentent un nombre de transport ionique pratiquement égal à 1. L'excellent comportement en cyclage dans une batterie symétrique au lithium-métallique ont confirmé le bon comportement de l'électrolyte et une réversibiité parfaite de l'intercalation/désintercalation du lithium dans les deux électrodes. Les hautes performances des batteries au lithium métallique utilisant des cathodes LiFePO4, ont confirmé l'adéquation de ces matériaux pour une utilisation en tant qu'électrolytes solides. Un dernier objectif de ce travail a été l'étude du comportement de conductivité des cations alcalins dans différentes matrices de polymère. Grâce au greffage des fonctions anionique, une conductivité cationique unitaire a pu être atteinte, ce qui a permis de mesurer l'effet de la taille du cation sur sa mobilité
Safety issues related to chemical leakage, external heating, or explosion restrain the advancement of renewable storage devices based on classical liquid electrolytes. The urgent need for safer batteries requires new technologies such as the replacement of carbonate solvents by green ionic liquid-based electrolytes or the use of conducting polymer membranes. Moreover, facing a future shortage of raw materials such as lithium, trends are to promote the development of rechargeable batteries based on abundant elements i.e. alkali/alkaline-earth metals. A better understanding of cation conductive behavior in these electrolytes become the mainstream for developing high-security lithium and post-lithium batteries.In this work, the first goal was to focus on the physical and ionic transport properties of several binary systems based on the solution of different alkali/alkaline-earth TFSI salts in a common ionic liquid BMIm TFSI. These ionic liquid electrolytes possess unique characteristics that are promising for electrolyte applications e.g. low vapor pressure, non-inflammable, high thermal stability, with sufficient ionic conductivity. These mixtures are studied with the multi-technique approach to reach thermodynamics (thermal properties), dynamics (viscosity, ionic conductivity self-diffusion coefficients) and structural (IR and Raman spectroscopy) description of these systems. The cationic transport behavior in these ionic liquid electrolytes is strongly influenced by the nature of the cation and its concentration. These viscosity dependent phenomena are related to the alkali/alkaline-earth coordination shell.Another goal of this work is the development of new single-ion conducting polymers based on PEO as solid electrolytes for safer lithium and post-lithium rechargeable batteries. These materials exhibit a cation transference number which nearly reaches unity for the cross-linked ionomers and multi-block copolymers. The cycling tests in symmetric lithium-metal cell affirmed the reversibility of electrolyte with stable lithium plating/stripping between two electrodes. High performances in lithium metal batteries using ‘home-made’ LiFePO4 cathodes demonstrate the potential of these materials as solid electrolytes. An ultimate aim showed the conductivity behavior of the alkali cations in the different polymer matrix. Thanks to the grafting anionic function distributed along the polymer chain, the effect of cation size on its mobility were clearly observed
Styles APA, Harvard, Vancouver, ISO, etc.
7

Howlett, Patrick C. « Room temperature ionic liquids as electrolytes for use with the lithium metal electrode ». Monash University, School of Chemistry, 2004. http://arrow.monash.edu.au/hdl/1959.1/9629.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Morales, Ugarte Jorge Eduardo. « Etude Operando des accumulateurs au lithium par couplage spectroscopie à photoémission des rayons X et spectroscopie d’impédance ». Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAI082.

Texte intégral
Résumé :
Face aux grands défis industriels dans les domaines du stockage électrochimique de l’énergie, un effort de recherche fondamentale sur les matériaux impliqués et leurs interfaces est aujourd'hui indispensable pour un gain en performance, durabilité, sécurité.Dans ce contexte, il est primordial de comprendre les processus interfaciaux mis en jeu qui induisent la dégradation de l’interface lithium métal-électrolyte et entrainent une baisse du rendement Coulombique et favorisent la croissance dendritique.Nous proposons ainsi dans cette thèse une étude couplant des techniques électrochimiques comme la spectroscopie d’impédance avec des techniques d’analyse de surface comme la spectroscopie à photoémission des rayons X pour étudier la réactivité chimique et électrochimiques entre les électrolytes et une électrode de lithium métal.Pour ce faire, un intérêt spécifique a été porté aux électrolytes à base de liquides ioniques, qui ont été proposés comme solvants des sels de lithium, notamment pour leur faible pression de vapeur saturante qui augmente considérablement la sécurité des batteries ainsi conçues.Enfin, ce travail a été consacré en particulier au développement de montages et de mesures operando XPS afin de suivre l’évolution chimique des interfaces à l’intérieur d’une batterie en temps réel
Faced with the major industrial challenges in the field of electrochemical energy storage, a fundamental research effort on the materials involved and their interfaces is nowadays essential for a gain in performance, durability and safety.In this context, it is essential to understand the interfacial processes involved that induce the degradation of the lithium metal-electrolyte interface and lead to a decrease in Coulombic efficiency and promote dendritic growth.In this thesis, we propose a study coupling electrochemical techniques such as impedance spectroscopy with surface analysis techniques such as X-ray photo-emission spectroscopy to study the chemical and electrochemical reactivity between electrolytes and a lithium metal electrode.To this end, special attention has been paid to the ionic liquids based electrolytes, which have been proposed as solvents for lithium salts, particularly for their low saturation vapor pressure, which considerably increases the safety of the batteries thus designed.Finally, this work was devoted in particular to the development of operando XPS assemblies and measurements in order to follow the chemical evolution of the interfaces inside a battery in real time
Styles APA, Harvard, Vancouver, ISO, etc.
9

George, Sweta Mariam. « Exploring Soft Matter and Modified-Liquid Electrolytes for Alkali metal (Li, Na) Based Rechargeable Batteries ». Thesis, 2022. https://etd.iisc.ac.in/handle/2005/5913.

Texte intégral
Résumé :
The current upsurge in demand for high energy density batteries for applications across industries ranging from small scale portable electronics, electric automobiles to storage grids, has led to research in next generation, beyond lithium -ion batteries. Alkali metals like lithium and sodium, by virtue of their high theoretical capacity (3860 mAhg-1 for Li and 1165 mAhg-1 for Na) and low electrochemical potentials, are most suitable anodes for producing high energy density batteries. The vigorous reactivity, unstable solid-electrolyte interface and dendrite formation are some of the major hurdles towards use of lithium and sodium as anodes in a conventional liquid electrolyte battery. A well designed and optimised electrolyte plays a paramount role towards safe operation of an alkali metal battery. In the present thesis, we have explored few free-standing, mechanically stable plasticised gel polymer electrolytes (GPE) for lithium and sodium metal battery which has been demonstrated to have a good ionic conductivity with very stable interfacial properties and suppressed dendrite growth. A spectroscopic investigation into the ion-conduction mechanism in a concentrated lithium gel polymer electrolyte system has also been described in detail. Along with the stable performance of alkali metal batteries with the designed GPEs, we have also ventured into few high-capacity cathodes like sulphur and oxygen using modified electrolytes.
Styles APA, Harvard, Vancouver, ISO, etc.
10

« The Synthesis and Characterization of Ionic Liquids for Alkali-Metal Batteries and a Novel Electrolyte for Non-Humidified Fuel Cells ». Doctoral diss., 2014. http://hdl.handle.net/2286/R.I.27420.

Texte intégral
Résumé :
abstract: This thesis focused on physicochemical and electrochemical projects directed towards two electrolyte types: 1) class of ionic liquids serving as electrolytes in the catholyte for alkali-metal ion conduction in batteries and 2) gel membrane for proton conduction in fuel cells; where overall aims were encouraged by the U.S. Department of Energy. Large-scale, sodium-ion batteries are seen as global solutions to providing undisrupted electricity from sustainable, but power-fluctuating, energy production in the near future. Foreseen ideal advantages are lower cost without sacrifice of desired high-energy densities relative to present lithium-ion and lead-acid battery systems. Na/NiCl2 (ZEBRA) and Na/S battery chemistries, suffer from high operation temperature (>300ºC) and safety concerns following major fires consequent of fuel mixing after cell-separator rupturing. Initial interest was utilizing low-melting organic ionic liquid, [EMI+][AlCl4-], with well-known molten salt, NaAlCl4, to create a low-to-moderate operating temperature version of ZEBRA batteries; which have been subject of prior sodium battery research spanning decades. Isothermal conductivities of these electrolytes revealed a fundamental kinetic problem arisen from "alkali cation-trapping effect" yet relived by heat-ramping >140ºC. Battery testing based on [EMI+][FeCl4-] with NaAlCl4 functioned exceptional (range 150-180ºC) at an impressive energy efficiency >96%. Newly prepared inorganic ionic liquid, [PBr4+][Al2Br7-]:NaAl2Br7, melted at 94ºC. NaAl2Br7 exhibited super-ionic conductivity 10-1.75 Scm-1 at 62ºC ensued by solid-state rotator phase transition. Also improved thermal stability when tested to 265ºC and less expensive chemical synthesis. [PBr4+][Al2Br7-] demonstrated remarkable, ionic decoupling in the liquid-state due to incomplete bromide-ion transfer depicted in NMR measurements. Fuel cells are electrochemical devices generating electrical energy reacting hydrogen/oxygen gases producing water vapor. Principle advantage is high-energy efficiency of up to 70% in contrast to an internal combustion engine <40%. Nafion-based fuel cells are prone to carbon monoxide catalytic poisoning and polymer membrane degradation unless heavily hydrated under cell-pressurization. This novel "SiPOH" solid-electrolytic gel (originally liquid-state) operated in the fuel cell at 121oC yielding current and power densities high as 731mAcm-2 and 345mWcm-2, respectively. Enhanced proton conduction significantly increased H2 fuel efficiency to 89.7% utilizing only 3.1mlmin-1 under dry, unpressurized testing conditions. All these energy devices aforementioned evidently have future promise; therefore in early developmental stages.
Dissertation/Thesis
Doctoral Dissertation Chemistry 2014
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Liquid metal batteries"

1

Ma, Jianmin. Liquid Electrolyte Chemistry for Lithium Metal Batteries : Design, Mechanisms, Strategies. Wiley & Sons, Incorporated, John, 2022.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Ma, Jianmin. Liquid Electrolyte Chemistry for Lithium Metal Batteries : Design, Mechanisms, Strategies. Wiley & Sons, Incorporated, John, 2022.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Ma, Jianmin. Liquid Electrolyte Chemistry for Lithium Metal Batteries : Design, Mechanisms, Strategies. Wiley & Sons, Incorporated, John, 2022.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Ma, Jianmin. Liquid Electrolyte Chemistry for Lithium Metal Batteries : Design, Mechanisms, Strategies. Wiley & Sons, Limited, John, 2022.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Liquid metal batteries"

1

Weber, Norbert, et Tom Weier. « Liquid Metal Batteries ». Dans Electrochemical Cell Calculations with OpenFOAM, 193–212. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92178-1_7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Singh, Rini, Kriti Shrivastava, Takayuki Ichikawa et Ankur Jain. « Liquid-Metal Batteries for Next Generation ». Dans Handbook of Energy Materials, 1–22. Singapore : Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-4480-1_62-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Bojarevics, Valdis, et Andrejs Tucs. « MHD of Large Scale Liquid Metal Batteries ». Dans Light Metals 2017, 687–92. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51541-0_84.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Weber, N., V. Galindo, T. Weier, F. Stefani et T. Wondrak. « Simulation of Instabilities in Liquid Metal Batteries ». Dans Direct and Large-Eddy Simulation IX, 585–91. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14448-1_74.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Ashour, Rakan F., et Douglas H. Kelley. « Convection-Diffusion Model of Lithium-Bismuth Liquid Metal Batteries ». Dans The Minerals, Metals & ; Materials Series, 41–52. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72131-6_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Zhang, Tianru, Annette Heinzel, Adrian Jianu, Alfons Weisenburger et Georg Müller. « Corrosion Investigations of Materials in Antimony–Tin and Antimony–Bismuth Alloys for Liquid Metal Batteries ». Dans TMS 2021 150th Annual Meeting & ; Exhibition Supplemental Proceedings, 605–14. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65261-6_55.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Fröhlich, Arian, Steffen Masuch et Klaus Dröder. « Design of an Automated Assembly Station for Process Development of All-Solid-State Battery Cell Assembly ». Dans Annals of Scientific Society for Assembly, Handling and Industrial Robotics 2021, 51–62. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-74032-0_5.

Texte intégral
Résumé :
AbstractToday, lithium-ion batteries are a promising technology in the evolution of electro mobility, but still have potential for improvement in terms of performance, safety and cost. In order to exploit this potential, one promising approach is the replacement of liquid electrolyte with solid-state electrolyte and the use of lithium metal electrode as an anode instead of graphite based anodes. Solid-state electrolytes and the lithium metal anode have favorable electrochemical properties and therefore enable significantly increased energy densities with inherent safety. However, these materials are both, mechanically and chemically sensitive. Therefore, material-adapted processes are essential to ensure quality-assured manufacturing of all-solid-state lithium-ion battery cells. This paper presents the development of a scaled and flexible automated assembly station adapted to the challenging properties of the new all-solid-state battery materials. In the station various handling and gripping techniques are evaluated and qualified for assembly of all-solid-state battery cells. To qualify the techniques, image processing is set up as a quality measurement technology. The paper also discusses the challenges of enclosing the entire assembly station in inert gas atmosphere to avoid side reactions and contamination of the chemically reactive materials.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Provazi, Kellie, Jorge Alberto Soares Tenorio et Denise Crocce Romano Espinosa. « The Use of Liquid-Liquid Extraction and Electroplating to Metals Recovery from Spent Batteries ». Dans Energy Technology 2012, 235–42. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118365038.ch29.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

« Polymer Electrolytes for Rechargeable Batteries ». Dans Rechargeable Battery Electrolytes, 233–92. Royal Society of Chemistry, 2024. http://dx.doi.org/10.1039/9781839167577-00233.

Texte intégral
Résumé :
With the emergence of electric vehicles and large-scale power grids, energy storage systems with high energy density are urgently needed. However, the safety concerns of different metal-ion batteries related to organic solvents in the liquid electrolytes limits their large-scale application. Polymer electrolytes are promising alternatives as they combine the merits of the toughness of solid electrolytes and the ionic conductivity of liquid electrolytes. In Chapter 9, the developments and strategies for different types of polymer electrolytes in several metal-based batteries, such as lithium-ion batteries, sodium-ion batteries, potassium-ion batteries, calcium-ion batteries, magnesium-ion batteries, zinc-ion batteries, and aluminium-ion batteries, are discussed. And their prospects for future development and applications are provided.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Dixit, Marm, Nitin Muralidharan, Anand Parejiya, Ruhul Amin, Rachid Essehli et Ilias Belharouak. « Current Status and Prospects of Solid-State Batteries as the Future of Energy Storage ». Dans Energy Storage Devices [Working Title]. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.98701.

Texte intégral
Résumé :
Solid-state battery (SSB) is the new avenue for achieving safe and high energy density energy storage in both conventional but also niche applications. Such batteries employ a solid electrolyte unlike the modern-day liquid electrolyte-based lithium-ion batteries and thus facilitate the use of high-capacity lithium metal anodes thereby achieving high energy densities. Despite this promise, practical realization and commercial adoption of solid-state batteries remain a challenge due to the underlying material and cell level issues that needs to be overcome. This chapter thus covers the specific challenges, design principles and performance improvement strategies pertaining to the cathode, solid electrolyte and anode used in solid state batteries. Perspectives and outlook on specific applications that can benefit from the successful implementation of solid-state battery systems are also discussed. Overall, this chapter highlights the potential of solid-state batteries for successful commercial deployment in next generation energy storage systems.
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Liquid metal batteries"

1

Bojarevics, Valdis, et Andrejs Tucs. « Large Scale Liquid Metal Batteries ». Dans VIII International Scientific Colloquium "Modelling for Materials Processing". University of Latvia, 2017. http://dx.doi.org/10.22364/mmp2017.2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Wang, Wei, et Kangli Wang. « Simulation of thermal properties of the liquid metal batteries ». Dans 2015 6th International Conference on Power Electronics Systems and Applications (PESA) - Advancement in Electric Transportation - Automotive, Vessel & Aircraft. IEEE, 2015. http://dx.doi.org/10.1109/pesa.2015.7398882.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Zhou, Hao, Haomiao Li, Kai Jiang et Kangli Wang. « Design of sodium liquid metal batteries for grid energy storage ». Dans MATSUS Spring 2024 Conference. València : FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2023. http://dx.doi.org/10.29363/nanoge.matsus.2024.183.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Li, Haomiao, Kangli WANG et Kai JIANG. « Key materials and technologies for long-lifespan liquid metal batteries ». Dans MATSUS Spring 2024 Conference. València : FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2023. http://dx.doi.org/10.29363/nanoge.matsus.2024.185.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Shi, Qionglin, Haomiao Li, Kangli Wang et Kai Jiang. « Capacity estimation based on the aging characteristics analysis of Liquid metal batteries ». Dans 2023 11th International Conference on Power Electronics and ECCE Asia (ICPE 2023 - ECCE Asia). IEEE, 2023. http://dx.doi.org/10.23919/icpe2023-ecceasia54778.2023.10213756.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Wang, Dalei, Cheng Xu, Fangfang Zhu, Kangli Wang et Kai Jiang. « Research on Grid-connected Technology of Energy Storage System with Liquid Metal Batteries ». Dans 2016 4th International Conference on Electrical & Electronics Engineering and Computer Science (ICEEECS 2016). Paris, France : Atlantis Press, 2016. http://dx.doi.org/10.2991/iceeecs-16.2016.114.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Wang, Sheng, Zehang Li, E. Zhang, Min Zhou et Kangli Wang. « State of Charge Estimation for Liquid Metal Batteries with Gaussian Process Regression Framework ». Dans 2022 International Power Electronics Conference (IPEC-Himeji 2022- ECCE Asia). IEEE, 2022. http://dx.doi.org/10.23919/ipec-himeji2022-ecce53331.2022.9807007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Zhang, E., Shuai Yan, Yi Zhang, Haomiao Li, Kai Jiang et Kangli Wang. « Influence of Parameter Differences on the Current Distribution Within Parallel-connected Liquid Metal Batteries ». Dans 2023 26th International Conference on Electrical Machines and Systems (ICEMS). IEEE, 2023. http://dx.doi.org/10.1109/icems59686.2023.10345054.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Chen, Baozhi, Qiguang Li, Xiaozhong Zuo, Ke Lu et Benwen Li. « Suppressing MHD instabilities in cylindrical liquid metal batteries with insertion of a concentric insulating column ». Dans 9th International Symposium on Energy Science and Chemical Engineering, sous la direction de Aliasgahr Ensafi, Ahmad Zuhairi Abdullah et K. K. Aruna. SPIE, 2024. http://dx.doi.org/10.1117/12.3032243.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Kareem, M. O., H. K. Amusa et E. M. Nashef. « Evaluation of the Ionic Liquid, 1-Butyl-1-Methylpyrrolidinium Bis(Trifluoromethylsulfonyl)imide, as a Sustainable Material for Modern Energy Devices ». Dans SPE Nigeria Annual International Conference and Exhibition. SPE, 2023. http://dx.doi.org/10.2118/217220-ms.

Texte intégral
Résumé :
Abstract Sustainable materials are those which satisfy the three sustainability criteria of being environmentally safe, profitable, and acceptable to society. Within a circular economy such material's societal acceptability is linked to the wider and long-term implications of its production and its durable usability, along with the assurance that it does not leave negative environmental footprints. 1-butyl-1-methyl pyrrolidinium bis(trifluoromethylsulfonyl)imide (abbreviated as BMPI) is an ionic liquid (IL), with minimal negative environmental impacts that is applied in different components of energy devices like batteries. Like other ionic liquids (ILs) it is non-volatile and non-flammable. It is additionally non-toxic and not too viscous within practical operating conditions, making it safe and suitable for use in batteries. Such batteries constitute crucial parts of renewable energy systems where they are useful for energy storage, thus enabling a practical alternative for diversifying from fossil energy sources. ILs like BMPI, comprising only ions while being in a liquid state, show superior conductivity and dielectric properties relevant for metal-ion batteries, redox-flow batteries, and even solid-state batteries. The performance of BMPI, as well as the economic viability of its utilization, is assessed by analyzing its performance in different battery systems, including "membraneless" systems, wherein it constitutes an active part of components such as capacitors, electrolytes, and ion-exchange membranes. A focused analysis of its usability and potential acceptability in the energy industry of Nigeria among others in Europe, the Middle East, and Africa (EMEA) is further presented, providing a holistic evaluation of the potential sustainability of BMPI and similar ionic liquids as components of energy devices in a circular economy.
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Liquid metal batteries"

1

Muelaner, Jody. Unsettled Issues Regarding Power Options for Decarbonized Commercial Vehicles. SAE International, septembre 2021. http://dx.doi.org/10.4271/epr2021021.

Texte intégral
Résumé :
While direct electrification appears to provide the most cost-effective route to decarbonization of commercial vehicles, uptake may be constrained by critical metal supply. Additionally, it will be many years before hydrogen power becomes decarbonized or if it can ever compete economically with direct electrification. An electric road system (ERS) could offer a highly efficient and cost-effective route to direct electrification that would greatly reduce the volume of batteries required, but pilot schemes are urgently needed to provide concrete data on operating costs for different ERS technologies. Furthermore, if plug-in hybrid electric vehicles could obtain most of their power from an ERS, liquid biofuels and “electrofuels” may prove useful for occasional off-grid range extension. To achieve extremely long-range for operation in remote locations, liquid fuels remain the only viable option. Unsettled Issues Regarding Power Options for Decarbonized Commercial Vehicles discusses the analysis required to understand the lifecycle energy use for different power options for decarbonized commercial vehicles.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie