Littérature scientifique sur le sujet « Liquid-liquid crystal phase separation »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Liquid-liquid crystal phase separation ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Liquid-liquid crystal phase separation"
Mosses, Joanna, David A. Turton, Leo Lue, Jan Sefcik et Klaas Wynne. « Crystal templating through liquid–liquid phase separation ». Chemical Communications 51, no 6 (2015) : 1139–42. http://dx.doi.org/10.1039/c4cc07880b.
Texte intégralShipovskaya, Anna B., Natalia O. Gegel, Sergei L. Shmakov et Sergei Yu Shchyogolev. « Phase Analysis of the Cellulose Triacetate-Nitromethane System ». International Journal of Polymer Science 2012 (2012) : 1–12. http://dx.doi.org/10.1155/2012/126362.
Texte intégralHasegawa, Ray, Masanori Sakamoto et Hideyuki Sasaki. « Dynamic Analysis of Polymer-Dispersed Liquid Crystal by Infrared Spectroscopy ». Applied Spectroscopy 47, no 9 (septembre 1993) : 1386–89. http://dx.doi.org/10.1366/0003702934067441.
Texte intégralMotoyama, M., H. Nakazawa, T. Ohta, T. Fujisawa, H. Nakada, M. Hayashi et M. Aizawa. « Phase separation of liquid crystal–polymer mixtures ». Computational and Theoretical Polymer Science 10, no 3-4 (juin 2000) : 287–97. http://dx.doi.org/10.1016/s1089-3156(99)00044-6.
Texte intégralSMITH, GEORGE W. « MIXING AND PHASE SEPARATION IN LIQUID CRYSTAL/MATRIX SYSTEMS ». International Journal of Modern Physics B 07, no 25 (15 novembre 1993) : 4187–213. http://dx.doi.org/10.1142/s0217979293003620.
Texte intégralXu, Yuan, Aleks D. Atrens et Jason R. Stokes. « Liquid crystal hydroglass formed via phase separation of nanocellulose colloidal rods ». Soft Matter 15, no 8 (2019) : 1716–20. http://dx.doi.org/10.1039/c8sm02288g.
Texte intégralMa, Qing Lan, et Yuan Ming Huang. « Phase Separation in Polymer Dispersed Liquid Crystal Device ». Materials Science Forum 663-665 (novembre 2010) : 763–66. http://dx.doi.org/10.4028/www.scientific.net/msf.663-665.763.
Texte intégralSpivak, B. « Phase separation in the two-dimensional electron liquid in MOSFETs ». Journal de Physique IV 12, no 9 (novembre 2002) : 337–41. http://dx.doi.org/10.1051/jp4:20020432.
Texte intégralYang, Man, Chunyan Liu et Kongshuang Zhao. « Concentration dependent phase behavior and collapse dynamics of PNIPAM microgel by dielectric relaxation ». Physical Chemistry Chemical Physics 19, no 23 (2017) : 15433–43. http://dx.doi.org/10.1039/c7cp01378g.
Texte intégralZeng, Jia, Fengtao Suo et Yong Huang. « Phase separation of the liquid crystal in the cholesterin phase ». Polymer Bulletin 46, no 1 (22 février 2001) : 83–89. http://dx.doi.org/10.1007/s002890170092.
Texte intégralThèses sur le sujet "Liquid-liquid crystal phase separation"
Wang, Shujun. « Liquid-liquid phase separation in an isorefractive polyethylene blend monitored by crystallization kinetics and crystal-decorated phase morphologies ». Akron, OH : University of Akron, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=akron1226680911.
Texte intégral"December, 2008." Title from electronic dissertation title page (viewed 12/29/2008) Advisor, Stephen Z. D. Cheng; Committee members, Alexei Sokolov, Darrell H. Reneker, Gustavo A. Carri, Thein Kyu; Department Chair, Ali Dhinojwala; Dean of the College, Stephen Z. D. Cheng; Dean of the Graduate School, George R. Newkome. Includes bibliographical references.
Wang, Shujun. « Liquid-Liquid Phase Separation in an Isorefractive Polethylene Blend Monitored by Crystallization Kinetics and Crystal-Decorated Phase Morphologies ». University of Akron / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=akron1226680911.
Texte intégralJUSTICE, RYAN SCOTT. « INTERFACE MORPHOLOGY AND PHASE SEPARATION IN POLYMER DISPERSED LIQUID CRYSTAL (PDLC) COMPOSITES ». University of Cincinnati / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1163783056.
Texte intégralColas, Clémentine. « Bio-inspired synthetic crystals ». Thesis, université Paris-Saclay, 2022. http://www.theses.fr/2022UPASF044.
Texte intégralCalcareous biominerals present a great variety of forms and biological functions, but also a number of common structural features. In particular, they appear, in their great majority, to be formed by an assembly of spheroidal crystalline nanoparticles, while having crystalline properties close to those of a single crystal. The compactness of this nanostructure suggests the existence of a liquid transient prior to the formation of an amorphous state, which has been evidenced in a number of cases. The crystallisation pathway, which would involve intermediate states typical of so-called non-classical crystallisation processes, is not yet fully established. In particular, the existence of an ion-enriched liquid phase remains complex to demonstrate in vivo. In order to assess the relevance of such a hypothesis, an approach based on a synthetic model including a dense liquid phase was used. Amorphous calcium carbonate films of sub-micron thickness were produced by CO₂ gas diffusion in a calcium solution in the presence of anionic polyelectrolyte. The mechanism of film formation, combining the development of a 2D pattern by liquid-liquid phase separation and the irreversible aggregation of amorphous nanoparticles formed in solution, was demonstrated. The amorphous films were crystallized by heating, exposure to controlled relative humidity, or aging in the reaction medium. The characterization of these 2D crystals, in particular by Bragg ptychography, has made it possible to describe the amorphous-crystal transition mechanisms and to specify the crystalline properties for each crystallization condition. Some crystals show properties very similar to biogenic crystals, thus supporting the hypothesis of a liquid intermediate in calcareous biomineralization
DI, LEO SIMONE. « SELECTIVE ASSEMBLY, PHASE TRANSITIONS AND MOLECULAR KINETICS OF DNA OLIGOMERS ». Doctoral thesis, Università degli Studi di Milano, 2022. http://hdl.handle.net/2434/923222.
Texte intégralKhanal, Kiran. « Liquid-Crystalline Ordering in Semiflexible Polymer Melts and Blends : A Monte Carlo Simulation Study ». University of Akron / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=akron1373901748.
Texte intégralNilsson, Peter. « Interaction between Crosslinked Polyelectrolyte Gels and Oppositely Charged Surfactants ». Doctoral thesis, Uppsala University, Department of Pharmacy, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-8216.
Texte intégralThe interactions between anionic, crosslinked gels and cationic surfactants have been investigated. When exposed to oppositely charged surfactant, the gel collapses into a dense complex of polyion and micelles. During deswelling, the gel phase separates into a micelle-rich, collapsed surface phase, and a swollen, micelle-free core, both still part of the same network. As more surfactant is absorbed, the surface phase grows at the expense of the core, until the entire gel has collapsed. Polyacrylate (PA) gels with dodecyl- (C12TAB), and cetyltrimethylammonium bromide (C16TAB), as well as hyaluronate gels with cetylpyridinium chloride, have been studied.
Kinetic experiments have been performed on macro- as well as microgels, using micromanipulator assisted light microscopy for the latter. A surfactant diffusion controlled deswelling model has been employed to describe the deswelling. The deswelling kinetics of PA microgels have been shown to be controlled by surfactant diffusion through the stagnant layer surrounding the gel, as the surface phase is relatively thin for the major part of the deswelling. For macroscopic PA gels the surface phase is thicker, and the kinetics with C12TAB were therefore also influenced by diffusion through the surface phase, while for C16TAB they were dominated by it.
Relevant parameters have also been determined using equilibrium experiments. An irregular, balloon-forming deswelling pattern, mainly found for macrogels, as well as unexpectedly long lag times and slow deswelling for microgels, are reported and discussed.
The microstructure of fully collapsed PA/C12TAB complexes has been studied using small-angle X-ray scattering. A cubic Pm3n structure was found at low salt concentration, which melted into a disordered micellar phase as the salt concentration was increased. Further increasing the salt concentration dissolved the micelles, resulting in no ordering.
You, Yuan. « Liquid-liquid phase separation in atmospherically relevant particles ». Thesis, University of British Columbia, 2014. http://hdl.handle.net/2429/50466.
Texte intégralScience, Faculty of
Chemistry, Department of
Graduate
Vliet, Roland Edward van. « Polymer-solvent liquid-liquid phase separation thermodynamics, simulations & ; applications / ». [Amsterdam : Amsterdam : Instituut voor Technische Scheikunde, Universiteit van Amsterdam] ; Universiteit van Amsterdam [Host], 2002. http://dare.uva.nl/document/64948.
Texte intégralMercer, Carolyn Regan. « Liquid crystal point diffraction interferometer ». Diss., The University of Arizona, 1995. http://hdl.handle.net/10150/187127.
Texte intégralLivres sur le sujet "Liquid-liquid crystal phase separation"
United States. National Aeronautics and Space Administration., dir. Liquid crystal point diffraction interferometer. [Washington, DC] : National Aeronautics and Space Administration, 1995.
Trouver le texte intégralservice), SpringerLink (Online, dir. Liquid Crystal Elastomers : Materials and Applications. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012.
Trouver le texte intégralUnited States. National Aeronautics and Space Administration., dir. The effect of liquid-liquid phase separation of glass on the properties and crystallization behavior. Washington D.C : National Aeronautics and Space Administration, 1985.
Trouver le texte intégralUnited States. National Aeronautics and Space Administration., dir. The effect of liquid-liquid phase separation of glass on the properties and crystallization behavior. Washington D.C : National Aeronautics and Space Administration, 1985.
Trouver le texte intégralJaison, P. G. Rapid separation of lanthanides by reversed phase high performance liquid chromatography. Mumbai : Bhabha Atomic Research Centre, 2001.
Trouver le texte intégralKatherine, Creath, et United States. National Aeronautics and Space Administration., dir. Defocus measurement using a liquid crystal point diffraction interferometer. [Washington, DC] : National Aeronautics and Space Administration, 1994.
Trouver le texte intégralGlass-ceramic materials : Liquid phase separation, nucleation, and crystallization in glasses. Amsterdam : Elsevier, 1986.
Trouver le texte intégralPeter, Capper, et Mauk Michael, dir. Liquid phase epitaxy of electronic, optical, and optoelectronic materials. Chichester, West Sussex, England : Wiley, 2007.
Trouver le texte intégralYeh, T. T. A computer code for gas-liquid two-phase vortex motions : GLVM. [Washington, D.C.] : U.S. Dept. of Commerce, National Bureau of Standards, 1986.
Trouver le texte intégralYeh, T. T. A computer code for gas-liquid two-phase vortex motions : GLVM. [Washington, D.C.] : U.S. Dept. of Commerce, National Bureau of Standards, 1986.
Trouver le texte intégralChapitres de livres sur le sujet "Liquid-liquid crystal phase separation"
Gray, Derek G. « Phase Separation of Polymeric Liquid Crystals Based on Cellulose ». Dans Polymeric Liquid Crystals, 369–76. Boston, MA : Springer US, 1985. http://dx.doi.org/10.1007/978-1-4899-2299-1_23.
Texte intégralMcIntyre, William D., et David S. Soane. « Optical Data Storage Using Phase Separation of Polymer-Liquid Crystal Mixtures ». Dans Polymers in Information Storage Technology, 21–50. Boston, MA : Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0843-0_3.
Texte intégralBianconi, A., et M. Missori. « The Coupling of a Wigner Polaronic Charge Density Wave with a Fermi Liquid Arising from the Instability of a Wigner Polaron Crystal : A Possible Pairing Mechanism in High T c Superconductors ». Dans Phase Separation in Cuprate Superconductors, 272–89. Berlin, Heidelberg : Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-642-78805-5_20.
Texte intégralSmolková-Keulemansová, Eva, et Ladislav Soják. « Gas Chromatographic Separation of Structural Isomers on Cyclodextrin and Liquid Crystal Stationary Phases ». Dans ACS Symposium Series, 247–59. Washington, DC : American Chemical Society, 1987. http://dx.doi.org/10.1021/bk-1987-0342.ch014.
Texte intégralKyu, Thein, I. Ilies, C. Shen et Z. L. Zhou. « Thermal-Induced Phase Separation in a Mixture of Functional Poly(methyl methacrylate) and Low-Molar-Mass Liquid Crystals ». Dans ACS Symposium Series, 201–15. Washington, DC : American Chemical Society, 1996. http://dx.doi.org/10.1021/bk-1996-0632.ch013.
Texte intégralPapkov, S. P. « Phase Equilibria in Polymer Systems Containing a Liquid-Crystalline Phase ». Dans Liquid-Crystal Polymers, 39–70. Boston, MA : Springer US, 1993. http://dx.doi.org/10.1007/978-1-4899-1103-2_2.
Texte intégralVere, A. W. « Growth from the Liquid Phase ». Dans Crystal Growth, 67–88. Boston, MA : Springer US, 1987. http://dx.doi.org/10.1007/978-1-4757-9897-5_4.
Texte intégralGama, M. M. Telo. « Liquid Crystal Interfaces ». Dans Observation, Prediction and Simulation of Phase Transitions in Complex Fluids, 243–92. Dordrecht : Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-011-0065-6_6.
Texte intégralLamorgese, A. G., et R. Mauri. « Phase Separation of Liquid Mixtures ». Dans Nonlinear Dynamics and Control in Process Engineering — Recent Advances, 139–52. Milano : Springer Milan, 2002. http://dx.doi.org/10.1007/978-88-470-2208-9_9.
Texte intégralDost, Sadik. « Liquid-Phase Electroepitaxy of Semiconductors ». Dans Springer Handbook of Crystal Growth, 967–98. Berlin, Heidelberg : Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-74761-1_29.
Texte intégralActes de conférences sur le sujet "Liquid-liquid crystal phase separation"
Choi, Yeongyu, Tae-Hoon Yoon, Byeong-Hun Yu, Tae-Hoon Choi et Seung-Won Oh. « Formation of polymer structure by thermally-induced phase separation in a dye-doped liquid crystal cell ». Dans Emerging Liquid Crystal Technologies XIV, sous la direction de Liang-Chy Chien. SPIE, 2019. http://dx.doi.org/10.1117/12.2511087.
Texte intégralGrosicka, E., et Maria Mucha. « Phase separation in liquid crystal polymer composites ». Dans XIII International Conference on Liquid Crystals : Chemistry, Physics, and Applications, sous la direction de Stanislaw J. Klosowicz, Jolanta Rutkowska, Jerzy Zielinski et Jozef Zmija. SPIE, 2000. http://dx.doi.org/10.1117/12.385716.
Texte intégralUrban, Stanislaw, B. Gestblom et Roman S. Dabrowski. « Separation of two main dielectric relaxation processes in the nematic and isotropic phase of 6BAP(F) (1-[4-(hexylbicyclo[2,2,2]octyl]-2-(3-fluoro-4- methoxyphenyl)ethane) ». Dans Liquid Crystals, sous la direction de Jolanta Rutkowska, Stanislaw J. Klosowicz, Jerzy Zielinski et Jozef Zmija. SPIE, 1998. http://dx.doi.org/10.1117/12.299971.
Texte intégralNós, Rudimar Luiz, Hector Daniel Ceniceros et Alexandre Megiorin Roma. « 3D simulations of phase separation with a liquid crystal component ». Dans CNMAC 2016 - XXXVI Congresso Nacional de Matemática Aplicada e Computacional. SBMAC, 2017. http://dx.doi.org/10.5540/03.2017.005.01.0311.
Texte intégralPark, Jae-Hong, Iam Choon Khoo et Sin-Doo Lee. « Binary phase gratings in liquid crystal-polymer composites using anisotropic phase separation method ». Dans Frontiers in Optics. Washington, D.C. : OSA, 2004. http://dx.doi.org/10.1364/fio.2004.fwh21.
Texte intégralMucha, Maria, et Z. Krolikowski. « Kinetics study of phase separation in polyacrylic acid/nematic LC system by optical technique ». Dans XIV Conference on Liquid Crystals, Chemistry, Physics, and Applications, sous la direction de Jolanta Rutkowska, Stanislaw J. Klosowicz et Jerzy Zielinski. SPIE, 2002. http://dx.doi.org/10.1117/12.472197.
Texte intégralYoon, Won-Jin, Yu-Jin Choi, Dong-Gue Kang, Keuk-Cheon Bang et Kwang-Un Jeong. « Automatic Vertical Alignment Layers by Phase-Separation of Polymerizable Amphiphilic Molecules from Liquid Crystal ». Dans The 3rd World Congress on Recent Advances in Nanotechnology. Avestia Publishing, 2018. http://dx.doi.org/10.11159/icnnfc18.126.
Texte intégralJisha, Chandroth P., Kuei-Chu Hsu, YuanYao Lin, Ja-Hon Lin, Kai-Ping Chuang, Chao-Yi Tai et Ray-Kuang Lee. « Phase separation and pattern instability of laser-induced polymerization in liquid-crystal-monomer mixtures ». Dans CLEO : Science and Innovations. Washington, D.C. : OSA, 2012. http://dx.doi.org/10.1364/cleo_si.2012.ctu1j.2.
Texte intégralLi, Lanfang, Carmen Otilia Catanescu et Liang-Chy Chien. « Dynamics of phase separation and morphology of polymer stabilized liquid crystals ». Dans Integrated Optoelectronic Devices 2008, sous la direction de Liang-Chy Chien. SPIE, 2008. http://dx.doi.org/10.1117/12.767379.
Texte intégralHsu, Kuei-Chu, et Ja-Hon Lin. « Ultrashort pulse induced nonlinear photo-polymerization and phase separation in liquid crystal and monomer mixtures ». Dans SPIE MOEMS-MEMS, sous la direction de Winston V. Schoenfeld, Jian Jim Wang, Marko Loncar et Thomas J. Suleski. SPIE, 2011. http://dx.doi.org/10.1117/12.871443.
Texte intégralRapports d'organisations sur le sujet "Liquid-liquid crystal phase separation"
Reyes, C. Self-Assembly and Phase Separation for Transport : A brief argument for the continued exploration of liquid crystal flows and electrodeposition in micro-gravity. Office of Scientific and Technical Information (OSTI), octobre 2021. http://dx.doi.org/10.2172/1828650.
Texte intégralLiang Hu. CARBON DIOXIDE SEPARATION BY PHASE ENHANCED GAS-LIQUID ABSORPTION. Office of Scientific and Technical Information (OSTI), septembre 2004. http://dx.doi.org/10.2172/890991.
Texte intégralLiang Hu et Adeyinka A. Adeyiga. CARBON DIOXIDE SEPARATION BY PHASE ENHANCED GAS-LIQUID ABSORPTION. Office of Scientific and Technical Information (OSTI), mai 2004. http://dx.doi.org/10.2172/825592.
Texte intégralArias, Eduardo, Ivana Moggio et Ronald Ziolo. Liquid Crystals of Dendron-Like Pt Complexes Processable Into Nanofilms Dendrimers. Phase 2. Cholesteric Liquid Crystal Glass Platinum Acetylides. Fort Belvoir, VA : Defense Technical Information Center, août 2014. http://dx.doi.org/10.21236/ada619975.
Texte intégralSchmidt, L. W. Chemically modified polymeric resins for solid-phase extraction and group separation prior to analysis by liquid or gas chromatography. Office of Scientific and Technical Information (OSTI), juillet 1993. http://dx.doi.org/10.2172/10116845.
Texte intégralPercec, Virgil, Dimitris Tomazos et Reginal A. Willingham. The Influence of the Polymer Backbone Flexibility on the Phase Transitions of Side Chain Liquid Crystal Polymers Containing 6-(4-Methoxy-Beta-Metylstyryl) Phenoxy)Hexyl Side Groups. Fort Belvoir, VA : Defense Technical Information Center, mai 1989. http://dx.doi.org/10.21236/ada208821.
Texte intégralClifford, D. J., D. E. McKinney, Lei Hou et P. G. Hatcher. Coal liquefaction process streams characterization and evaluation : High performance liquid chromatography (HPLC) of coal liquefaction process streams using normal-phase separation with uv diode array detection. Office of Scientific and Technical Information (OSTI), janvier 1994. http://dx.doi.org/10.2172/10143663.
Texte intégralJain, N. Analyzing algorithms for nonlinear and spatially nonuniform phase shifts in the liquid crystal point diffraction interferometer. 1998 summer research program for high school juniors at the University of Rochester`s Laboratory for Laser Energetics : Student research reports. Office of Scientific and Technical Information (OSTI), mars 1999. http://dx.doi.org/10.2172/362525.
Texte intégralLahav, Ori, Albert Heber et David Broday. Elimination of emissions of ammonia and hydrogen sulfide from confined animal and feeding operations (CAFO) using an adsorption/liquid-redox process with biological regeneration. United States Department of Agriculture, mars 2008. http://dx.doi.org/10.32747/2008.7695589.bard.
Texte intégralCrouch, Rebecca, Jared Smith, Bobbi Stromer, Christian Hubley, Samuel Beal, Guilherme Lotufo, Afrachanna Butler et al. Preparative, extraction, and analytical methods for simultaneous determination of legacy and insensitive munition (IM) constituents in aqueous, soil or sediment, and tissue matrices. Engineer Research and Development Center (U.S.), août 2021. http://dx.doi.org/10.21079/11681/41480.
Texte intégral