Articles de revues sur le sujet « Liquid crystalline elastomer »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Liquid crystalline elastomer.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Liquid crystalline elastomer ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

TOKIZAKI, EIJI. « Thermoplastic Elastomer. Liquid Crystalline Thermoplastic Elastomer. » NIPPON GOMU KYOKAISHI 69, no 9 (1996) : 624–30. http://dx.doi.org/10.2324/gomu.69.624.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Yu, Yanlei, M. Nakano et T. Ikeda. « Photoinduced bending and unbending behavior of liquid-crystalline gels and elastomers ». Pure and Applied Chemistry 76, no 7-8 (1 janvier 2004) : 1467–77. http://dx.doi.org/10.1351/pac200476071467.

Texte intégral
Résumé :
Liquid-crystalline gels and elastomers were prepared by polymerization of mixtures containing azobenzene monomers and cross linkers with azobenzene moieties. Oriented liquid-crystalline gels and elastomer films were found to undergo anisotropic bending and unbending behavior only along the rubbing direction, when exposed to alternate irradiation of unpolarized UV and visible light. In the case of polydomain liquid-crystalline elastomer films, the bending and unbending were induced exactly along the polarization direction of incident linearly polarized light. By altering the polarization direction of light, a single film could be bent repeatedly and precisely along any chosen direction.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Ji, Yan, Jean E. Marshall et Eugene M. Terentjev. « Nanoparticle-Liquid Crystalline Elastomer Composites ». Polymers 4, no 1 (30 janvier 2012) : 316–40. http://dx.doi.org/10.3390/polym4010316.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Meier, Wolfgang, et Heino Finkelmann. « Liquid Crystal Elastomers with Piezoelectric Properties ». MRS Bulletin 16, no 1 (janvier 1991) : 29–31. http://dx.doi.org/10.1557/s0883769400057870.

Texte intégral
Résumé :
During the last few years, liquid crystalline elastomers (LCEs) have been systematically produced by cross-linking liquid crystalline side-chain polymers. In these networks, a liquid crystalline molecule is fixed at each monomeric unit. LCEs exhibit a novel combination of properties. Due to liquid crystalline groups, they show anisotropic liquid crystalline properties similar to conventional liquid crystals (LCs); but due to the three-dimensional network-structure of the polymer chains, they show typical elastomer properties, such as rubber elasticity or shape stability. One exceptional property of this combination is demonstrated when a mechanical deformation to the LCE causes macroscopically uniform orientation of the long molecular axis of the LC units (the so-called “director”).This response of the LC-phase structure to an applied mechanical field is similar to the effect of electric or magnetic fields on low molecular weight liquid crystals (LMLC), as illustrated in Figure 1. Figure la shows an undeformed LCE. Because of the non-uniform orientation of the director, the sample scatters light strongly so the elastomer is translucent like frosted glass. On the other hand, applying a mechanical field the director becomes uniformly aligned and the sample is transparent (Figure 1b). Such a macroscopically ordered rubber exhibits optical properties very similar to single crystals. These propertie s of LCEs offer new prospects for technical application, e.g., in nonlinear and integrated optics.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Du, Chang, Nai Yu Zhou, Dan Liu et Fan Bao Meng. « Chiral Liquid-Crystalline Elastomers Bearing Side-Chain Fluorinated Groups and Chiral Crosslinking Units ». Advanced Materials Research 763 (septembre 2013) : 37–40. http://dx.doi.org/10.4028/www.scientific.net/amr.763.37.

Texte intégral
Résumé :
Chiral fluorinated side-chain liquid-crystalline elastomers (LCEs)IP-IVPwere graft copolymerized by hydrosilylation reaction. The chemical structure, liquid-crystalline behavior and polarization property were characterized by use of various experimental techniques. The effective crosslink density of the chiral LCEs was studied by swelling experiments. All the samplesIP-IVPdisplayed chiral smectic C mesophase (SC*) on heating and cooling cycles. With increasing chiral crosslinking units in the elastomer systems, the glass transition temperature and chiral smectic C mesophase-isotropic phase transition temperature of fluorinated elastomers increased slightly, indicating that the temperature range of SC*mesophase became narrow with increase of chiral crosslinking agents for all the chiral fluorinated elastomers. All the samplesIP-IVPshowed 0.12-0.16 μC/cm2of spontaneous polarization.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Wei, R. B., HX Zhang, YN He, XG Wang et P. Keller. « Photoluminescent nematic liquid crystalline elastomer actuators ». Liquid Crystals 41, no 12 (27 août 2014) : 1821–30. http://dx.doi.org/10.1080/02678292.2014.951006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Yang, Hong, Gang Ye, Xiaogong Wang et Patrick Keller. « Micron-sized liquid crystalline elastomer actuators ». Soft Matter 7, no 3 (2011) : 815–23. http://dx.doi.org/10.1039/c0sm00734j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Sánchez-Ferrer, Antoni, Tamás Fischl, Mike Stubenrauch, Arne Albrecht, Helmut Wurmus, Martin Hoffmann et Heino Finkelmann. « Liquid-Crystalline Elastomer Microvalve for Microfluidics ». Advanced Materials 23, no 39 (12 septembre 2011) : 4526–30. http://dx.doi.org/10.1002/adma.201102277.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Deng, Xiaobo, Guokang Chen, Yifan Liao, Xi Lu, Shuangyan Hu, Tiansheng Gan, Stephan Handschuh-Wang et Xueli Zhang. « Self-Healable and Recyclable Dual-Shape Memory Liquid Metal–Elastomer Composites ». Polymers 14, no 11 (1 juin 2022) : 2259. http://dx.doi.org/10.3390/polym14112259.

Texte intégral
Résumé :
Liquid metal (LM)–polymer composites that combine the thermal and electrical conductivity of LMs with the shape-morphing capability of polymers are attracting a great deal of attention in the fields of reconfigurable electronics and soft robotics. However, investigation of the synergetic effect between the shape-changing properties of LMs and polymer matrices is lacking. Herein, a self-healable and recyclable dual-shape memory composite, comprising an LM (gallium) and a Diels–Alder (DA) crosslinked crystalline polyurethane (PU) elastomer, is reported. The composite exhibits a bilayer structure and achieves excellent shape programming abilities, due to the phase transitions of the LM and the crystalline PU elastomers. To demonstrate these shape-morphing abilities, a heat-triggered soft gripper, which can grasp and release objects according to the environmental temperature, is designed and built. Similarly, combining the electrical conductivity and the dual-shape memory effect of the composite, a light-controlled reconfigurable switch for a circuit is produced. In addition, due to the reversible nature of DA bonds, the composite is self-healable and recyclable. Both the LM and PU elastomer are recyclable, demonstrating the extremely high recycling efficiency (up to 96.7%) of the LM, as well as similar mechanical properties between the reprocessed elastomers and the pristine ones.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Maejima, Kazuo, et Akihiro Niki. « Research and Development of Liquid-crystalline Elastomer. » Kobunshi 41, no 8 (1992) : 582–85. http://dx.doi.org/10.1295/kobunshi.41.582.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Jiang, Hongrui, Chensha Li et Xuezhen Huang. « Actuators based on liquid crystalline elastomer materials ». Nanoscale 5, no 12 (2013) : 5225. http://dx.doi.org/10.1039/c3nr00037k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Saikrasun, Sunan, Yuwararat Phoban et Panpirada Limpisawasdi. « F-7 IN SITU-REINFORCING ELASTOMER COMPOSITE BASED ON POLYOLEFINIC THERMOPLASTIC ELASTOMER AND THERMOTROPIC LIQUID CRYSTALLINE POLYMER(Session : Composites II) ». Proceedings of the Asian Symposium on Materials and Processing 2006 (2006) : 122. http://dx.doi.org/10.1299/jsmeasmp.2006.122.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Zeng, Hao, Daniele Martella, Piotr Wasylczyk, Giacomo Cerretti, Jean-Christophe Gomez Lavocat, Chih-Hua Ho, Camilla Parmeggiani et Diederik Sybolt Wiersma. « Liquid-Crystalline Elastomers : High-Resolution 3D Direct Laser Writing for Liquid-Crystalline Elastomer Microstructures (Adv. Mater. 15/2014) ». Advanced Materials 26, no 15 (avril 2014) : 2285. http://dx.doi.org/10.1002/adma.201470095.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Nocentini, S., D. Martella, D. S. Wiersma et C. Parmeggiani. « Beam steering by liquid crystal elastomer fibres ». Soft Matter 13, no 45 (2017) : 8590–96. http://dx.doi.org/10.1039/c7sm02063e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Sun, Dandan, Juzhong Zhang, Hongpeng Li, Zhengya Shi, Qi Meng, Shuiren Liu, Jinzhou Chen et Xuying Liu. « Toward Application of Liquid Crystalline Elastomer for Smart Robotics : State of the Art and Challenges ». Polymers 13, no 11 (6 juin 2021) : 1889. http://dx.doi.org/10.3390/polym13111889.

Texte intégral
Résumé :
Liquid crystalline elastomers (LCEs) are lightly crosslinked polymers that combine liquid crystalline order and rubber elasticity. Owing to their unique anisotropic behavior and reversible shape responses to external stimulation (temperature, light, etc.), LCEs have emerged as preferred candidates for actuators, artificial muscles, sensors, smart robots, or other intelligent devices. Herein, we discuss the basic action, control mechanisms, phase transitions, and the structure–property correlation of LCEs; this review provides a comprehensive overview of LCEs for applications in actuators and other smart devices. Furthermore, the synthesis and processing of liquid crystal elastomer are briefly discussed, and the current challenges and future opportunities are prospected. With all recent progress pertaining to material design, sophisticated manipulation, and advanced applications presented, a vision for the application of LCEs in the next generation smart robots or automatic action systems is outlined.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Shivakumar, E., C. K. Das, K. N. Pandey, S. Alam et G. N. Mathur. « In-situ elastomer composite based on fluorocarbon elastomer/liquid crystalline polymer blend ». Composite Interfaces 11, no 8-9 (janvier 2005) : 657–72. http://dx.doi.org/10.1163/1568554053148762.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Hirschmann, Harald, Dolors Velasco, Helmut Reinecke et Heino Finkelmann. « Second harmonic generation in a liquid-crystalline elastomer ». Journal de Physique II 1, no 5 (mai 1991) : 559–70. http://dx.doi.org/10.1051/jp2:1991189.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Tsunoda, Haruna, Kyohei Kawasaki, Toru Ube et Tomiki Ikeda. « Liquid-crystalline elastomer photoactuator with photorearrangeable network structures ». Molecular Crystals and Liquid Crystals 662, no 1 (11 février 2018) : 61–67. http://dx.doi.org/10.1080/15421406.2018.1466242.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Ortiz, C., M. Wagner, N. Bhargava, C. K. Ober et E. J. Kramer. « Deformation of a Polydomain, Smectic Liquid Crystalline Elastomer ». Macromolecules 31, no 24 (décembre 1998) : 8531–39. http://dx.doi.org/10.1021/ma971423x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Torras, Núria, Kirill E. Zinoviev, Jaume Esteve et Antoni Sánchez-Ferrer. « Liquid-crystalline elastomer micropillar array for haptic actuation ». Journal of Materials Chemistry C 1, no 34 (2013) : 5183. http://dx.doi.org/10.1039/c3tc31109k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Herrera-Posada, Stephany, Barbara O. Calcagno et Aldo Acevedo. « Thermal, Mechanical and Magneto-Mechanical Characterization of Liquid Crystalline Elastomers Loaded with Iron Oxide Nanoparticles ». MRS Proceedings 1718 (2015) : 3–7. http://dx.doi.org/10.1557/opl.2015.35.

Texte intégral
Résumé :
ABSTRACTLiquid crystalline elastomers (LCEs) are materials that reveal unusual mechanical, optical and thermal properties due to their molecular orientability characteristic of low molar mass liquid crystals while maintaining the mechanical elasticity distinctive of rubbers. As such, they are considered smart shape-changing responsive systems. In this work, we report on the preparation of magnetic sensitized nematic LCEs using iron oxide nanoparticles with loadings of up to 0.7 wt%. The resultant thermal and mechanical properties were characterized by differential scanning calorimetry, expansion/contraction experiments and extensional tests. The magnetic actuation ability was also evaluated for the neat elastomer and the composite with 0.5 wt% magnetic content, finding reversible contractions of up to 23% with the application of alternating magnetic fields (AMFs) of up to 48 kA/m at 300 kHz. Thus, we were able to demonstrate that the inclusion of magnetic nanoparticles yields LCEs with adjustable properties that can be tailored by changing the amount of particles embedded in the elastomeric matrix, which can be suitable for applications in actuation, sensing, or as smart substrates.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Hessberger, T., L. B. Braun, F. Henrich, C. Müller, F. Gießelmann, C. Serra et R. Zentel. « Co-flow microfluidic synthesis of liquid crystalline actuating Janus particles ». Journal of Materials Chemistry C 4, no 37 (2016) : 8778–86. http://dx.doi.org/10.1039/c6tc03378d.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Braun, L. B., T. Hessberger et R. Zentel. « Microfluidic synthesis of micrometer-sized photoresponsive actuators based on liquid crystalline elastomers ». Journal of Materials Chemistry C 4, no 37 (2016) : 8670–78. http://dx.doi.org/10.1039/c6tc02587k.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Liu, Li, Bin Geng, Sayed Mir Sayed, Bao-Ping Lin, Patrick Keller, Xue-Qin Zhang, Ying Sun et Hong Yang. « Single-layer dual-phase nematic elastomer films with bending, accordion-folding, curling and buckling motions ». Chemical Communications 53, no 11 (2017) : 1844–47. http://dx.doi.org/10.1039/c6cc08976c.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Fang, Mengqi, Tao Liu, Yang Xu, Binjie Jin, Ning Zheng, Yue Zhang, Qian Zhao, Zheng Jia et Tao Xie. « Ultrafast Digital Fabrication of Designable Architectured Liquid Crystalline Elastomer ». Advanced Materials 33, no 52 (17 octobre 2021) : 2105597. http://dx.doi.org/10.1002/adma.202105597.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Pei, Zhiqiang, Yang Yang, Qiaomei Chen, Eugene M. Terentjev, Yen Wei et Yan Ji. « Mouldable liquid-crystalline elastomer actuators with exchangeable covalent bonds ». Nature Materials 13, no 1 (1 décembre 2013) : 36–41. http://dx.doi.org/10.1038/nmat3812.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Godinho, M. H., D. Filip, I. Costa, A. L. Carvalho, J. L. Figueirinhas et E. M. Terentjev. « Liquid crystalline cellulose derivative elastomer films under uniaxial strain ». Cellulose 16, no 2 (7 octobre 2008) : 199–205. http://dx.doi.org/10.1007/s10570-008-9258-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Darinskii, Anatoly A., Anna Zarembo, Nikolai K. Balabaev, Igor M. Neelov et Franciska Sundholm. « Molecular Dynamic Simulation of Side-Chain Liquid Crystalline Elastomer ». Macromolecular Symposia 237, no 1 (mars 2006) : 119–27. http://dx.doi.org/10.1002/masy.200650513.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Fleischmann, Eva-Kristina, F. Romina Forst et Rudolf Zentel. « Liquid-Crystalline Elastomer Fibers Prepared in a Microfluidic Device ». Macromolecular Chemistry and Physics 215, no 10 (3 avril 2014) : 1004–11. http://dx.doi.org/10.1002/macp.201400008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Liu, Xiaohong, Xinglong Pan, Michael G. Debije, Johan P. A. Heuts, Dirk J. Mulder et Albert P. H. J. Schenning. « Programmable liquid crystal elastomer microactuators prepared via thiol–ene dispersion polymerization ». Soft Matter 16, no 21 (2020) : 4908–11. http://dx.doi.org/10.1039/d0sm00817f.

Texte intégral
Résumé :
Programmable, narrowly dispersed, 10 micron-sized, liquid crystalline elastomer actuators were first prepared via thiol–ene dispersion polymerization and then deformed in a PVA film, followed by photopolymerization of the residual acrylate groups.
Styles APA, Harvard, Vancouver, ISO, etc.
31

Saikrasun, Sunan, et Taweechai Amornsakchai. « Self-reinforcing elastomer composites based on polyolefinic thermoplastic elastomer and thermotropic liquid crystalline polymer ». Journal of Applied Polymer Science 107, no 4 (2007) : 2375–84. http://dx.doi.org/10.1002/app.27092.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Zhang, Juzhong, Dandan Sun, Bin Zhang, Qingqing Sun, Yang Zhang, Shuiren Liu, Yaming Wang et al. « Intrinsic carbon nanotube liquid crystalline elastomer photoactuators for high-definition biomechanics ». Materials Horizons 9, no 3 (2022) : 1045–56. http://dx.doi.org/10.1039/d1mh01810h.

Texte intégral
Résumé :
A facile strategy was proposed to prepare intrinsically-photoresponsive elastomer that simultaneously exhibited excellent mechanical toughness, stability and photoresponse. Some high-definition biomechanical applications were successfully demonstrated.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Xu, Jiaojiao, Shuang Chen, Wenlong Yang, Ban Qin, Xiuxiu Wang, Yuchang Wang, Maosheng Cao, Yachen Gao, Chensha Li et Yinmao Dong. « Photo actuation of liquid crystalline elastomer nanocomposites incorporated with gold nanoparticles based on surface plasmon resonance ». Soft Matter 15, no 30 (2019) : 6116–26. http://dx.doi.org/10.1039/c9sm00984a.

Texte intégral
Résumé :
We developed a nano-gold incorporated liquid crystalline elastomer nanocomposite which demonstrated significant photo actuation and nonlinear optic properties, and thus is potential in the application of smart devices and laser technologies.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Zhao, Nan, Xiuxiu Wang, Liru Yao, Huixuan Yan, Ban Qin, Chensha Li et Jianqi Zhang. « Actuation performance of a liquid crystalline elastomer composite reinforced by eiderdown fibers ». Soft Matter 18, no 6 (2022) : 1264–74. http://dx.doi.org/10.1039/d1sm01356d.

Texte intégral
Résumé :
An eiderdown fiber-reinforced liquid crystal elastomer composite developed here demonstrated greatly enhanced actuation mechanical properties and anti-fatigue properties, thus revealing potential in industrial utilizations as an actuator material.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Yan, Miao, Jun Tang, He-Lou Xie, Bin Ni, Hai-Liang Zhang et Er-Qiang Chen. « Self-healing and phase behavior of liquid crystalline elastomer based on a block copolymer constituted of a side-chain liquid crystalline polymer and a hydrogen bonding block ». Journal of Materials Chemistry C 3, no 33 (2015) : 8526–34. http://dx.doi.org/10.1039/c5tc01603g.

Texte intégral
Résumé :
Self-healing liquid crystalline elastomers were fabricated by hydrogen-bonding and the hydrogen bonds in this system played an important role both in self-healing property and the liquid crystalline phase behavior.
Styles APA, Harvard, Vancouver, ISO, etc.
36

Zhang, Shuyan. « Increased Lateral Electrostriction Realized in Ferroelectric Liquid-Crystalline Elastomer Films ». MRS Bulletin 26, no 6 (juin 2001) : 433. http://dx.doi.org/10.1557/mrs2001.107.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Li, Chensha, Ye Liu, Xuezhen Huang, Chenhui Li et Hongrui Jiang. « Light Actuation of Graphene-Oxide Incorporated Liquid Crystalline Elastomer Nanocomposites ». Molecular Crystals and Liquid Crystals 616, no 1 (24 juillet 2015) : 83–92. http://dx.doi.org/10.1080/15421406.2014.990256.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Liu, Xiyang, Seong-Ku Kim et Xiaogong Wang. « Thermomechanical liquid crystalline elastomer capillaries with biomimetic peristaltic crawling function ». Journal of Materials Chemistry B 4, no 45 (2016) : 7293–302. http://dx.doi.org/10.1039/c6tb02372j.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Marotta, Angela, Giuseppe Cesare Lama, Veronica Ambrogi, Pierfrancesco Cerruti, Marta Giamberini et Gennaro Gentile. « Shape memory behavior of liquid-crystalline elastomer/graphene oxide nanocomposites ». Composites Science and Technology 159 (mai 2018) : 251–58. http://dx.doi.org/10.1016/j.compscitech.2018.03.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Ishige, Ryohei, Kensuke Osada, Hirotaka Tagawa, Hiroko Niwano, Masatoshi Tokita et Junji Watanabe. « Elongation Behavior of a Main-Chain Smectic Liquid Crystalline Elastomer ». Macromolecules 41, no 20 (28 octobre 2008) : 7566–70. http://dx.doi.org/10.1021/ma801665a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Yang, Liqiang, Kristina Setyowati, An Li, Shaoqin Gong et Jian Chen. « Reversible Infrared Actuation of Carbon Nanotube-Liquid Crystalline Elastomer Nanocomposites ». Advanced Materials 20, no 12 (18 juin 2008) : 2271–75. http://dx.doi.org/10.1002/adma.200702953.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Wu, Zi Liang, Axel Buguin, Hong Yang, Jean-Marie Taulemesse, Nicolas Le Moigne, Anne Bergeret, Xiaogong Wang et Patrick Keller. « Microstructured Nematic Liquid Crystalline Elastomer Surfaces with Switchable Wetting Properties ». Advanced Functional Materials 23, no 24 (24 janvier 2013) : 3070–76. http://dx.doi.org/10.1002/adfm.201203291.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Torbati, Amir H., et Patrick T. Mather. « A hydrogel-forming liquid crystalline elastomer exhibiting soft shape memory ». Journal of Polymer Science Part B : Polymer Physics 54, no 1 (15 septembre 2015) : 38–52. http://dx.doi.org/10.1002/polb.23892.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

SAIKRASUN, Sunan, Yuwararat PHOBAN, Panpirada LIMPISAWASDI et Taweechai AMORNSAKCHAI. « In Situ Reinforcing Elastomer Composite Based on Polyolefinic Thermoplastic Elastomer and Thermotropic Liquid Crystalline Polymer ». Journal of Solid Mechanics and Materials Engineering 1, no 4 (2007) : 447–58. http://dx.doi.org/10.1299/jmmp.1.447.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Shimoga, Ganesh, Dong-Soo Choi et Sang-Youn Kim. « Bio-Inspired Soft Robotics : Tunable Photo-Actuation Behavior of Azo Chromophore Containing Liquid Crystalline Elastomers ». Applied Sciences 11, no 3 (29 janvier 2021) : 1233. http://dx.doi.org/10.3390/app11031233.

Texte intégral
Résumé :
Bio-inspiration relentlessly sparks the novel ideas to develop innovative soft robotic structures from smart materials. The conceptual soft robotic designs inspired by biomimetic routes have resulted in pioneering research contributions based on the understanding of the material selection and actuation properties. In an attempt to overcome the hazardous injuries, soft robotic systems are used subsequently to ensure safe human–robot interaction. In contrast to dielectric elastomer actuators, prolific efforts were made by understanding the photo-actuating properties of liquid crystalline elastomers (LCEs) containing azo-derivatives to construct mechanical structures and tiny portable robots for specific technological applications. The structure and material properties of these stimuli-responsive polymers can skillfully be controlled by light. In this short technical note, we highlight the potential high-tech importance and the photo-actuation behavior of some remarkable LCEs with azobenzene chromophores.
Styles APA, Harvard, Vancouver, ISO, etc.
46

Bošnjaković, Dejan, Marko Gregorc, Hui Li, Martin Čopič, Valentina Domenici et Irena Drevenšek-Olenik. « Mechanical Manipulation of Diffractive Properties of Optical Holographic Gratings from Liquid Crystalline Elastomers ». Applied Sciences 8, no 8 (9 août 2018) : 1330. http://dx.doi.org/10.3390/app8081330.

Texte intégral
Résumé :
An appealing property of optical diffractive structures from elastomeric materials is a possibility to regulate their optical patterns and consequently also their diffractive features with mechanical straining. We investigated the effect of strain on diffraction characteristics of holographic gratings recorded in a monodomain side-chain liquid crystalline elastomer. The strain was imposed either parallel or perpendicular to the initial alignment direction of the material. At temperatures far below the nematic–paranematic phase transition, straining along the initial alignment affects mainly the diffraction pattern, while the diffraction efficiency remains almost constant. In contrast, at temperatures close to the nematic–paranematic phase transition, the diffraction efficiency is also significantly affected. Straining in the direction perpendicular to the initial alignment strongly and diversely influences both the diffraction pattern and the diffraction efficiency. The difference between the two cases is attributed to shear–stripe domains, which form only during straining perpendicular to the initial alignment and cause optical diffraction that competes with the diffraction from the holographic grating structure.
Styles APA, Harvard, Vancouver, ISO, etc.
47

Li, Chensha, Xuezhen Huang, Chenhui Li et Hongrui Jiang. « Reversible Photo Actuated Bulk Nanocomposite with Nematic Liquid Crystalline Elastomer Matrix ». Molecular Crystals and Liquid Crystals 608, no 1 (11 février 2015) : 146–56. http://dx.doi.org/10.1080/15421406.2014.953748.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Brodowsky, H. M., U. C. Boehnke, F. Kremer, E. Gebhard et R. Zentel. « Temperature Dependent AFM on Ferroelectric Liquid Crystalline Polymer and Elastomer Films ». Langmuir 13, no 20 (octobre 1997) : 5378–82. http://dx.doi.org/10.1021/la970284+.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Wei, Renbo, Zicheng Wang, Hongxing Zhang et Xiaobo Liu. « Photo-responsive liquid crystalline elastomer with reduced chemically modified graphene oxide ». Liquid Crystals 43, no 7 (2 mars 2016) : 1009–16. http://dx.doi.org/10.1080/02678292.2016.1155773.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Liu, Xiao-Feng, Xi Luo, Bo-Wen Liu, Hai-Yi Zhong, De-Ming Guo, Rong Yang, Li Chen et Yu-Zhong Wang. « Toughening Epoxy Resin Using a Liquid Crystalline Elastomer for Versatile Application ». ACS Applied Polymer Materials 1, no 9 (24 juillet 2019) : 2291–301. http://dx.doi.org/10.1021/acsapm.9b00319.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie