Sommaire
Littérature scientifique sur le sujet « LinkedData »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « LinkedData ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "LinkedData"
TANABE, Kosuke, Yuka EGUSA et Masao TAKAKU. « A Subject Information Sharing System Based on Linked Data and FRSAD Model ». Joho Chishiki Gakkaishi 26, no 3 (2016) : 260–76. http://dx.doi.org/10.2964/jsik_2016_030.
Texte intégralPiirainen, Esko, Eija-Leena Laiho, Tea von Bonsdorff et Tapani Lahti. « Managing Taxon Data in FinBIF ». Biodiversity Information Science and Standards 3 (26 juin 2019). http://dx.doi.org/10.3897/biss.3.37422.
Texte intégralThèses sur le sujet "LinkedData"
SPAHIU, BLERINA. « Profiling Linked Data ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2017. http://hdl.handle.net/10281/151645.
Texte intégralRecently, the increasing diffusion of Linked Data (LD) as a standard way to publish and structure data on the Web has received a growing attention from researchers and data publishers. LD adoption is reflected in different domains such as government, media, life science, etc., building a powerful Web available to anyone. Despite the high number of datasets published as LD, their usage is still not exploited as they lack comprehensive metadata. Data consumers need to obtain information about datasets content in a fast and summarized form to decide if they are useful for their use case at hand or not. Data profiling techniques offer an efficient solution to this problem as they are used to generate metadata and statistics that describe the content of the dataset. Existing profiling techniques do no cover a wide range of use cases. Many challenges due to the heterogeneity nature of Linked Data are still to overcome. This thesis presents the doctoral research which tackles the problems related to Profiling Linked Data. Even though the term of data profiling is the umbrella term for diverse descriptive information that describes a dataset, in this thesis we cover three aspects of profiling; topic-based, schema-based and linkage-based. The profile provided in this thesis is fundamental for the decision-making process and is the basic requirement towards the dataset understanding. In this thesis we present an approach to automatically classify datasets in one of the topical categories used in the LD cloud. Moreover, we investigate the problem of multi-topic profiling. For the schema-based profiling we propose a schema-based summarization approach, that provides an overview about the relations in the data. Our summaries are concise and informative enough to summarize the whole dataset. Moreover, they reveal quality issues and can help users in the query formulation tasks. Many datasets in the LD cloud contain similar information for the same entity. In order to fully exploit its potential LD should made this information explicit. Linkage profiling provides information about the number of equivalent entities between datasets and reveal possible errors. The techniques of profiling developed during this work are automatic and can be applied to different datasets independently of the domain.
Quadrelli, Davide. « RSLT : trasformazione di Open LinkedData in testi in linguaggio naturaletramite template dichiarativi ». Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amslaurea.unibo.it/11945/.
Texte intégralChapitres de livres sur le sujet "LinkedData"
Langer, André, Christoph Göpfert et Martin Gaedke. « CARDINAL : Contextualized Adaptive Research Data Description INterface Applying LinkedData ». Dans Lecture Notes in Computer Science, 11–27. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74296-6_2.
Texte intégral