Littérature scientifique sur le sujet « Linear systems »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Linear systems ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Linear systems"

1

Ramadhan, Ayad M., et Adil K. Jabbar. « Invariable (2x2) Linear Systems ». Journal of Zankoy Sulaimani - Part A 5, no 1 (10 mars 2001) : 51–56. http://dx.doi.org/10.17656/jzs.10089.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Mazanik, S. A. « Linear differential Lappo-Danilevskii systems ». Mathematica Bohemica 127, no 2 (2002) : 275–82. http://dx.doi.org/10.21136/mb.2002.134159.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Došlý, Ondřej. « Phase matrix of linear differential systems ». Časopis pro pěstování matematiky 110, no 2 (1985) : 183–92. http://dx.doi.org/10.21136/cpm.1985.108587.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Lobok, Oleksij, Boris Goncharenko, Larisa Vihrova et Marina Sych. « Synthesis of Modal Control of Multidimensional Linear Systems Using Linear Matrix Inequalities ». Collected Works of Kirovohrad National Technical University. Machinery in Agricultural Production, Industry Machine Building, Automation, no 31 (2018) : 141–50. http://dx.doi.org/10.32515/2409-9392.2018.31.141-150.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Kaczorek, Tadeusz. « Inverse systems of linear systems ». Archives of Electrical Engineering 59, no 3-4 (1 décembre 2010) : 203–16. http://dx.doi.org/10.2478/s10171-010-0016-x.

Texte intégral
Résumé :
Inverse systems of linear systemsThe concept of inverse systems for standard and positive linear systems is introduced. Necessary and sufficient conditions for the existence of the positive inverse system for continuous-time and discrete-time linear systems are established. It is shown that: 1) The inverse system of continuous-time linear system is asymptotically stable if and only if the standard system is asymptotically stable. 2) The inverse system of discrete-time linear system is asymptotically stable if and only if the standard system is unstable. 3) The inverse system of continuous-time and discrete-time linear systems are reachable if and only if the standard systems are reachable. The considerations are illustrated by numerical examples.
Styles APA, Harvard, Vancouver, ISO, etc.
6

SUN, Xu-dong, et Si-zong GUO. « Linear Formed General Fuzzy Linear Systems ». Systems Engineering - Theory & ; Practice 29, no 9 (septembre 2009) : 92–98. http://dx.doi.org/10.1016/s1874-8651(10)60071-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Broomhead, D. S., J. P. Huke et M. R. Muldoon. « Linear Filters and Non-Linear Systems ». Journal of the Royal Statistical Society : Series B (Methodological) 54, no 2 (janvier 1992) : 373–82. http://dx.doi.org/10.1111/j.2517-6161.1992.tb01887.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Gilmore, C. « Linear Dynamical Systems ». Irish Mathematical Society Bulletin 0086 (2020) : 47–78. http://dx.doi.org/10.33232/bims.0086.47.78.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Giesbrecht, Mark, et David Saunders. « Parametric linear systems ». ACM SIGSAM Bulletin 31, no 3 (septembre 1997) : 40. http://dx.doi.org/10.1145/271130.271195.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Conley, William. « Linear systems revisited ». SIMULATION 45, no 1 (juillet 1985) : 15–18. http://dx.doi.org/10.1177/003754978504500105.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Linear systems"

1

Medina, Enrique A. « Linear Impulsive Control Systems : A Geometric Approach ». Ohio : Ohio University, 2007. http://www.ohiolink.edu/etd/view.cgi?ohiou1187704023.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Belayneh, Berhanu Bekele. « Time-varying linear systems ». [S.l.] : [s.n.], 2007. http://deposit.ddb.de/cgi-bin/dokserv?idn=98553530X.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Mayo, Maldonado Jonathan. « Switched linear differential systems ». Thesis, University of Southampton, 2015. https://eprints.soton.ac.uk/383678/.

Texte intégral
Résumé :
In this thesis we study systems with switching dynamics and we propose new mathematical tools to analyse them. We show that the postulation of a global state space structure in current frameworks is restrictive and lead to potential difficulties that limit its use for the analysis of new emerging applications. In order to overcome such shortcomings, we reformulate the foundations in the study of switched systems by developing a trajectory-based approach, where we allow the use of models that are most suitable for the analysis of a each system. These models can involve sets of higher-order differential equations whose state space does not necessarily coincide. Based on this new approach, we first study closed switched systems, and we provide sufficient conditions for stability based on LMIs using the concept of multiple higher order Lyapunov function. We also study the role of positive-realness in stability of bimodal systems and we introduce the concept of positive-real completion. Furthermore, we study open switched systems by developing a dissipativity theory. We give necessary and sufficient conditions for dissipativity in terms of LMIs constructed from the coefficient matrices of the differential equations describing the modes. The relationship between dissipativity and stability is also discussed. Finally, we study the dynamics of energy distribution networks. We develop parsimonious models that deal effectively with the variant complexity of the network and the inherent switching phenomena induced by power converters. We also present the solution to instability problems caused by devices with negative impedance characteristics such as constant power loads, using tools developed in our framework.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Markovsky, Ivan. « Exact and approximate modeling of linear systems : a behavioral approach / ». Philadelphia, Pa. : Society for Industrial and Applied Mathematics, 2006. http://www.loc.gov/catdir/enhancements/fy0708/2005057537-d.html.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Xu, Rui Hui. « Windowed linear canonical transform and its applications ». Thesis, University of Macau, 2011. http://umaclib3.umac.mo/record=b2493220.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Hopkins, Mark A. « Pseudo-linear identification : optimal joint parameter and state estimation of linear stochastic MIMO systems ». Diss., Virginia Polytechnic Institute and State University, 1988. http://hdl.handle.net/10919/53941.

Texte intégral
Résumé :
This dissertation presents a new method of simultaneous parameter and state estimation for linear, stochastic, discrete—time, multiple-input, multiple-output (MIMO) (B systems. This new method is called pseudo·Iinear identification (PLID), and extends an earlier method to the more general case where system input and output measurements are corrupted by noise. PLID can be applied to completely observable, completely controllable systems with known structure (i.e., known observability indexes) and unknown parameters. No assumptions on pole and zero locations are required; and no assumptions on relative degree are required, except that the system transfer functions must be strictly proper. Under standard gaussian assumptions on the various noises, for time-invariant systems in the class described above, it is proved that PLID is the optimal estimator (in the mean-square·error sense) of the states and the parameters, conditioned on the output measurements. It is also proved, under a reasonable assumption of persistent excitation, that the PLID parameter estimates converge a.e. to the true parameter values of the unknown system. For deterministic systems, it is proved that PLID exactly identifies the states and parameters in the minimum possible time, so—called deadbeat identification. The proof brings out an interesting relation between the estimate error propagation and the observability matrix of the time-varying extended system (the extended system incorporates the unknown parameters into the state vector). This relation gives rise to an intuitively appealing notion of persistent excitation. Some results of system identification simulations are presented. Several different cases are simulated, including a two-input, two-output system with non-minimum-phase zeros, and an unstable system. A comparison of PLID with the widely used extended Kalman filter is presented for a single-input, single·output system with near cancellation of a pole-zero pair. Results are also presented from simulations of the adaptive control of an unstable. two-input, two-output system In these simulations, PLID is used in a se1f—tuning regulator to identify the parameters needed to compute the feedback gain matrix, and (simultaneously) to estimate the system states, for the state feedback
Ph. D.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Newsham, Samantha. « Linear systems and determinants in integrable systems ». Thesis, Lancaster University, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.663238.

Texte intégral
Résumé :
The thesis concerns linear systems and scattering theory. In particular, it presents lineal' systems for some integrable systems and finds discrete analogues for many well known results for continuous variables. It introduces some new tools from linear systems and applies them to standard integrable systems. We begin by expressing the first Painleve equation as the compatibility condition of a certain Lax pair and introduce the Korteweg-de Vries partial differential equation. We introduce the spectral curve for algebraic families and the Toda lattice. The Fredholm determinant of a trace class Hankel integral operator gives rise to a tau function. Dyson used the tau function to solve an inverse spectral problem for Schrodinger operators. When a plane wave is subject to Schrodinger's equation and scattered by a potential u, the output is described at great distances by a scattering function. The spectral problem is to find the spectrum of Schrodinger's operator in L2 and hence the scattering function. The inverse spectral problem is to find the potential given the scattering function. The scattering and inverse scattering problems are linked by the Gelfand- Levitan equation. In this thesis, for a discrete linear system, we introduce a scattering function and Hankel matrix and a version of the Gelfand-Levitan equation for discrete linear systems. We introduce the discrete operator ∑∞/k=n AkBCAk and use it to solve the Gelfand-Levitan equation and compute Fredholm determinants of Hankel operators. We produce a discrete analogue of a calculation of Poppe giving a solution to the Korteweg-de Vries equation and via the methods of linear systems find an analogous solution in terms of Hankel matrices. We then produce a discrete analogue of the Miura transform. Thus the main new contributions of this thesis are the discrete analogues of the R operator, the Gelfand- Levitan equation, the Lyapunov equation and the Miura transform.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Marinosson, Sigurdur Freyr. « Stability Analysis of Nonlinear Systems with Linear Programming - Stabilitätsanalyse nicht-linearer Systeme mit linearer Optimierung ». Gerhard-Mercator-Universitaet Duisburg, 2002. http://www.ub.uni-duisburg.de/ETD-db/theses/available/duett-02152002-111745/.

Texte intégral
Résumé :
In this thesis the stability and the region of attraction of nonlinear dynamical systems' equilibrium points are considered. Methods from linear programming are combined with theorems from the Lyapunov theory of dynamical systems to develop numerical algorithms. These algorithms deliver non-trivial information about the stability-behaviour of an equilibrium of a continuous, autonomous, nonlinear system. Two linear programs, LP1 and LP2, are developed. LP1 depends on a simply connected open neighborhood N of the equilibrium at the origin and two constants, a and m. The construction of LP1 implies that if it does not possess a feasible solution, then the corresponding system is not a,m-exponentially stable on N. LP2 has the property that every feasible solution of the linear program defines a piecewise-affine (piecewise-linear) Lyapunov function or a Lyapunov-like function V for the system.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Enqvist, Martin. « Linear Models of Nonlinear Systems ». Doctoral thesis, Linköping : Linköpings universitet, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-5330.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Haddleton, Steven W. « Steady-state performance of discrete linear time-invariant systems / ». Online version of thesis, 1994. http://hdl.handle.net/1850/11795.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Linear systems"

1

Sinha, Naresh K. Linear systems. New York : Wiley, 1991.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Bourlès, Henri. Linear Systems. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118619988.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Bhattacharyya, S. P., L. H. Keel et D. N. Mohsenizadeh. Linear Systems. New Delhi : Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1641-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Blower, Gordon. Linear Systems. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-21240-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Bourles, Henri. Linear systems. London, UK : ISTE ; Hoboken, NJ : Wiley, 2010.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Antsaklis, Panos J. Linear systems. New York : McGraw-Hill, 1997.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Bourles, Henri. Linear systems. London, UK : ISTE ; Hoboken, NJ : Wiley, 2010.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

K, Sinha N. Linear systems. New York : Wiley, 1991.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Tripathi, A. N. Linear systems analysis. 2e éd. New Delhi : New Age International, 1998.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Hespanha, João P. Linear systems theory. Princeton : Princeton University Press, 2009.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Linear systems"

1

Robbiano, Lorenzo. « Coordinate Systems ». Dans Linear algebra, 81–108. Milano : Springer Milan, 2011. http://dx.doi.org/10.1007/978-88-470-1839-6_5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Han, Xiaoying, et Peter Kloeden. « Linear Systems ». Dans SpringerBriefs in Mathematics, 35–39. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-61934-7_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Feintuch, Avraham. « Linear Systems ». Dans Robust Control Theory in Hilbert Space, 77–86. New York, NY : Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-0591-3_5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Kress, Rainer. « Linear Systems ». Dans Graduate Texts in Mathematics, 5–24. New York, NY : Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-0599-9_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Fieguth, Paul. « Linear Systems ». Dans An Introduction to Complex Systems, 67–96. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44606-6_5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Arrowsmith, D. K., et C. M. Place. « Linear systems ». Dans Dynamical Systems, 35–70. Dordrecht : Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2388-4_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Quarteroni, Alfio, et Fausto Saleri. « Linear systems ». Dans Texts in Computational Science and Engineering, 123–66. Berlin, Heidelberg : Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/3-540-32613-8_5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Fuhrmann, Paul A., et Uwe Helmke. « Linear Systems ». Dans The Mathematics of Networks of Linear Systems, 141–206. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16646-9_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Mumford, David. « Linear Systems ». Dans Algebraic Geometry I Complex Projective Varieties, 96–126. Berlin, Heidelberg : Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-61833-8_6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Perko, Lawrence. « Linear Systems ». Dans Texts in Applied Mathematics, 1–63. New York, NY : Springer New York, 2001. http://dx.doi.org/10.1007/978-1-4613-0003-8_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Linear systems"

1

D'Antona, Gabriele, Antonello Monti et Ferdinanda Ponci. « A Decentralized State Estimator for Non-Linear Electric Power Systems ». Dans 2007 1st Annual IEEE Systems Conference. IEEE, 2007. http://dx.doi.org/10.1109/systems.2007.374680.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Cohen, Leon. « Linear invariant systems ». Dans Optical Engineering + Applications, sous la direction de Franklin T. Luk. SPIE, 2007. http://dx.doi.org/10.1117/12.740184.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Weiss, G., et R. Rebarber. « Estimatable linear systems ». Dans 1997 European Control Conference (ECC). IEEE, 1997. http://dx.doi.org/10.23919/ecc.1997.7082556.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

« Linear dynamically varying versus jump linear systems ». Dans Proceedings of the 1999 American Control Conference. IEEE, 1999. http://dx.doi.org/10.1109/acc.1999.786290.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Dautrebande, N., et G. Bastin. « Positive linear observers for positive linear systems ». Dans 1999 European Control Conference (ECC). IEEE, 1999. http://dx.doi.org/10.23919/ecc.1999.7099454.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Borukhov, V., et O. Kvetko. « Applications of linear relations in linear systems theory ». Dans The Fourth International Workshop on Multidimensional Systems - NDS 2005. IEEE, 2005. http://dx.doi.org/10.1109/nds.2005.195332.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Johnson, Timothy. « Synchronous switched linear systems ». Dans 1985 24th IEEE Conference on Decision and Control. IEEE, 1985. http://dx.doi.org/10.1109/cdc.1985.268824.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Willems, Jan C. « Representations of linear systems ». Dans 2008 3rd International Symposium on Communications, Control and Signal Processing (ISCCSP). IEEE, 2008. http://dx.doi.org/10.1109/isccsp.2008.4537213.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

« MOMENT-LINEAR STOCHASTIC SYSTEMS ». Dans First International Conference on Informatics in Control, Automation and Robotics. SciTePress - Science and and Technology Publications, 2004. http://dx.doi.org/10.5220/0001143401900197.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Clotet, Josep, Josep Ferrer et M. Dolors Magret. « Switched singular linear systems ». Dans 2009 17th Mediterranean Conference on Control and Automation (MED). IEEE, 2009. http://dx.doi.org/10.1109/med.2009.5164733.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Linear systems"

1

Sameh, Ahmed H. Solving Linear Systems on Multiprocessors. Fort Belvoir, VA : Defense Technical Information Center, août 1988. http://dx.doi.org/10.21236/ada200741.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Author, Not Given. Feedback Systems for Linear Colliders. Office of Scientific and Technical Information (OSTI), avril 1999. http://dx.doi.org/10.2172/10004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Subasi, Yigit. Quantum Linear Systems Problem [Slides]. Office of Scientific and Technical Information (OSTI), mai 2021. http://dx.doi.org/10.2172/1785467.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Raubenheimer, Tor. Final Focus Systems in Linear Colliders. Office of Scientific and Technical Information (OSTI), décembre 1998. http://dx.doi.org/10.2172/9937.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Beiu, Andrea-Claudia, Roxana-Mariana Beiu et Valeriu Beiu. Optimal design of linear consecutive systems. Peeref, mars 2023. http://dx.doi.org/10.54985/peeref.2303p3503376.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Young, D. M., et D. R. Kincaid. Linear stationary second-degree methods for the solution of large linear systems. Office of Scientific and Technical Information (OSTI), juillet 1990. http://dx.doi.org/10.2172/674848.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Sontag, Eduardo D. Regulation of Nonlinear and Generalized Linear Systems. Fort Belvoir, VA : Defense Technical Information Center, septembre 1988. http://dx.doi.org/10.21236/ada207725.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Merminga, N., J. Irwin, R. Helm et R. D. Ruth. Collimation Systems for a TeV Linear Collider. Office of Scientific and Technical Information (OSTI), mai 1994. http://dx.doi.org/10.2172/1449133.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Morse, A. S. Adaptive Stabilization of Linear and Nonlinear Systems. Fort Belvoir, VA : Defense Technical Information Center, mars 1994. http://dx.doi.org/10.21236/ada278270.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

McKeague, Ian W., et Tiziano Tofoni. Nonparametric Estimation of Trends in Linear Stochastic Systems. Fort Belvoir, VA : Defense Technical Information Center, septembre 1989. http://dx.doi.org/10.21236/ada213741.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie