Littérature scientifique sur le sujet « Linear principal componetns analysis »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Linear principal componetns analysis ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Linear principal componetns analysis"
Török, Evelin, István Komlósi, Béla Béri, Imre Füller, Barnabás Vágó et János Posta. « Principal component analysis of conformation traits in Hungarian Simmental cows ». Czech Journal of Animal Science 66, No. 2 (15 février 2021) : 39–45. http://dx.doi.org/10.17221/155/2020-cjas.
Texte intégralHiden, H. G., M. J. Willis, M. T. Tham et G. A. Montague. « Non-linear principal components analysis using genetic programming ». Computers & ; Chemical Engineering 23, no 3 (février 1999) : 413–25. http://dx.doi.org/10.1016/s0098-1354(98)00284-1.
Texte intégralZhang, J., A. J. Morris et E. B. Martin. « Process Monitoring Using Non-Linear Principal Component Analysis ». IFAC Proceedings Volumes 29, no 1 (juin 1996) : 6584–89. http://dx.doi.org/10.1016/s1474-6670(17)58739-x.
Texte intégralRuessink, B. G., I. M. J. van Enckevort et Y. Kuriyama. « Non-linear principal component analysis of nearshore bathymetry ». Marine Geology 203, no 1-2 (janvier 2004) : 185–97. http://dx.doi.org/10.1016/s0025-3227(03)00334-7.
Texte intégralJia, F., E. B. Martin et A. J. Morris. « Non-linear principal components analysis for process fault detection ». Computers & ; Chemical Engineering 22 (mars 1998) : S851—S854. http://dx.doi.org/10.1016/s0098-1354(98)00164-1.
Texte intégralRattan, S. S. P., B. G. Ruessink et W. W. Hsieh. « Non-linear complex principal component analysis of nearshore bathymetry ». Nonlinear Processes in Geophysics 12, no 5 (28 juin 2005) : 661–70. http://dx.doi.org/10.5194/npg-12-661-2005.
Texte intégralKambhatla, Nandakishore, et Todd K. Leen. « Dimension Reduction by Local Principal Component Analysis ». Neural Computation 9, no 7 (1 octobre 1997) : 1493–516. http://dx.doi.org/10.1162/neco.1997.9.7.1493.
Texte intégralPurviance, J. E., M. C. Petzold et C. Potratz. « A linear statistical FET model using principal component analysis ». IEEE Transactions on Microwave Theory and Techniques 37, no 9 (1989) : 1389–94. http://dx.doi.org/10.1109/22.32222.
Texte intégralJiang, Jian-Hui, Ji-Hong Wang, Xia Chu et Ru-Qin Yu. « Neural network learning to non-linear principal component analysis ». Analytica Chimica Acta 336, no 1-3 (décembre 1996) : 209–22. http://dx.doi.org/10.1016/s0003-2670(96)00359-5.
Texte intégralChan. « Face Biometrics Based on Principal Component Analysis and Linear Discriminant Analysis ». Journal of Computer Science 6, no 7 (1 juillet 2010) : 693–99. http://dx.doi.org/10.3844/jcssp.2010.693.699.
Texte intégralThèses sur le sujet "Linear principal componetns analysis"
Shannak, Kamal Majed. « On Non-Linear Principal Component Analysis for Process Monitoring ». Fogler Library, University of Maine, 2004. http://www.library.umaine.edu/theses/pdf/ShannakKM2004.pdf.
Texte intégralJia, Feng. « Application of linear and non-linear principal component analysis in multivariate statistical process control ». Thesis, University of Newcastle Upon Tyne, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.311152.
Texte intégralMENNI, CRISTINA. « Population stratification in genome-wide association studies : a comparison among different multivariate analysis methods for dimensionality reduction ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2011. http://hdl.handle.net/10281/19317.
Texte intégralArcher, Cynthia. « A framework for representing non-stationary data with mixtures of linear models / ». Full text open access at:, 2002. http://content.ohsu.edu/u?/etd,585.
Texte intégralSavery, James Roy. « A modular non-linear approach to empirical principal component analysis based process modelling ». Thesis, University College London (University of London), 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.417693.
Texte intégralPascoto, Tamara Vieira. « Análises fatorial e de componentes principais aplicadas ao estudo dos fatores influenciadores de processos erosivos / ». Bauru, 2020. http://hdl.handle.net/11449/192266.
Texte intégralResumo: A erosão é um problema ambiental em que a perda de solo pode acarretar problemas econômicos e, quando próximos a urbanizações, problemas sociais. A cidade de São Manuel está situada no interior de São Paulo e apresenta, tanto solos argilosos com baixa suscetibilidade a erosão, como solos arenosos com alta suscetibilidade a erosão. Uma vez que existem áreas suscetíveis à erosão próximas à área urbana capazes de colocar a população em risco, surgiu a necessidade de analisá-las a fim de auxiliar políticas públicas para minimizar suas consequências. Com isso, a presente pesquisa propôs o desenvolvimento de uma metodologia para gerar índices de erosão, por Análise de Componente Principal (PCA) e por Análise Fatorial, fundamentado em alguns dos principais fatores influenciadores nos processos erosivos que ocorrem na área urbana do município. Nessa etapa foram considerados: textura do solo; declividade; permeabilidade; uso e ocupação; pluviosidade; e erodibilidade dos solos. Inicialmente, foram levantadas as feições erosivas existentes na área urbana, espacializadas e classificadas. Entre as 9 feições espacializadas, duas eram provenientes de processos fluviais, duas estavam recuperadas, restando cinco feições erosivas lineares para serem estudadas. Uma das cinco, apesar de estar estabilizada, apresentou um avanço significativo em um dos braços. Das feições estudadas, apenas uma foi classificada como ravina, sendo as demais classificadas como voçorocas. Após levantados os fatores in... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: Erosion is an environmental problem where soil loss can lead either to economic problems or, whether close to urbanization, social problems. São Manuel town is located in the interior of São Paulo and has both clayey soils with low susceptibility to erosion and sandy soils with high susceptibility to erosion. Since there are areas susceptible to erosion close to the urban area capable of putting the population at risk, the need arose to analyze them in order to assist public policies to minimize their consequences. Therefore, this research proposed the development of a methodology to generate erosion indexes, by Principal Component Analysis (PCA) and Factorial Analysis, based on some of the main factors influencing erosion processes that occur in the urban area of the municipality. At this stage the following factors were considered: soil texture; slope; permeability; use and occupation; rainfall; and soil erodibility. Initially, the erosive features existing in the urban area were surveyed, spatialized and classified. Among the 9 spatialized features, two were from fluvial processes, two were recovered, leaving five linear erosive features to be studied. One of the five, despite being stabilized, presented a significant advance in one of the arms. Of the studied features, only one was classified as ravine, the others being classified as gullies. After surveyed the influencing factors, they were evaluated according to two methodologies: Method A - it was based on the analysis... (Complete abstract click electronic access below)
Mestre
Marbach, Matthew James. « Use of principal component analysis with linear predictive features in developing a blind SNR estimation system / ». Full text available online, 2006. http://www.lib.rowan.edu/find/theses.
Texte intégralVaranis, Marcus Vinicius Monteiro 1979. « Detecção de falhas em motores elétricos através da transformada wavelet packet e métodos de redução de dimensionalidade ». [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/265889.
Texte intégralTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica
Made available in DSpace on 2018-08-26T01:39:31Z (GMT). No. of bitstreams: 1 Varanis_MarcusViniciusMonteiro_D.pdf: 5116959 bytes, checksum: b16ac36565b93c6bf49eb1863f7e9823 (MD5) Previous issue date: 2014
Resumo: Motores elétricos são componentes de grande importância na maioria dos equipamentos de plantas industriais. As diversas falhas que ocorrem nas máquinas de indução podem gerar consequências severas no processo industrial. Os principais problemas estão relacionados à elevação dos custos de produção, piora nas condições do processo e de segurança e, sobretudo piora na qualidade do produto final. Muitas destas falhas mostram-se progressivas. Neste trabalho, apresenta-se uma contribuição ao estudo de Técnicas de Processamento de Sinais Baseadas na Transformada Wavelet para extração de parâmetros de Energia e Entropia a partir de sinais de vibração para detecção de falhas no regime não-estacionário (parada e partida do motor). Em conjunto com a transformada Wavelet utilizam-se métodos de redução de dimensionalidade como, a análise em componentes principais (PCA e a análise Linear Discriminante (LDA). O uso de uma bancada experimental mostra que os resultados da classificação têm alta precisão
Abstract: Electric motors are very important components in most industrial plants equipment. The several faults occurring in induction machines can generate severe consequences in the industrial process. The main problems are related to high production costs, worsening the conditions of process and security, and especially poor quality of the final product. Many of these failures are shown progressive. This work presents a contribution to the study of Signal Processing Techniques Based on Wavelet Packet Transform for extracting parameters of Energy and Entropy, together makes the use of dimensionality reduction methods like the Principal components Analysis (PCA) and Linear Dscriminant Analysis (LDA). This analysis is done from the acquisition of vibration signals in Non-Stationary state (stop and start the engine). The results show that the performance of classification has high accuracy based on experimental work
Doutorado
Mecanica dos Sólidos e Projeto Mecanico
Doutor em Engenharia Mecânica
Khosla, Nitin, et n/a. « Dimensionality Reduction Using Factor Analysis ». Griffith University. School of Engineering, 2006. http://www4.gu.edu.au:8080/adt-root/public/adt-QGU20061010.151217.
Texte intégralKhosla, Nitin. « Dimensionality Reduction Using Factor Analysis ». Thesis, Griffith University, 2006. http://hdl.handle.net/10072/366058.
Texte intégralThesis (Masters)
Master of Philosophy (MPhil)
School of Engineering
Full Text
Livres sur le sujet "Linear principal componetns analysis"
Ahmed, S. E. (Syed Ejaz), 1957- editor of compilation, dir. Perspectives on big data analysis : Methodologies and applications : International Workshop on Perspectives on High-Dimensional Data Anlaysis II, May 30-June 1, 2012, Centre de Recherches Mathématiques, University de Montréal, Montréal, Québec, Canada. Providence, Rhode Island : American Mathematical Society, 2014.
Trouver le texte intégralHall, Peter. Principal component analysis for functional data. Sous la direction de Frédéric Ferraty et Yves Romain. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780199568444.013.8.
Texte intégralSoilihi, Nizar. Data Analysis : New on Functional Principal Component Analysis and on Functional Linear Regression Modeling. Independently Published, 2020.
Trouver le texte intégralJames, Gareth. Sparseness and functional data analysis. Sous la direction de Frédéric Ferraty et Yves Romain. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780199568444.013.11.
Texte intégralFerraty, Frédéric, et Yves Romain, dir. The Oxford Handbook of Functional Data Analysis. Oxford University Press, 2018. http://dx.doi.org/10.1093/oxfordhb/9780199568444.001.0001.
Texte intégralVeech, Joseph A. Habitat Ecology and Analysis. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780198829287.001.0001.
Texte intégralMakatjane, Katleho, et Roscoe van Wyk. Identifying structural changes in the exchange rates of South Africa as a regime-switching process. UNU-WIDER, 2020. http://dx.doi.org/10.35188/unu-wider/2020/919-8.
Texte intégralBoothroyd, Andrew T. Principles of Neutron Scattering from Condensed Matter. Oxford University Press, 2020. http://dx.doi.org/10.1093/oso/9780198862314.001.0001.
Texte intégralFrew, Anthony. Air pollution. Sous la direction de Patrick Davey et David Sprigings. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199568741.003.0341.
Texte intégralChapitres de livres sur le sujet "Linear principal componetns analysis"
Balzano, Simona, Maja Bozic, Laura Marcis et Renato Salvatore. « On Predicting Principal Components Through Linear Mixed Models ». Dans Statistical Learning and Modeling in Data Analysis, 17–27. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69944-4_3.
Texte intégralVisentin, Andrea, Steven Prestwich et S. Armagan Tarim. « Robust Principal Component Analysis by Reverse Iterative Linear Programming ». Dans Machine Learning and Knowledge Discovery in Databases, 593–605. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46227-1_37.
Texte intégralDeshmukh, Rushali A., Prachi Jadhav, Sakshi Shelar, Ujwal Nikam, Dhanshri Patil et Rohan Jawale. « Stock Price Prediction Using Principal Component Analysis and Linear Regression ». Dans Emerging Technologies in Data Mining and Information Security, 269–76. Singapore : Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-4052-1_28.
Texte intégralAbusham, Eimad Eldin, David Ngo et Andrew Teoh. « Fusion of Locally Linear Embedding and Principal Component Analysis for Face Recognition (FLLEPCA) ». Dans Pattern Recognition and Image Analysis, 326–33. Berlin, Heidelberg : Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11552499_37.
Texte intégralWang, Mei. « An Improved Image Segmentation Algorithm Based on Principal Component Analysis ». Dans Proceedings of the 9th International Symposium on Linear Drives for Industry Applications, Volume 4, 811–19. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40640-9_101.
Texte intégralWang, Sai, et Huiwen Deng. « Face Recognition Using Principal Component Analysis-Fuzzy Linear Discriminant Analysis and Dynamic Fuzzy Neural Network ». Dans Lecture Notes in Electrical Engineering, 577–86. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27323-0_73.
Texte intégralTessitore, Gerarda, et Simona Balbi. « An Algorithm for Detecting the Number of Knots in Non Linear Principal Component Analysis ». Dans COMPSTAT, 465–70. Heidelberg : Physica-Verlag HD, 1996. http://dx.doi.org/10.1007/978-3-642-46992-3_64.
Texte intégralDhankhar, Amita, et Kamna Solanki. « Predicting Student’s Performance Using Linear Kernel Principal Component Analysis and Recurrent Neural Network (LKPCA-RNN) Model ». Dans Proceedings of Data Analytics and Management, 637–46. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-6285-0_51.
Texte intégralLohmann, G., D. Y. von Cramon et A. C. F. Colchester. « A Construction of an Averaged Representation of Human Cortical Gyri Using Non-linear Principal Component Analysis ». Dans Lecture Notes in Computer Science, 749–56. Berlin, Heidelberg : Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11566489_92.
Texte intégralFan, Kai, Conall O’Sullivan, Anthony Brabazon et Michael O’Neill. « Non-linear Principal Component Analysis of the Implied Volatility Smile using a Quantum-inspired Evolutionary Algorithm ». Dans Natural Computing in Computational Finance, 89–107. Berlin, Heidelberg : Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77477-8_6.
Texte intégralActes de conférences sur le sujet "Linear principal componetns analysis"
Pei, Yan. « Linear Principal Component Discriminant Analysis ». Dans 2015 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2015. http://dx.doi.org/10.1109/smc.2015.368.
Texte intégralHiden, H. G. « Non-linear principal components analysis using genetic programming ». Dans Second International Conference on Genetic Algorithms in Engineering Systems. IEE, 1997. http://dx.doi.org/10.1049/cp:19971197.
Texte intégralRamrath, L., M. Miinchhof et R. Isermann. « Local linear neural networks based on principal component analysis ». Dans 2006 American Control Conference. IEEE, 2006. http://dx.doi.org/10.1109/acc.2006.1657185.
Texte intégralSu, Hang, et Xuansheng Wang. « Principal Component Analysis in Linear Discriminant Analysis Space for Face Recognition ». Dans 2014 5th International Conference on Digital Home (ICDH). IEEE, 2014. http://dx.doi.org/10.1109/icdh.2014.13.
Texte intégralHorsthemke, William H., et Daniela S. Raicu. « Organ analysis and classification using principal component and linear discriminant analysis ». Dans Medical Imaging, sous la direction de Josien P. W. Pluim et Joseph M. Reinhardt. SPIE, 2007. http://dx.doi.org/10.1117/12.708032.
Texte intégralWang, Huiyuan, Zengfeng Wang, Yan Leng et Xiaojuan Wu. « Face Recognition Combing Principal Component Analysis and Fractional-step Linear Discriminant analysis ». Dans 2006 8th international Conference on Signal Processing. IEEE, 2006. http://dx.doi.org/10.1109/icosp.2006.345816.
Texte intégralVigon, L. « Adaptive non-linear principal component analysis of a saccade related EEG component ». Dans DERA/IEE Workshop Intelligent Sensor Processing. IEE, 2001. http://dx.doi.org/10.1049/ic:20010114.
Texte intégralSantos, A. D. F., M. F. M. Silva, C. S. Sales, J. C. W. A. Costa et E. Figueiredo. « Applicability of linear and nonlinear principal component analysis for damage detection ». Dans 2015 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). IEEE, 2015. http://dx.doi.org/10.1109/i2mtc.2015.7151383.
Texte intégralGencturk, B., V. V. Nabiyev et A. Ustubioglu. « ACromegaly Pre-Diagnosis Based On Principal Component And Linear Discriminant Analysis ». Dans 2013 21st Signal Processing and Communications Applications Conference (SIU). IEEE, 2013. http://dx.doi.org/10.1109/siu.2013.6531306.
Texte intégralSu, Yuanhang, Yuzhong Huang et C. C. Jay Kuo. « Efficient Text Classification Using Tree-structured Multi-linear Principal Component Analysis ». Dans 2018 24th International Conference on Pattern Recognition (ICPR). IEEE, 2018. http://dx.doi.org/10.1109/icpr.2018.8545832.
Texte intégralRapports d'organisations sur le sujet "Linear principal componetns analysis"
Warrick, Arthur W., Gideon Oron, Mary M. Poulton, Rony Wallach et Alex Furman. Multi-Dimensional Infiltration and Distribution of Water of Different Qualities and Solutes Related Through Artificial Neural Networks. United States Department of Agriculture, janvier 2009. http://dx.doi.org/10.32747/2009.7695865.bard.
Texte intégral