Articles de revues sur le sujet « Linear induction accelerators »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Linear induction accelerators.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Linear induction accelerators ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Bayless, John R., Craig P. Burkhart et Richard J. Adler. « Linear induction accelerators for industrial applications ». Nuclear Instruments and Methods in Physics Research Section B : Beam Interactions with Materials and Atoms 40-41 (avril 1989) : 1142–45. http://dx.doi.org/10.1016/0168-583x(89)90558-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Wang, Shao-Heng, et Jian-Jun Deng. « Acceleration modules in linear induction accelerators ». Chinese Physics C 38, no 5 (mai 2014) : 057005. http://dx.doi.org/10.1088/1674-1137/38/5/057005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Bayless, John R., et Richard J. Adler. « Linear induction accelerators for radiation processing ». International Journal of Radiation Applications and Instrumentation. Part C. Radiation Physics and Chemistry 31, no 1-3 (janvier 1988) : 327–31. http://dx.doi.org/10.1016/1359-0197(88)90146-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Matsuzawa, Hidenori, Haruhisa Wada, Satoshi Mori et Tadashi Yamamoto. « Induction Linear Accelerators with High-TcBulk Superconductor Lenses ». Japanese Journal of Applied Physics 30, Part 1, No. 11A (15 novembre 1991) : 2972–73. http://dx.doi.org/10.1143/jjap.30.2972.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Humphries, Stanley. « Quadrupole field geometries for intense electron beam acceleration ». Laser and Particle Beams 14, no 3 (septembre 1996) : 519–28. http://dx.doi.org/10.1017/s0263034600010193.

Texte intégral
Résumé :
High-intensity electron beams could be focused in low-frequency RF accelerators and induction linear accelerators by adding transverse components to the accelerating electric field. Calculations with a 3D code show that quasielectrostatic focusing is sufficient to transport kiloampere electron beams in RF accelerators and the high-energy sections of induction accelerators. The elimination of conventional magnetic focusing systems could lead to reductions in the volume and weight of high-current electron accelerators. Two novel quadrupole geometries are investigated: a periodic array of spherical electrodes with alternating displacements and a set of plate electrodes with elliptical apertures.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Herrmannsfeldt, W. B., et Denis Keefe. « Induction linac drivers for heavy ion fusion ». Laser and Particle Beams 8, no 1-2 (janvier 1990) : 81–88. http://dx.doi.org/10.1017/s0263034600007849.

Texte intégral
Résumé :
The Heavy Ion Fusion Accelerator Research (HIFAR) program of the U.S. Dept. of Energy has for several years concentrated on developing linear induction accelerators as Inertial Fusion (IF) drivers. This accelerator technology is suitable for the IF application because it is readily capable of accelerating short, intense pulses of charged particles with good electrical efficiency. The principal technical difficulty is in injecting and transporting the intense pulses while maintaining the necessary beam quality. The approach used has been to design a system of multiple beams so that not all of the charge has to be confined in a single beam line. The beams are finally brought together in a common focus at the target. This paper will briefly present the status and future plans of the program, and will also briefly review systems study results for HIF.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Ekdahl, Carl. « The Resistive-Wall Instability in Multipulse Linear Induction Accelerators ». IEEE Transactions on Plasma Science 45, no 5 (mai 2017) : 811–18. http://dx.doi.org/10.1109/tps.2017.2681040.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Orzechowski, T., E. Scharlemann, B. Anderson, V. Neil, W. Fawley, D. Prosnitz, S. Yarema et al. « High-gain free electron lasers using induction linear accelerators ». IEEE Journal of Quantum Electronics 21, no 7 (juillet 1985) : 831–44. http://dx.doi.org/10.1109/jqe.1985.1072732.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Humphries, Stanley. « Simulations of longitudinal instabilities in ion induction linear accelerators ». Laser and Particle Beams 10, no 3 (septembre 1992) : 511–29. http://dx.doi.org/10.1017/s0263034600006765.

Texte intégral
Résumé :
This article describes computer simulations of a longitudinal instability that affects induction linear accelerators for high-power ion beams. The instability is driven by axial bunching of ions when they interact with acceleration gaps connected to input transmission lines. The process is similar to the longitudinal resistive wall instability in continuous systems. Although bunching instabilities do not appear in existing induction linear accelerators for electrons, they may be important for proposed ion accelerators for heavy ion fusion. The simulation code is a particle-in-cell model that describes a drifting beam crossing discrete acceleration gaps with a self-consistent calculation of axial space charge forces. In present studies with periodic boundaries, the model predicts values for quantities such as the stabilizing axial velocity spread that are in good agreement with analytic theories. The simulations describe the nonlinear growth of the instability and its saturation with increased axial emittance. They show that an initially cold beam is subject to a severe disruption that drives the emittance well above the stabilized saturation levels. The simulation results confirm that axial space charge forces do not reduce axial beam bunching. In fact, space charge effects increase the axial velocity spread required for stability. With simple resistive driving circuits, the model predicts velocity spreads that are too high for heavy ion fusion applications. Several processes currently under study may mitigate this result, including advanced pulsed power switching methods, enhanced gap capacitance, and an energy spread impressed between individual beams of a multibeam transport system.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Lagunas-Solar, Manuel C. « Induction-linear accelerators for food processing with ionizing radiation ». Nuclear Instruments and Methods in Physics Research Section B : Beam Interactions with Materials and Atoms 10-11 (mai 1985) : 987–93. http://dx.doi.org/10.1016/0168-583x(85)90155-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Peskov, N. Yu, N. S. Ginzburg, A. K. Kaminsky, S. N. Sedykh et A. S. Sergeev. « High-Power Free-Electron Masers Based on Linear Induction Accelerators ». Radiophysics and Quantum Electronics 63, no 12 (mai 2021) : 931–75. http://dx.doi.org/10.1007/s11141-021-10105-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Peskov, N. Yu, N. S. Ginzburg, A. K. Kaminsky, S. N. Sedykh et A. S. Sergeev. « High-Power Free-Electron Masers Based on Linear Induction Accelerators ». Izvestiya vysshikh uchebnykh zavedenii. Radiofizika 63, no 12 (2020) : 1032–81. http://dx.doi.org/10.52452/00213462_2020_63_12_1032.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Zhang, H., K. Zhang, Y. Shen, X. Jiang, P. Dong, Y. Liu, Y. Wang et al. « Note : A pulsed laser ion source for linear induction accelerators ». Review of Scientific Instruments 86, no 1 (janvier 2015) : 016104. http://dx.doi.org/10.1063/1.4905363.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Peach, Ken, et Carl Ekdahl. « Particle Beam Radiography ». Reviews of Accelerator Science and Technology 06 (janvier 2013) : 117–42. http://dx.doi.org/10.1142/s1793626813300065.

Texte intégral
Résumé :
Particle beam radiography, which uses a variety of particle probes (neutrons, protons, electrons, gammas and potentially other particles) to study the structure of materials and objects noninvasively, is reviewed, largely from an accelerator perspective, although the use of cosmic rays (mainly muons but potentially also high-energy neutrinos) is briefly reviewed. Tomography is a form of radiography which uses multiple views to reconstruct a three-dimensional density map of an object. There is a very wide range of applications of radiography and tomography, from medicine to engineering and security, and advances in instrumentation, specifically the development of electronic detectors, allow rapid analysis of the resultant radiographs. Flash radiography is a diagnostic technique for large high-explosive-driven hydrodynamic experiments that is used at many laboratories. The bremsstrahlung radiation pulse from an intense relativistic electron beam incident onto a high-Z target is the source of these radiographs. The challenge is to provide radiation sources intense enough to penetrate hundreds of g/cm2 of material, in pulses short enough to stop the motion of high-speed hydrodynamic shocks, and with source spots small enough to resolve fine details. The challenge has been met with a wide variety of accelerator technologies, including pulsed-power-driven diodes, air-core pulsed betatrons and high-current linear induction accelerators. Accelerator technology has also evolved to accommodate the experimenters' continuing quest for multiple images in time and space. Linear induction accelerators have had a major role in these advances, especially in providing multiple-time radiographs of the largest hydrodynamic experiments.
Styles APA, Harvard, Vancouver, ISO, etc.
15

Ekdahl, Carl, et Rodney McCrady. « Suppression of Beam Breakup in Linear Induction Accelerators by Stagger Tuning ». IEEE Transactions on Plasma Science 48, no 10 (octobre 2020) : 3589–99. http://dx.doi.org/10.1109/tps.2020.3019999.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Hovingh, Jack, Victor O. Brady, Andris Faltens, Denis Keefe et Edward P. Lee. « Heavy-Ion Linear Induction Accelerators as Drivers for Inertial Fusion Power Plants ». Fusion Technology 13, no 2 (février 1988) : 255–78. http://dx.doi.org/10.13182/fst88-a25104.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Rosenthal, S. E. « Characterization of electron flow in negative- and positive-polarity linear-induction accelerators ». IEEE Transactions on Plasma Science 19, no 5 (1991) : 822–30. http://dx.doi.org/10.1109/27.108419.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Hotta, Eiki, et Izumi Hayashi. « Bidirectional pulser for linear induction accelerators made from line cavities with external pulse injection. » Kakuyūgō kenkyū 56, no 1 (1986) : 52–58. http://dx.doi.org/10.1585/jspf1958.56.52.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Burris-Mog, T. J., M. A. Chavez, M. A. Espy, M. J. Manard, D. C. Moir, J. B. Schillig, R. Trainham et P. L. Volegov. « Calibration of two compact permanent magnet spectrometers for high current electron linear induction accelerators ». Review of Scientific Instruments 89, no 7 (juillet 2018) : 073303. http://dx.doi.org/10.1063/1.5029837.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Miller, R. B., B. M. Marder, P. D. Coleman et R. E. Clark. « The effect of accelerating gap geometry on the beam breakup instability in linear induction accelerators ». Journal of Applied Physics 63, no 4 (15 février 1988) : 997–1008. http://dx.doi.org/10.1063/1.341136.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Bolyukh, V. F., et I. S. Shchukin. « Influence of limiting the duration of the armature winding current on the operating indicators of a linear pulse electromechanical induction type converter ». Electrical Engineering & ; Electromechanics, no 6 (3 décembre 2021) : 3–10. http://dx.doi.org/10.20998/2074-272x.2021.6.01.

Texte intégral
Résumé :
Introduction. Linear pulse electromechanical converters of induction type (LPECIT) are used in many branches of science and technology as shock-power devices and electromechanical accelerators. In them, due to the phase shift between the excitation current in the inductor winding and the induced current in the armature winding, in addition to the initial electrodynamic forces (EDF) of repulsion, subsequent EDF of attraction also arise. As a result, the operating indicators of LPECIT are reduced. The purpose of the article is to increase the performance of linear pulse electromechanical induction-type converters when operating as a shock-power device and an electromechanical accelerator by limiting the duration of the induced current in the armature winding until its polarity changes. Methodology. To analyze the electromechanical characteristics and indicators of LPECIT, a mathematical model was used, in which the solutions of equations describing interrelated electrical, magnetic, mechanical and thermal processes are presented in a recurrent form. Results. To eliminate the EDF of attraction between the LPIECIT windings, it is proposed to limit the duration of the induced current in the armature winding before changing its polarity by connecting a rectifier diode to it. It was found that when the converter operates as a shock-power device without limiting the armature winding current, the value of the EDF pulse after reaching the maximum value decreases by the end of the operating cycle. In the presence of a diode in the armature winding, the efficiency criterion, taking into account the EDF pulse, recoil force, current and heating temperature of the inductor winding, increases. When the converter operates as an electromechanical accelerator without limiting the armature winding current, the speed and efficiency decrease, taking into account the kinetic energy and voltage of the capacitive energy storage at the end of the operating cycle. In the presence of a diode in the armature winding, the efficiency criterion increases, the temperature rise of the armature winding decreases, the value of the maximum efficiency increases, reaching 16.16 %. Originality. It has been established that due to the limitation of the duration of the armature winding current, the power indicators of the LPECIT increase when operating as a shock-power device and the speed indicators when the LPECIT operates as an electromechanical accelerator. Practical value. It was found that with the help of a rectifier diode connected to the multi-turn winding of the armature, unipolarity of the current is ensured, which leads to the elimination of the EDF of attraction and an increase in the performance of the LPECIT.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Annenkov, Vladimir, Evgeny Berendeev, Evgeniia Volchok et Igor Timofeev. « Particle-in-Cell Simulations of High-Power THz Generator Based on the Collision of Strongly Focused Relativistic Electron Beams in Plasma ». Photonics 8, no 6 (21 mai 2021) : 172. http://dx.doi.org/10.3390/photonics8060172.

Texte intégral
Résumé :
Based on particle-in-cell simulations, we propose to generate sub-nanosecond pulses of narrowband terahertz radiation with tens of MW power using unique properties of kiloampere relativistic (2 MeV) electron beams produced by linear induction accelerators. Due to small emittance of such beams, they can be focused into millimeter and sub-millimeter spots comparable in sizes with the wavelength of THz radiation. If such a beam is injected into a plasma, it becomes unstable against the two-stream instability and excites plasma oscillations that can be converted to electromagnetic waves at the plasma frequency and its harmonics. It is shown that several radiation mechanisms with high efficiency of power conversion (∼1%) come into play when the radial size of the beam–plasma system becomes comparable with the wavelength of the emitted waves.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Korsbäck, Anders, Flyura Djurabekova et Walter Wuensch. « Statistics of vacuum electrical breakdown clustering and the induction of follow-up breakdowns ». AIP Advances 12, no 11 (1 novembre 2022) : 115317. http://dx.doi.org/10.1063/5.0111677.

Texte intégral
Résumé :
Understanding the underlying physics of vacuum electrical breakdown is of relevance for the development of technologies where breakdown is of significance, either as an intended part of device operation or as a cause of failure. One prominent contemporary case of the latter is high-gradient linear accelerators, where structures must be able to operate with both high surface electric fields and low breakdown rates. Temporal clustering of breakdowns has for long been observed in accelerating structures. In this work, the statistics of breakdown clustering were studied using data collected by a system applying DC voltage pulses over parallel disk electrodes in a vacuum chamber. It was found that the obtained distributions of cluster sizes can be explained by postulating that every breakdown induces a number of follow-up breakdowns that are Poisson-distributed with λ < 1. It was also found that the primary breakdown rate, i.e., the breakdown rate after discounting follow-up breakdowns, fluctuates over time but has no discernible correlation with cluster size. Considered together, these results provide empirical support for the interpretation that primary and follow-up breakdowns are categorically different kinds of events with different underlying causes and mechanisms. Furthermore, they support the interpretation that there is an actual causal relationship between the breakdowns in a cluster rather than them simply being concurrent events with a common underlying cause.
Styles APA, Harvard, Vancouver, ISO, etc.
24

Peskov, N. Yu, N. S. Ginzburg, A. M. Malkin, A. S. Sergeev, V. Yu Zaslavsky, A. K. Kaminsky, S. N. Sedykh et al. « Development of powerful long-pulse Bragg FELs operating from sub-THz to THz bands based on linear induction accelerators : recent results and projects ». EPJ Web of Conferences 195 (2018) : 01010. http://dx.doi.org/10.1051/epjconf/201819501010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Logachev, P. V., G. I. Kuznetsov, A. A. Korepanov, A. V. Akimov, S. V. Shiyankov, O. A. Pavlov, D. A. Starostenko et G. A. Fat’kin. « LIU-2 linear induction accelerator ». Instruments and Experimental Techniques 56, no 6 (novembre 2013) : 672–79. http://dx.doi.org/10.1134/s0020441213060195.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Bresie, D. A., J. A. Andrews et S. W. Ingram. « Parametric approach to linear induction accelerator design ». IEEE Transactions on Magnetics 27, no 1 (janvier 1991) : 390–93. http://dx.doi.org/10.1109/20.101063.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Sandalov, Evgeny S., Stanislav L. Sinitsky, Alexander V. Burdakov, Petr A. Bak, Kirill I. Zhivankov, Ermek K. Kenzhebulatov, Pavel V. Logachev, Dmitrii I. Skovorodin, Alexander R. Akhmetov et Oleg A. Nikitin. « Electrodynamic System of the Linear Induction Accelerator Module ». IEEE Transactions on Plasma Science 49, no 2 (février 2021) : 718–28. http://dx.doi.org/10.1109/tps.2020.3045345.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Starostenko, D., A. Akimov, P. Bak, D. Bolkhovityanov, Ya Kulenko, P. Logachev, D. Nikiforov et al. « Beam Dynamics of Linear Induction Accelerator LIA-2 ». Physics of Particles and Nuclei Letters 19, no 4 (26 juillet 2022) : 393–96. http://dx.doi.org/10.1134/s1547477122040197.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Huang Ziping, 黄子平, 蒋薇 Jiang Wei et 叶毅 Ye Yi. « Reset system for multi-pulse linear induction accelerator ». High Power Laser and Particle Beams 26, no 4 (2014) : 45101. http://dx.doi.org/10.3788/hplpb20142604.45101.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Zhang Huang, 张篁, 陈德彪 Chen Debiao, 江孝国 Jiang Xiaoguo, 夏连胜 Xia Liansheng, 刘星光 Liu Xingguang, 谌怡 Chen Yi et 章林文 Zhang Linwen. « Experimental research on photocathode for linear induction accelerator ». High Power Laser and Particle Beams 22, no 3 (2010) : 583–86. http://dx.doi.org/10.3788/hplpb20102203.0583.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Yang Changhong, 杨长鸿, 蒙林 Meng Lin, 张开志 Zhang Kaizhi, 章文卫 Zhang Wenwei et 刘大刚 Liu Dagang. « Simulation of transport process for linear induction accelerator ». High Power Laser and Particle Beams 22, no 4 (2010) : 913–17. http://dx.doi.org/10.3788/hplpb20102204.0913.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Ekdahl, Carl, Joshua E. Coleman et Brian Trent McCuistian. « Beam Breakup in an Advanced Linear Induction Accelerator ». IEEE Transactions on Plasma Science 44, no 7 (juillet 2016) : 1094–102. http://dx.doi.org/10.1109/tps.2016.2571123.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Sharma, Archana, K. Senthil, D. D. Praveen Kumar, S. Mitra, V. Sharma, A. Patel, D. K. Sharma et al. « Preliminary results of Linear Induction Accelerator LIA-200 ». Journal of Instrumentation 5, no 05 (4 mai 2010) : P05001. http://dx.doi.org/10.1088/1748-0221/5/05/p05001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Chen, Yinbao, et M. Reiser. « Radial focusing in a linear induction accelerator gap ». Journal of Applied Physics 65, no 9 (mai 1989) : 3324–28. http://dx.doi.org/10.1063/1.342643.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Ekdahl, Carl. « Tuning the DARHT Long-Pulse Linear Induction Accelerator ». IEEE Transactions on Plasma Science 41, no 10 (octobre 2013) : 2774–80. http://dx.doi.org/10.1109/tps.2013.2256933.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Ekdahl, Carl, E. O. Abeyta, P. Aragon, R. Archuleta, G. Cook, D. Dalmas, K. Esquibel et al. « Beam Dynamics in a Long-pulse Linear Induction Accelerator ». Journal of the Korean Physical Society 59, no 6(1) (15 décembre 2011) : 3448–52. http://dx.doi.org/10.3938/jkps.59.3448.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Ekdahl, Carl, Carl A. Carlson, Daniel K. Frayer, B. Trent McCuistian, Christopher B. Mostrom, Martin E. Schulze et Carsten H. Thoma. « Emittance Growth in the DARHT-II Linear Induction Accelerator ». IEEE Transactions on Plasma Science 45, no 11 (novembre 2017) : 2962–73. http://dx.doi.org/10.1109/tps.2017.2755861.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Akimov, A. V., V. E. Akimov, P. A. Bak, V. D. Bochkov, L. T. Vekhoreva, A. A. Korepanov, P. V. Logachev, A. N. Panov, D. A. Starostenko et O. V. Shilin. « A pulse power supply of the linear induction accelerator ». Instruments and Experimental Techniques 55, no 2 (mars 2012) : 218–24. http://dx.doi.org/10.1134/s0020441212010241.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Ekdahl, Carl. « Electron-Beam Corkscrew Motion in an Advanced Linear Induction Accelerator ». IEEE Transactions on Plasma Science 49, no 11 (novembre 2021) : 3548–53. http://dx.doi.org/10.1109/tps.2021.3120877.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Yang Changhong, 杨长鸿, 蒙林 Meng Lin, 张开志 Zhang Kaizhi, 章文卫 Zhang Wenwei et 刘大刚 Liu Dagang. « Numerical simulation of beam focusing magnetic field in linear induction accelerator ». High Power Laser and Particle Beams 22, no 6 (2010) : 1331–34. http://dx.doi.org/10.3788/hplpb20102206.1331.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Batrakov, Aleksandr M., Pavel V. Logatchev, Anton V. Pavlenko, Vladislav Ya Sazansky et Georgy A. Fatkin. « The Control System of Linear Induction Accelerator for X-Ray Radiography ». Siberian Journal of Physics 5, no 3 (1 octobre 2010) : 98–105. http://dx.doi.org/10.54362/1818-7919-2010-5-3-98-105.

Texte intégral
Résumé :
The structure and hardware of control system for flash X-Ray radiography complex currently under construction in BINP, SB RAS are discussed in this paper. Special features of this control system are: high amount of channels, nanosecond times of main processes, work in environment of powerful noises from pulsed high-voltage devices
Styles APA, Harvard, Vancouver, ISO, etc.
42

Ekdahl, C., E. O. Abeyta, H. Bender, W. Broste, C. Carlson, L. Caudill, K. C. D. Chan et al. « Initial electron-beam results from the DARHT-II linear induction accelerator ». IEEE Transactions on Plasma Science 33, no 2 (avril 2005) : 892–900. http://dx.doi.org/10.1109/tps.2005.845115.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Ekdahl, Carl, P. Allison, J. E. Coleman, T. Kaupilla, B. T. McCuistian, D. C. Moir et M. Schulze. « Steering an intense relativistic electron beam in a linear induction accelerator ». Review of Scientific Instruments 91, no 2 (1 février 2020) : 026102. http://dx.doi.org/10.1063/1.5125421.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Petzoldt, Ronald, Neil Alexander, Lane Carlson, Eric Cotner, Dan Goodin et Robert Kratz. « Linear Induction Accelerator with Magnetic Steering for Inertial Fusion Target Injection ». Fusion Science and Technology 68, no 2 (septembre 2015) : 308–13. http://dx.doi.org/10.13182/fst14-915.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Yu Haijun, 禹海军, 朱隽 Zhu Jun, 江孝国 Jiang Xiaoguo, 王远 Wang Yuan, 陈楠 Chen Nan, 张振涛 Zhang Zhentao, 戴文华 Dai Wenhua et 刘承俊 Liu Chengjun. « Damage diagnosis for bremsstrahlung converter target of Dragon-Ⅰ linear induction accelerator ». High Power Laser and Particle Beams 23, no 4 (2011) : 1035–38. http://dx.doi.org/10.3788/hplpb20112304.1035.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Ray, R., et A. D. Datta. « An approach to the development of a small-scale linear induction accelerator ». Journal of Physics D : Applied Physics 21, no 9 (14 septembre 1988) : 1336–41. http://dx.doi.org/10.1088/0022-3727/21/9/004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Bogdan, O. V., V. I. Karas’, E. A. Kornilov et O. V. Manuilenko. « 2.5-Dimensional numerical simulation of a high-current ion linear induction accelerator ». Plasma Physics Reports 34, no 8 (août 2008) : 667–77. http://dx.doi.org/10.1134/s1063780x08080059.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Ekdahl, Carl. « The Ion-Hose Instability in a High-Current Multipulse Linear Induction Accelerator ». IEEE Transactions on Plasma Science 47, no 1 (janvier 2019) : 300–306. http://dx.doi.org/10.1109/tps.2018.2872472.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Ekdahl, C., E. O. Abeyta, P. Aragon, R. Archuleta, R. Bartsch, H. Bender, R. Briggs et al. « Long-pulse beam stability experiments on the DARHT-II linear induction accelerator ». IEEE Transactions on Plasma Science 34, no 2 (avril 2006) : 460–66. http://dx.doi.org/10.1109/tps.2006.872481.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Denno, K. « Longitudinal and Radial Mhd Linear Induction Accelerator with Hot Conducting Plasma Core ». IEEE Transactions on Nuclear Science 32, no 5 (octobre 1985) : 3216–18. http://dx.doi.org/10.1109/tns.1985.4334324.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie