Littérature scientifique sur le sujet « Limonoid Biosynthesis »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Limonoid Biosynthesis ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Limonoid Biosynthesis"

1

De La Peña, Ricardo, Hannah Hodgson, Jack Chun-Ting Liu, Michael J. Stephenson, Azahara C. Martin, Charlotte Owen, Alex Harkess et al. « Complex scaffold remodeling in plant triterpene biosynthesis ». Science 379, no 6630 (27 janvier 2023) : 361–68. http://dx.doi.org/10.1126/science.adf1017.

Texte intégral
Résumé :
Triterpenes with complex scaffold modifications are widespread in the plant kingdom. Limonoids are an exemplary family that are responsible for the bitter taste in citrus (e.g., limonin) and the active constituents of neem oil, a widely used bioinsecticide (e.g., azadirachtin). Despite the commercial value of limonoids, a complete biosynthetic route has not been described. We report the discovery of 22 enzymes, including a pair of neofunctionalized sterol isomerases, that catalyze 12 distinct reactions in the total biosynthesis of kihadalactone A and azadirone, products that bear the signature limonoid furan. These results enable access to valuable limonoids and provide a template for discovery and reconstitution of triterpene biosynthetic pathways in plants that require multiple skeletal rearrangements and oxidations.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Hodgson, Hannah, Ricardo De La Peña, Michael J. Stephenson, Ramesha Thimmappa, Jason L. Vincent, Elizabeth S. Sattely et Anne Osbourn. « Identification of key enzymes responsible for protolimonoid biosynthesis in plants : Opening the door to azadirachtin production ». Proceedings of the National Academy of Sciences 116, no 34 (1 août 2019) : 17096–104. http://dx.doi.org/10.1073/pnas.1906083116.

Texte intégral
Résumé :
Limonoids are natural products made by plants belonging to the Meliaceae (Mahogany) and Rutaceae (Citrus) families. They are well known for their insecticidal activity, contribution to bitterness in citrus fruits, and potential pharmaceutical properties. The best known limonoid insecticide is azadirachtin, produced by the neem tree (Azadirachta indica). Despite intensive investigation of limonoids over the last half century, the route of limonoid biosynthesis remains unknown. Limonoids are classified as tetranortriterpenes because the prototypical 26-carbon limonoid scaffold is postulated to be formed from a 30-carbon triterpene scaffold by loss of 4 carbons with associated furan ring formation, by an as yet unknown mechanism. Here we have mined genome and transcriptome sequence resources for 3 diverse limonoid-producing species (A. indica, Melia azedarach, and Citrus sinensis) to elucidate the early steps in limonoid biosynthesis. We identify an oxidosqualene cyclase able to produce the potential 30-carbon triterpene scaffold precursor tirucalla-7,24-dien-3β-ol from each of the 3 species. We further identify coexpressed cytochrome P450 enzymes from M. azedarach (MaCYP71CD2 and MaCYP71BQ5) and C. sinensis (CsCYP71CD1 and CsCYP71BQ4) that are capable of 3 oxidations of tirucalla-7,24-dien-3β-ol, resulting in spontaneous hemiacetal ring formation and the production of the protolimonoid melianol. Our work reports the characterization of protolimonoid biosynthetic enzymes from different plant species and supports the notion of pathway conservation between both plant families. It further paves the way for engineering crop plants with enhanced insect resistance and producing high-value limonoids for pharmaceutical and other applications by expression in heterologous hosts.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Pandreka, Avinash, Patil S. Chaya, Ashish Kumar, Thiagarayaselvam Aarthy, Fayaj A. Mulani, Date D. Bhagyashree, Shilpashree H. B et al. « Limonoid biosynthesis 3 : Functional characterization of crucial genes involved in neem limonoid biosynthesis ». Phytochemistry 184 (avril 2021) : 112669. http://dx.doi.org/10.1016/j.phytochem.2021.112669.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Herman, Zareb, Chi H. Fong et Shin Hasegawa. « Biosynthesis of limonoid glucosides in navel orange ». Phytochemistry 30, no 5 (janvier 1991) : 1487–88. http://dx.doi.org/10.1016/0031-9422(91)84193-v.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Pandreka, Avinash, Patil S. Chaya, Ashish Kumar, Thiagarayaselvam Aarthy, Fayaj A. Mulani, Date D. Bhagyashree, H. B. Shilpashree et al. « Corrigendum to “Limonoid biosynthesis 3 : Functional characterization of crucial genes involved in neem limonoid biosynthesis” [Phytochemistry 184 (2021) 112669] ». Phytochemistry 187 (juillet 2021) : 112751. http://dx.doi.org/10.1016/j.phytochem.2021.112751.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Fong, Chi H., Shin Hasegawa, Zareb Herman et Peter Ou. « Biosynthesis of limonoid glucosides in lemon (Citrus limon) ». Journal of the Science of Food and Agriculture 54, no 3 (1991) : 393–98. http://dx.doi.org/10.1002/jsfa.2740540310.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Ou, Peter, Shin Hasegawa, Zareb Herman et Chi H. Fong. « Limonoid biosynthesis in the stem of Citrus limon ». Phytochemistry 27, no 1 (1988) : 115–18. http://dx.doi.org/10.1016/0031-9422(88)80600-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Liu, Cuihua, Min He, Zhuang Wang et Juan Xu. « Integrative Analysis of Terpenoid Profiles and Hormones from Fruits of Red-Flesh Citrus Mutants and Their Wild Types ». Molecules 24, no 19 (23 septembre 2019) : 3456. http://dx.doi.org/10.3390/molecules24193456.

Texte intégral
Résumé :
In citrus color mutants, the levels of carotenoid constituents and other secondary metabolites are different in their corresponding wild types. Terpenoids are closely related to coloration, bitterness, and flavor. In this study, terpenoid profiles and hormones in citrus fruits of two red-flesh mutants—Red Anliu orange and Red-flesh Guanxi pummelo—and their corresponding wild types were investigated using GC/MS, HPLC, and LC-MS/MS. Results showed that Red Anliu orange (high in carotenoids) and Anliu orange (low in carotenoids) accumulated low levels of limonoid aglycones but high levels of monoterpenoids; conversely, Red-flesh Guanxi pummelo (high in carotenoids) and Guanxi pummelo (deficient in carotenoids) accumulated high levels of limonoid aglycones but low levels of monoterpenoids. However, isopentenyl diphosphate was present at similar levels. A correlation analysis indicated that jasmonic and salicylic acids might play important roles in regulating terpenoid biosynthesis. Additionally, the similarities of carotenoid and volatile profiles between each mutant and its corresponding wild type were greater than those between the two mutants or the two wild types. The flux balance of terpenoid metabolism in citrus fruit tends toward stability among various citrus genera that have different terpenoid profiles. Bud mutations could influence metabolite profiles of citrus fruit to a limited extent.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Hullin-Matsuda, Françoise, Nario Tomishige, Shota Sakai, Reiko Ishitsuka, Kumiko Ishii, Asami Makino, Peter Greimel et al. « Limonoid Compounds Inhibit Sphingomyelin Biosynthesis by Preventing CERT Protein-dependent Extraction of Ceramides from the Endoplasmic Reticulum ». Journal of Biological Chemistry 287, no 29 (7 mai 2012) : 24397–411. http://dx.doi.org/10.1074/jbc.m112.344432.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Li, Wanshan, Li Shen, Torsten Bruhn, Patchara Pedpradab, Jun Wu et Gerhard Bringmann. « Trangmolins A-F with an Unprecedented Structural Plasticity of the Rings A and B : New Insight into Limonoid Biosynthesis ». Chemistry - A European Journal 22, no 33 (7 juillet 2016) : 11719–27. http://dx.doi.org/10.1002/chem.201602230.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Limonoid Biosynthesis"

1

Hasegawa, Shin, et Zareb Herman. « Biosynthesis of Limonoids in Citrus ». Dans Secondary-Metabolite Biosynthesis and Metabolism, 305–17. Boston, MA : Springer US, 1992. http://dx.doi.org/10.1007/978-1-4615-3012-1_21.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie