Thèses sur le sujet « Lignocellulosic inhibitor »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 25 meilleures thèses pour votre recherche sur le sujet « Lignocellulosic inhibitor ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.
Gasperoni, Alessia. « Removal of inhibitors from birch pretreatment liquor by nanofiltration : Mechanisms of separation and influence of operational variables and mode ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/15147/.
Texte intégralBERTAGNOLI, STEFANO. « Improving robustness and metabolic profile of saccharomyces cerevisiae for industrial bioprocesses ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2012. http://hdl.handle.net/10281/28926.
Texte intégralLeung, Ka Kay. « Analysis of yeast resistance to lignocellulosic-derived inhibitors ». Thesis, University of Nottingham, 2015. http://eprints.nottingham.ac.uk/32589/.
Texte intégralFrazão, Cláudio José Remédios. « Challenges of ethanol production from lignocellulosic biomass ». Master's thesis, Universidade de Aveiro, 2014. http://hdl.handle.net/10773/13657.
Texte intégralThe present work aimed to tackle two of the major challenges in bioethanol production from lignocellulosic feedstocks: (i) high tolerance of microorganisms to lignocellulosic inhibitors, and (ii) microbial contamination avoidance. Lignocellulosic inhibitors are an important fraction of spent sulphite liquor (SSL), a by-product of the pulp and paper industries. Hardwood SSL (HSSL) is rich in pentose sugars, mainly xylose, which can be converted to ethanol by the yeast Scheffersomyces stipitis. In this work, a population of S. stipitis previously adapted to 60 % (v/v) of HSSL was used, and its stability on the absence of inhibitors during ten sequential transfers was investigated at single-clone level. During the screening trials, all the isolated clones showed higher xylose and acetate uptake rates and lower ethanol productivities than the parental strain. The clone exhibiting higher xylose uptake rate (0.558 g L-1 h-1) was named isolate C4. The effect of short-term adaptation on isolate C4 fermentation performance was evaluated by pre-cultivating the clone in the presence or absence of 60 % (v/v) of HSSL. The uptake rates of glucose and xylose were similar under both conditions, but a higher acetate consumption rate (0.101 g L-1 h-1) and maximum ethanol concentration (4.51 g L-1) were achieved without pre-adaptation step, suggesting the robustness of isolate C4. The industrial bioethanol production is mostly carried out under non-sterile conditions, which favours microbial contamination. In this work, the mechanism that triggers Lactobacillus pentosus contamination in SSL plants was investigated. A simulated synthetic hydrolysate mimicking the average composition of sugars and inhibitors of softwood SSL (SSSL) was used and the impact of different factors in bacterial and Saccharomyces cerevisiae viability was analysed. The presence of yeast extract led to an increase in lactate production (9-fold higher) and L. pentosus viability when only bacteria was inoculated. Using different inoculation ratios of yeast/bacteria, the ethanol production rates were not affected after 48 h, and L. pentosus failed to overtake S. cerevisiae. The presence of inhibitors delayed yeast growth, but the bacteria did not outcompete S. cerevisiae. When the pH was optimal to L. pentosus in co-culture experiments, the bacterial cell viability decreased slower. The results indicate that L. pentosus was unable to overtake S. cerevisiae. The presence of yeast extract and favourable pH to bacteria are important factors that can play a role in the mechanism that triggers the bacterial contamination in ethanol plants.
A presente dissertação tem como objetivo abordar dois dos maiores desafios na produção de bioetanol a partir de biomassa lenhocelulósica: (i) elevada tolerância de microrganismos a inibidores, e (ii) prevenção de contaminação microbiana. Os inibidores lenhocelulósicos são uma fração relevante do licor de cozimento ao sulfito ácido (SSL), um subproduto das indústrias do papel e pastas. O SSL de folhosas (HSSL) é rico em pentoses, principalmente xilose, que podem ser fermentadas em etanol pela levedura Scheffersomyces stipitis. Neste estudo, utilizou-se uma população de S. stipitis previamente adaptada a 60 % (v/v) HSSL, e avaliou-se a sua estabilidade na ausência de inibidores durante dez transferências sequenciais. Comparando com a estirpe original, todos os clones isolados exibiram taxas de consumo de xilose e ácido acético superiores e produtividades em etanol inferiores. O clone que demonstrou a maior taxa de consumo de xilose (0,558 g L-1 h-1) foi designado isolado C4, e o efeito de adaptação de curta duração no seu desempenho fermentativo foi investigado através do seu pré-cultivo na presença ou ausência de 60 % (v/v) HSSL. Nas duas condições, as taxas de consumo de glucose e xilose foram idênticas, contudo, atingiu-se maior taxa de consumo de ácido acético (0,101 g L-1 h-1) e maior concentração máxima de etanol (4,51 g L-1) foram atingidas na ausência do processo de adaptação de curta duração. Tais resultados demonstram a robustez do isolado C4. A maioria dos processos de produção industrial de bioetanol é realizada na ausência de esterilidade, favorencendo a contaminação por microrganismos. Neste estudo, investigou-se o mecanismo responsável pela contaminação com Lactobacillus pentosus na indústria de SSL. Para tal, utilizou-se um hidrolisado sintético mimetizando a composição média de açúcares e inibidores de SSL de resinosas (SSSL) e averiguou-se o impacto de vários fatores na viabilidade de L. pentosus e S. cerevisiae. A presença de extrato de levedura foi responsável pelo aumento da produção de ácido lático (9 vezes) e da viabilidade bacteriana quando L. pentosus foi cultivado na ausência de levedura. Diferentes proporções de inóculo de levedura/bactéria não afetaram a produção de etanol após 48 h de fermentação, e L. pentosus foi incapaz de ser a estirpe dominante durante os ensaios de co-cultura. A presença de inibidores retardou o crescimento da levedura, mas a bactéria foi de novo incapaz de se a espécie dominante. Ajustando o valor de pH para o ótimo de L. pentosus nos ensaios de co-cultura, a viabilidade celular da bactéria diminuiu mais lentamente. Os resultados demonstram que L. pentosus não foi a espécie dominante nos ensaios de co-cultura. A presença de extrato de levedura e de valores de pH favoráveis a L. pentosus podem desempenhar um papel importante no mecanismo responsável pela contaminação bacteriana nas indústrias de produção de bioetanol.
Du, Bowen Chambliss C. Kevin. « Effect of varying feedstock-pretreatment chemistry combinations on the production of potentially inhibitory degradation products in biomass hydrolysates ». Waco, Tex. : Baylor University, 2009. http://hdl.handle.net/2104/5319.
Texte intégralBoukari, Imen. « Définition des critères d'efficacité d'une hémicellulase pour l'hydrolyse de substrats lignocellulosiques complexes et insolubles ». Reims, 2010. http://ebureau.univ-reims.fr/slide/files/quotas/SCD/theses/sciences/2010REIMS011.pdf.
Texte intégralThe development of enzymatic technologies offers an alternative, environmentally-friendly interesting strategy for controlled fractionation and upgrading of lignocellulosic biomass (biofuels, biopolymers, industrially-relevant chemicals. . . ). The effectiveness of these biocatalysts is, nevertheless, limited by multiple factors related to their structural and functional characteristics, but also to the complex nature of the lignocellulosic biomass (rich in lignified secondary cell walls). In order to identify the key parameters for an effective bioconversion of hemicelluloses, the major components of lignocelluloses, we have focused our study on the endoxylanase (Tx-Xyl) of Thermobacillus xylanilyticus, a family 11 glycoside- hydrolase (GH11). In a biomimetic approach, we have studied the action pattern of Tx-Xyl on different substrates displaying increasing complexity (isolated heteroxylans, in vitro reconstituted copolymer assemblies. . . ). The use of nano-composites of heteroxylans - lignins (DHPs) synthesized in vitro has enabled us to reveal that supramolecular organization of the covalent complexes (LCC) would severely hamper the enzyme's access to carbohydrates. Otherwise, a direct correlation has been established between the increase in the lignin content of the nano-composites and the decrease of the enzyme activity suggesting direct nonspecific lignins-enzyme interactions. In addition, the study of the interactions of Tx-Xyl with various hydroxycinamic acids (p-coumaric, ferulic, caffeic acids. . . ) has revealed a non-competitive inhibition of the enzyme by these phenolic compounds. Using protein engineering, we have developed a strategy which aims at modifying the Tx-Xyl architecture and/or specificity by grafting, through "linker" sequences, different protein modules: the CBM1 of the cellulase Cel7A from Trichoderma reesei binding specifically crystalline cellulose and the GFP (Green Fluoerescent Protein). The chimeric fusion proteins Tx-Xyl-CBM1 and Tx-Xyl-GFP obtained have been less effective on soluble xylans (low kcat) than Tx-Xyl. However, their efficiency on lignocellulosic substrates (such as wheat by products; straw and bran) was different. Indeed, modestly enhanced hydrolysis rates were obtained in the case of Tx-Xyl-CBM1, suggesting that the CBM1 may potentiate in situ action of the enzyme, contrary to Tx-Xyl-GFP whose size would be a factor limiting its diffusion/action within the cell wall network
Cavka, Adnan. « Biorefining of lignocellulose : Detoxification of inhibitory hydrolysates and potential utilization of residual streams for production of enzymes ». Doctoral thesis, Umeå universitet, Kemiska institutionen, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-82486.
Texte intégralZautsen, Remigius Reinerus Maria 1977. « Fermentação alcoólica e extração líquido-líquido simultânea de etanol e de inibidores provenientes de caldo hidrolítico de biomassa lignocelulósica ». [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/256499.
Texte intégralTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos
Made available in DSpace on 2018-08-19T06:57:12Z (GMT). No. of bitstreams: 1 Zautsen_RemigiusReinerusMaria_D.pdf: 4385252 bytes, checksum: 3906f1725b3c49ed542429ca357c57ea (MD5) Previous issue date: 2011
Resumo: Na fermentação de produtos como etanol, utilizando biomassa lignocelulósica como matéria-prima, existem dois fatores principais que limitam a produtividade e eficiência do processo: inibição pelo produto e inibição por substâncias no caldo hidrolítico provenientes da hidrólise. Neste trabalho, é proposta a remoção simultânea de ambos os fatores para eliminar seus efeitos negativos na fermentação alcoólica. Produtos de fermentação prejudicam muitas vezes a integridade da membrana celular do micro-organismo utilizado como fermento. Portanto, a toxidez do produto não permite que a fermentação ocorra de forma ilimitada, uma vez que o produto está presente no meio em certa concentração. O crescimento do micro-organismo, a produtividade e o rendimento são prejudicados pela presença do mesmo. Compostos como furfural, hidroximetil furfural, compostos fenólicos e ácidos, que são produzidos durante o pré-tratamento ou hidrólise da biomassa lignocelulósica, introduzem outros efeitos inibidores, como a extensão da fase lag da levedura, prejudicam o crescimento e a produção. Esta tese propõe empregar um solvente orgânico na dorna do biorreator, com o fim de extrair o produto inibidor e todos os componentes inibidores existentes no substrato, de tal forma que o processo de fermentação não seja prejudicado. Com esse objetivo, primeiramente foi definida a relação entre o tamanho molecular de agentes extrativos, bio-compatibilidade e propriedades extrativas dos mesmos. Em seguida, um solvente foi escolhido, sendo o biodiesel à base de óleo de mamona, através de características como biocompatibilidade, coeficientes de partição, seletividade, alta disponibilidade e reutilização. Foram feitas fermentações em regime batelada em fermentadores de bancada, utilizando o biodiesel como agente extrativo, demonstrando os efeitos positivos no desempenho da fermentação de um licor hidrolítico. Adicionalmente, o comportamento de uma cepa de levedura industrial foi estudado na presença de inibidores e foi construído um modelo matemático que descreve as taxas de conversão dos principais inibidores e as condições em que a levedura, ao invés de manter uma fase lag, inicia a produção de biomassa e etanol. Finalmente, foi elaborado, como exemplo da utilização da tecnologia proposta, um modelo do sistema contínuo de fermentação alcoólica com a extração líquido-líquido, incluindo a recuperação do produto e resfriamento do meio de fermentação pelo próprio solvente orgânico. Por meio desta modelagem e uma série de simulações, foram determinadas as faixas ideais das principais variáveis na produção de etanol pelo sistema bifásico, sendo elas a fração de licor hidrolítico no mosto, concentração de substrato, temperatura de fermentação, e taxa de diluição do solvente. Assim, o trabalho demonstra as vantagens, efeitos positivos e os limites da utilização de extração líquido-líquido na fermentação de substrato da segunda geração. Entre as vantagens se destacam: maior tolerância de caldo hidrolítico no mosto, elevada produtividade, maior rendimento e maior custo-benefício do substrato
Abstract: There are two main factors that limit fermentation productivity and eficiency during the production of chemicals like ethanol when using lignocelulosic biomass as raw material: product inhibition and inhibition by substances in hydrolitic liquor generated during hydrolyzis. In this work, the simultaneous removal of both factors is proposed to eliminate their negative effects on ethanol fermentation. Fermentation products often damage the cellular wall of the micro-organism that is used as ferment. As a result, the toxicicity of the product does not permit that the fermentation continues unhindered once the product concentration has reached a certain level; growth of the micro-organism, productivity and yield are effected. Substances like furfural, hydroximetil furfural, phenolic compounds and organic acids, that are produced or released during pre-treatment or hydrolyzis of ligno-celulosic biomass, introduce other inhibiting effects, like the extension of the lag phase of the ferment or decreasing growth and production. This thesis proposes the use of an organic solvent as a second liquid phase in the bioreactor, to extract both the inhibiting product and all inhibiting compounds present in the substrate, such that the fermentation process remains unhindered. With this objective, first the relation between the molecular size of an extractive agent and its biocompatibility and extractive properties was determined. Next, a solvent was chosen, being biodiesel based on castor oil, by prioritizing characteristics as biocompatibility, partition coeficients, selectivity, availability and possibilities for recycling and reuse. Batch fermentations were executed in bench-scale, using biodiesel as extractive agent, demonstrating the improvements of fermentation of hydrolytic liquor. Aditionaly, the performance of an industrial yeast strain was studied in the presence of inhibitors and a mathematical model was constructed that descibes the conversion rates of the main inhibitors and conditions at which the yeast, instead of maintaining a lag phase, starts production of biomass and ethanol. Finally, as a practical example of the proposed technology, simulations were performed for an integrated process including continuous ethanol fermentation with liquid-liquid extraction, product recovery and cooling of the fermentation broth by the extractive agent itself. The simulation results reveiled the optimal ranges for the most important variables of the two-phase ethanol production process, i.e. fraction of hydrolitic liquor in the must, substrate concentration, fermentation temperature and dilution rate of the solvent. In all, the work shows the advantages, positive effects of and limits to the use of liquid-liquid extraction in fermentation of second-generation substrate. Advantages are, among others, higher tolerance of hydrolyzate in the must, higher yield, higher productivity and higher return on investment of raw-material
Doutorado
Engenharia de Alimentos
Doutor em Engenharia de Alimentos
Siqueira, Marcos Rechi. « Efeitos dos produtos de hidrólise de materiais lignocelulósicos sobre a produção de H2 por fermentação ». Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/59/59138/tde-13042015-114341/.
Texte intégralHydrogen is a clean energy source because its combustion produces only water. However, there is still the need to find technologically efficient, economic and safe solutions for their generation and use. The production of H2 by biological pathways, known as biohydrogen, has gained great prominence in recent years because it enables the use of renewable materials as raw material. Lignocellulosic materials are potential substrates for H2 production by fermentation, however it is necessary to have methods that provide hydrolysis of the components of these materials for fermentation. Most methods are available for hydrolyzing lignocellulosic materials results in carbohydrate degradation products are fermentation inhibitors known. This study was primarily to evaluate the effect of 3 different groups inhibitors of the H2 production by fermentation: (1) organic acid such as acetic acid; (2) furan derivatives such as furfural and 5-hydroxymethylfurfural (5-HMF); (3) phenolic derivatives of lignin monomers, such as syringaldehyde, vanillin and 4-hydroxybenzoic acid (HBA). Fermentation tests for H2 production batch used as a mixed culture inoculum (sludge) and were carried out in the presence of glucose and different concentrations of the inhibitors mentioned. The modified Gompertz model was used to estimate the kinetic parameters of the fermentation test, the maximum volume of H2 (H), maximum rate of H2 production (Rm) and the time required for the commencement of production of H2 () . From these tests it was observed how the addition of different concentrations of inhibitors affect these kinetic parameters relative to a control (containing only glucose). Thus it was possible to estimate the concentrations of inhibitors that reduce by 50% the maximum production speeds H2 - The inhibitory concentration 50 (IC 50). In terms of IC 50, the AHB provided the greatest inhibition (0.38 g L-1), followed by 5-HMF and furfural, with IC 50 values of 0.48 and 0.62 g L-1, respectively. Vanillin, syringaldehyde and the acetic acid had minor inhibitory effects on H2 production from the tested inhibitors with IC50 of 0.71; 1.05; and 5.14 g L-1, respectively. In a second stage of work, the inhibitory effect of 3 inhibitors association representatives of each class inhibitors, acetic acid, and 5-HMF syringaldehyde. An additive effect of inhibition when acetic acid was added along with 5-HMF was observed in assays containing syringaldehyde but the inhibitory effect became synergistic. Finally, we used a hydrolyzate of sugarcane bagasse as substrate in H2 production by fermentation. The production of H2 from this substrate was only possible after the hydrolyzate treatment with activated carbon. Therefore, it was concluded that the inhibitory compounds present in hydrolyzed lignocellulosic materials affect the viability of H2 production with these materials. This study concluded that the studied compounds, other monosaccharides resulting from the hydrolysis of lignocellulosic materials, inhibit the production of H2 by mixed culture used in varying degrees, being most AHB inhibitor. The combination of compounds further enhances the inhibitory effect of inhibitors on the production of H2. Acetic acid, which can originate the hydrolysates, but is also a metabolite of H2 production by fermentation further increased inhibition of syringaldehyde. Thus, it is suggested that the hydrolysis of lignocellulosic materials should be conducted to minimize the presence of inhibitors of the hydrolysates, in order to maximize the utilization of lignocellulosic biomass as a raw material in the fermentation process.
Westman, Johan. « Ethanol production from lignocellulose using high local cell density yeast cultures. Investigations of flocculating and encapsulated Saccharomyces cerevisiae ». Doctoral thesis, Högskolan i Borås, Institutionen Ingenjörshögskolan, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-3685.
Texte intégralAkademisk avhandling som för avläggande av teknologie doktorsexamen vid Chalmers tekniska högskola försvaras vid offentlig disputation den 19 februari 2014,klockan 13.30 i KA-salen, Kemigården 4, Göteborg.
Axelsson, Josefin. « Separate Hydrolysis and Fermentation of Pretreated Spruce ». Thesis, Linköpings universitet, Institutionen för fysik, kemi och biologi, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-69487.
Texte intégralZhang, Yan. « Detoxification of Lignocellulose-derived Microbial Inhibitory Compounds by Clostridium beijerinckii NCIMB 8052 during Acetone-Butanol-Ethanol Fermentation ». The Ohio State University, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=osu1366384921.
Texte intégralJourdier, Etienne. « Modélisation et optimisation de la production de cellulases par Trichoderma reesei pour les bioraffineries lignocellulosiques ». Thesis, Clermont-Ferrand 2, 2012. http://www.theses.fr/2012CLF22264.
Texte intégralIn the global energetic and climatic context, the high cost of the cellulolytic enzymes (cellulases) postpones the development of lignocellulosic biorefineries, dedicated to produce biofuels and chemical compounds from renewable vegetable feedstocks. The aim of this work was to measure and model the metabolism of the micro-organism Trichoderma reesei, in order to optimize the industrial protocol for the production of cellulase. This study was carried out using synthetic media representative of industrial ones. First, the stoichiometries of growth and protein production reactions were determined. Then, a kinetic study was conducted to precisely measure the specific rates of T. reesei at high induction of cellulase production. The resulting model was used to optimize the industrial production protocol. Finally the integration of this step in a lignocellulosic biorefinery was studied by determining the impacts on the metabolism of i) available sugar mixtures, ii) inhibitory compounds from lignocellulosic biomass degradation, and iii) scale-up. These results significantly contributed to improve the knowledge of T. reesei metabolism on cellulase production. The developed models are rational tools for the optimization of a cellulase production protocol suited to lignocellulosic biorefineries
Basso, Thalita Peixoto. « Improvement of Saccharomyces cerevisiae by hybridization for increased tolerance towards inhibitors from second-generation ethanol substrate ». Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/11/11138/tde-29042015-132341/.
Texte intégralMudança climática global e a volatilidade do preço do petróleo tem impulsionado a necessidade de redução e substituição de combustíveis fósseis por energias renováveis. A produção de bioetanol nos Estados Unidos e no Brasil a partir de milho e cana-de-açúcar, respectivamente, está estabelecida. Todavia, a produção de bioetanol mostra-se insustentável, pelo fato da utilização de produtos alimentares para tal produção. Em contrapartida, biocombustíveis produzidos a partir de resíduos lignocelulósicos têm sido vistos como uma solução plausível para o problema \"alimento versus combustível\". No Brasil, o bagaço de cana é uma fonte disponível de biomassa lignocelulósica. No entanto, inibidores como furfural, 5-hidroximetil-furfural (HMF) e ácidos carboxílicos formados durante o prétratamento ácido da biomassa lignocelulósica, têm efeito negativo sobre os microorganismos fermentadores - Saccharomyces cerevisiae. No Brasil, o etanol de segunda-geração (2G) tem possibilidade de utilizar um novo substrato, preparado a partir da mistura de melaço e hidrolisado de bagaço. O melaço será um adjuvante para suprir a deficiência nutricional do hidrolisado, contribuindo com minerais, aminoácidos e vitaminas. Por outro lado, o melaço apresenta alguns inibidores, como HMF, sulfito, e concentração tóxica de alguns minerais, como potássio (K) e cálcio (Ca), que afetam o crescimento e desempenho fermentativo de S. cerevisiae. O objetivo deste trabalho foi gerar descendentes tolerantes de linhagens industriais de S. cerevisiae, capazes de lidar com inibidores presentes no melaço e no hidrolisado de bagaço, por meio de hibridação e evolução adaptativa, para produção do etanol 2G. As linhagens industriais PE-2, CAT-1 e SA-1 foram esporuladas, seus haplóides foram irradiados por luz ultravioleta (UV), objetivando o aumento da diversidade genética e fenotípica das linhagens. Após cruzamento direcionado, 234 híbridos foram selecionados pelo crescimento (DO570nm) em meios de melaço e hidrolisado. Em paralelo, cruzamentos massais (intra e interlinhagens) de haplóides não-irradiados de PE-2, CAT-1 e SA-1 foram realizados e submetidos a evolução adaptativa por cerca de 100 gerações. As 120 estirpes de cruzamentos massais seguidos de evolução adaptativa foram selecionadas pelo crescimento em meios de melaço e hidrolisado. Seis isolados apresentaram boas características fermentativas em comparação às cepas referências, mostrando que hibridação e evolução adaptativa de linhagens de leveduras industriais brasileiras são boas estratégias para desenvolver novas linhagens para produção do etanol-2G. Para uma melhor utilização dos açúcares do hidrolisado, a cassete contendo os três genes responsáveis pela fermentação de xilose (xilose redutase, xilitol desidrogenase e xiluloquinase) foi integrada no genoma do haplóide segregante (272-1a) de uma das seis estirpes selecionadas (272), que apresentou a maior tolerância em hidrolisado de Miscanthus x giganteus. Estudos de fermentação mostraram que a estirpe foi capaz de metabolizar a xilose em etanol. Por fim, o haploide 272-1a foi analisado por quantitative trait loci (QTL) afim de identificar a base genética da tolerância ao hidrolisado. Apesar, do(s) gene(s) causativos não terem sido identificados nesse trabalho, os picos do mapa de QTL identificados servirão como ponto de partida para futuro mapeamento.
Gomes, Márcia Andréa. « Destoxificação de hidrolisados lignocelulósico visando à obtenção de etanol 2G ». Universidade Federal de Alagoas, 2015. http://www.repositorio.ufal.br/handle/riufal/1203.
Texte intégralCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
O bagaço de cana-de-açúcar possui alto teor de material lignocelulósico, o que viabiliza o estudo para a produção do etanol de segunda geração, sendo necessária a aplicação de um pré tratamento que promova a ruptura da fração fibrosa, para tornar os açucares acessíveis para fermentação. Existem vários pré-tratamentos que visam essa quebra, e na busca pelo mais produtivo são aplicadas condições severas de temperatura e pressão. Isso propicia a formação de produtos indesejáveis ao processo de produção do bioetanol, sendo necessária a etapa de destoxificação para remoção os inibidores. Nesse trabalho, foi empregado a etapa de destoxificação para dois pré-tratados acido e hidrotérmico, na metodologia utilizada elevou-se o pH dos hidrolisados provenientes do pré-tratamento acido para 7,0 com oxido de cálcio e em seguida o decaimento ate pH 4,0 com acido fosfórico, os hidrolisados do pré-tratamento hidrotérmico tiveram seu pH reduzidos para 4,0 com a adição do acido fosfórico, ambos os pré-tratados foram submetidos a adsorção em carvão ativado (1% m/v, 100rpm, 30 minutos a 50°C), condições escolhidas apos planejamento 22 com triplicata no ponto central. Avaliação da eficácia destes procedimentos foi feita quanto a remoção dos compostos tóxicos em função do rendimento fermentativo com a levedura Saccharomyces cerevisiae, de hidrolisados com e sem destoxificação, avaliando a quantidade de açúcares liberados para conversão em etanol de segunda geração. De acordo com os resultados, a alteração de pH combinada a adsorção com carvão ativo propiciou maiores rendimentos fermentativos em ambos os hidrolisados pré-tratados acido 38,51% e hidrotérmico 44,85%, quando comparados ao rendimento de amostras não destoxificadas, a esses resultados pode estar associado a interferência da lignina no bagaço, que pode formar produtos de condensação capazes de interferir na destoxificação. No entanto os melhores resultados foram encontrados no hidrolisado pré-tratado hidrotémicamente com 87,94% de eficiência de fermentação e teor alcoólico de 7,41%, quando comparado ao hidrolisado pré-tratado com acido de 75,50% e 5,11%, respectivamente.
Miranda, Elisângela de Souza. « Seleção de linhagens de Saccharomyces cerevisiae tolerantes aos inibidores presentes no hidrolisado de bagaço de cana-de-açúcar ». Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/11/11138/tde-29042016-175443/.
Texte intégralThe search for sustainable solutions to improve process efficiency has promoted the development of new technologies, and the use of cellulolytic biomass as the substrate for fermentation has emerged as a promising second-generation ethanol production strategy. However, the hydrolysis of this material results in the formation of toxic compounds to yeast such as furfural, hydroxymethylfurfural, acetic acid and phenolic compounds, with deleterious effects on fermentation. Addition of molasses in the bagasse hydrolysate could allow fermentation with higher alcohol content contributing to a favorable energy balance in the distillation, as well as providing minerals and organic nutrients for the yeast. These nutrients could allow a fermentative process with yeast cell recycle, utilizing the structure and knowledge already existing in first generation process. The cell recycle enables a rapid fermentation, but imposes repeated stress conditions, making it challenging to obtain strains with the desired tolerance profile. The purpose of this study was to select Saccharomyces cerevisiae strains with multiple tolerances to inhibitors present in the hydrolysate and molasses. Stressful conditions were imposed on cultures of SA-1 strain and indigenous strains from Brazilian distilleries for around 62 generations, forcing an adaptive evolution or even an enrichment / selection of more tolerant individuals. In parallel, the biodiversity of the strains from Brazilian distilleries were evaluated with respect to their tolerance to the toxic compounds present in bagasse hydrolysate. The strains that showed higher performance were assessed in fermentations with cell reuse employing substrate composed by hydrolyzate and molasses. Four of the analyzed strains exhibited better performance than the reference strain. Of these, two isolates (242 and 408) were sporulated and the haploids were subjected to mass mating. Simultaneously, 273 haploids rescued from the strains 242 and 408 were evaluated for growth (OD 600 nm) in the substrate consisting of hydrolysate and molasses, and among them 32 were selected. After the characterization according to the \"mating type\", the haploids were utilized in direct mating induced by micromanipulation, totaling 35 crossings. Five hybrids from each direct mating were rescued (totaling 155 isolates), which together with 80 isolated from the mass mating, were evaluated for growth (OD 600 nm) and then in fermentation with cell recycle. 5 strains have excelled as superiors to the reference strain showing that by the protocol employed was possible to increase profile of tolerance of Saccharomyces cerevisiae to resist pressures imposed by a substrate for second-generation ethanol production.
Silvello, Cristiane. « Obtenção de leveduras tolerantes aos inibidores do hidrolisado de bagaço de cana-de-açúcar mediante hibridação ». Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/11/11138/tde-26092016-133126/.
Texte intégralThe development of alternatives to fossil fuels as a source of energy is a global priority. Cellulosic biomass is an alternative to meet the demand for renewable biofuels. The sugarcane bagasse, an abundant byproduct generated from ethanol production in Brazil, can be hydrolysed to obtain fermentable sugars to produce second-generation ethanol. However, inhibitors produced in the pre-treatment process such as acetic acid, furfural and hydroxymethylfurfural, cause adverse effects to the yeast in the fermentation process. Addition of molasses in the bagasse hydrolyzate is one way to reduce the effects of inhibitors in the metabolism of yeast and also could allow fermentation with higher alcohol content contributing to a favorable energy balance in the distillation, as well as providing minerals and organic nutrients for the yeast. The main goal of this study was to select strains of Saccharomyces cerevisiae with better features of multi-tolerance to the bagasse hydrolyzate by directed crossing and mass mating followed by adaptive evolution. For that S. cerevisiae lineages CAT-1, BG-1, PE-2 e SA-1 were sporulated and 604 haploid cultures were obtained by micromanipulation and evaluated for growth (OD 570nm) in the substrate consisting of hydrolyzate and molasses. Selected haploids (25) were identified regarding their \"mating type\" (a and α) and used in. 51 directed crossings generating 398 zygotes, which were rescued by micromanipulation and also evaluated for growth in the same selective medium. Mass mating were performed with 7 different haploid populations from the parental strains, followed by an adaptive evolution for 25 generations. The selected zygotes were then subjected to fermentation trails with cell recycling, resulting in 4 strains with superior traits when compared with the parentals, allowing to conclude that the used strategy was successful in obtaining hybrids of Saccharomyces cerevisiae with increased profile of tolerance towards a substrate for second-generation ethanol production.
Barbosa, Mariana de Almeida. « Estudos de inibição de β-glicosidases bacterianas por fenóis solúveis ». Botucatu, 2019. http://hdl.handle.net/11449/181944.
Texte intégralResumo: A biomassa lignocelulósica pode ser usada para a produção de energia ou de novos bioprodutos potenciais substitutos de químicos convencionais. Porém a conversão dos polissacarídeos estruturais presentes na parede celular vegetal das células que compõe a biomassa não é simples. Isto se deve principalmente pela presença da lignina, que juntamente com a hemicelulose, formam uma estrutura coesa de microfibrilas que entrelaçam a celulose. Compostos que inibem as enzimas celulolíticas, incluindo fenólicos solúveis (derivados da lignina), açúcares solúveis, aldeídos de furano e ácidos fracos são gerados durante os diversos pré-tratamentos utilizados atualmente. Neste estudo, observamos como os fenólicos solúveis interagem com -glicosidases. Para isso, combinamos simulações de ensaio enzimático, docking molecular e dinâmica molecular para descrever o processo de ligação. Notavelmente, o ácido tânico, um dos fenólicos solúveis estudados, foi a molécula com maior poder inibitório em comparação com todos os demais fenólicos. Possivelmente devido ao seu comprimento e suas substituições de grupos químicos. A alta presença de anéis aromáticos e grupos hidroxilas no ácido tânico, leva a maior interação entre as moléculas e consequente inibição/desativação das β-glicosidases bacterianas, enquanto os grupos carboxílicos presentes nos demais fenólicos alteram os efeitos físico-químicos aumentando a hidrofobicidade; criando cargas eletrostáticas e aumentando a ligação de hidrogênio, afetando a... (Resumo completo, clicar acesso eletrônico abaixo)
Abstract: Lignocellulosic biomass can be transformed to chemicals or energy products. However converting polysaccharides present on the cell wall can be limitated due to the high recalcitrance caused by the presence of lignin. Compounds that inhibit enzymes, including lignin-derived phenolics, soluble sugars, furan aldehydes, and weak acids, are generated during the various pre-treatments currently used. In this study was observed how the soluble phenolics generated significantly impede the enzymatic hydrolysis of cellulose. For this were combine enzymatic assay, molecular docking and molecular dynamics simulations to describe the binding process between soluble phenolics and bacterial β-glycosidases. Notably, tannic acid, one of the soluble phenolics generated, was the strongest inhibitory molecule in comparison with all phenolics studied. Possibly because of its length and its substitutions of chemical groups. The high presence of aromatic rings and hydroxyl groups in tannic acid leads to greater interaction between the molecules and consequent inhibition / deactivation of bacterial β-glycosidases. Taken together, our studies of the interaction suggest that there is a high correlation between exposed hydrophobic surface areas and the number of binding sites on the inhibition of βglucosidases. These data may provide a useful basis for future biotechnological applications of microbial β-glucosidases, especially in the field of biofuel production.
Doutor
Budde, Jörn. « Improving digestibility of cattle waste by thermobarical treatment ». Doctoral thesis, Humboldt-Universität zu Berlin, Lebenswissenschaftliche Fakultät, 2015. http://dx.doi.org/10.18452/17191.
Texte intégralHydrolysis and digestibility of cattle waste as feedstock for anaerobic digestion were improved by thermobarical treatment in lab-scale experiments. The effects of this improvement on greenhouse gas emissions, energy balance and economic benefit was assessed in a full-scale model application. Thermobarical treatment temperatures in lab-scale experiments were 140 to 220°C in 20 K steps for a 5-minute duration. Methane yields could be increased by up to 58 % at a treatment temperature of 180°C. At 220°C, the abundance of inhibitors and other non-digestible substances led to lower methane yields than those obtained from untreated material. In an extended analysis, it could be demonstrated that there is a functional correlation between the methane yields after 30 days and the formation rate and methane yield in the acceleration phase. It could be proved in a regression of these correlation values that the optimum treatment temperature is 164°C and that the minimum treatment temperature should be above 115°C. The theoretical application of a full-scale model was used for assessing energy balance and greenhouse gas emissions following an LCA approach according to ISO 14044 (2006) as well as economy. A model device for thermobarical treatment has been suggested for and theoretically integrated in a biogas plant. The assessment considered the replacement of maize silage as feedstock with liquid and / or solid cattle waste. The integration of thermobarical pretreatment is beneficial for raw material with high organic dry matter content that needs pretreatment to be suitable for anaerobic digestion: Solid cattle waste revealed very short payback times, e.g. 9 months for energy, 3 months for greenhouse gases, and 3 years 3 months for economic amortization, whereas, in contrast, liquid cattle waste did not perform positive replacement effects in this analysis.
Bin, Hussin Mohd Hazwan. « Extraction, modification and characterization of lignin from oil palm fronds as corrosion inhibitors for mild steel in acidic solution ». Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0135/document.
Texte intégralLignocellulosic biomass in Malaysia can be considered as one of the promising sources of renewable energy. It is mainly composed of cellulose, hemicellulose, and lignin and best-suited for energy and chemical applications due to its sufficient availability, inexpensive and is sustainable. In general, the production of lignocellulosic biomass in Malaysia was considered high and mainly derived from the palm oil industries (approximately 60 million tonnes of oil palm waste were generated in a year). The oil palm biomass waste could possibly be used as alternative resources for the production of paper and cardboard. However, massive amounts of lignin by-product could also be discarded in huge quantities (by the pulp and paper industry) due to lack of awareness on its potential. Having high content of diverse functional groups (phenolic and aliphatic –OH, carbonyls, carboxyls, etc.) and phenylpropanoid structure, lignin can lead to substitutes in industrial applications such as in corrosion inhibition of metals and alloys. Since the oil palm fronds (OPF) are one of the largest biomass waste contributors in Malaysia, it was therefore used as raw material in this study. In order to improve the lignin extractability and properties, the extraction was conducted in different ways (via direct delignification and/or combined pretreatment methods). Due to the high hydrophobicity of lignin, it limits the capability to act as efficient corrosion inhibitors. Hence, modifications of the OPF lignin structure were conducted in two ways; (1) by incorporating organic scavengers (2-naphthol and 1,8-dihydroxyanthraquinone) during autohydrolysis pretreatment before organosolv treatment (percentage yield of lignin: AHN EOL = 13.42±0.71 % and AHD EOL = 9.64±0.84 %) and (2) fractionation of lignin from direct delignification processes (Kraft, soda and organosolv) via ultrafiltration membrane technique (percentage yield of permeate lignin fractions: Kraft = 5.41±2.04 %; soda = 12.29±0.54 % and organosolv = 1.48±0.15 %). The physical and chemical properties of the modified lignins were evaluated by using Fourier Transform Infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, gel permeation chromatography (GPC), thermal analysis and high performance liquid chromatography (HPLC). Modified lignin fractions with higher phenolic –OH content but lower molecular weight, polydispersity as well as aliphatic –OH content resulted in higher values of antioxidant activities. The antioxidant activity seems be dependent on the increase of their free phenolic –OH and ortho-methoxyl content, through the stability of the radical formed and the ability to reduce Fe3+ ions to Fe2+ ions. Indeed, the improved physicochemical properties and antioxidant activity of modified lignin gave positive correlation with the mild steel corrosion inhibition action in 0.5 M HCl solution that were evaluated by electrochemical impedance spectroscopy (EIS), potentiodynamic polarization and weight loss measurements. The best percentage of inhibition efficiencies (IE: 81 – 90 %) were attained at the concentration of 500 ppm for all lignin inhibitors but decreased with the increase in temperature (303 – 333 K). Thermodynamic data indicated that the adsorption of the modified lignin onto the mild steel was spontaneous and the inhibitors were mainly physically adsorbed (physiosorption), supported by the activation energy of adsorption, Ea. The enhanced protective properties of the modified lignin will pave way for an alternative approach for the utilization of these natural waste materials
Cunha, Joana Filipa Torres Pinheiro. « Engineering yeast tolerance to inhibitory lignocellulosic biomass ». Master's thesis, 2013. http://hdl.handle.net/1822/28630.
Texte intégralThe progressive depletion of fossil fuels reserves in the last years led to the necessity for biotechnological manufacturing based on lignocellulosic feedstocks. Lignocellulosic biomass, such as straw, is an abundant low-cost source for production of biofuels, such as bioethanol, that does not compete for food needs. However, lignocellulose-to-ethanol process involves pre-treatment of biomass to obtain readily fermentable sugars, which leads to the accumulation of inhibitory by-products (e.g. furan derivatives, phenolic compounds, organic acids). Significant progress has been made in the understanding of the determinants of yeast tolerance to lignocellulose biomass-derived inhibitors, as well as to high ethanol concentrations. Nevertheless, further knowledge at the genetic level is of essential importance for the improvement of second generation bioethanol conversion technology. In a previous work, 5 genes, ERG2, PRS3, RAV1, RPB4 and VMA8, were found to contribute to the maintenance of cell viability and/or for maximal fermentation rate in wheat straw hydrolysate. Taking into account the negative effects reported from single overexpression of ERG2, RAV1 and VMA8 under non-stressful conditions, these genes were not considered as good targets for genetic engineering in the present work. Furthermore, ZWF1, a gene essential for yeast response to the presence of acetic acid, was added to the set of genes considered in the present study. To attempt to overcome the fermentation hurdles resultant from the inhibitory load mentioned above, molecular biology tools were used to: (1) unravel HAA1, PRS3 and RPB4 role in adaptation to toxic biomass hydrolysates, evaluating their expression levels, by qRT-PCR, in the outstanding-fermenting Saccharomyces cerevisiae PE-2 when exposed to acetic acid, HMF and furfural, and (2) improve yeast tolerance and adaptation by overexpressing these genes in the auxotrophic S. cerevisiae BY4741, using multi-copy vectors, and assessing the effects in Eucalyptus globulus wood hydrolysate. Increased HAA1, PRS3 and RPB4 expression levels were observed at the late lag and/or initial stationary phases of the fermentation in the presence of inhibitors. However, the overexpression of these genes under the control of the strong constitutive ScPGK1 promoter has not resulted in improved growth and fermentation profiles. On the other hand, the overexpression of HAA1 and PRS3 genes under the regulation of their native promoters resulted in fermentations profiles with a reduced lag-phase. These results indicate that PRS3 and principally HAA1 overexpression play an important role in the adaptation to lignocellulosic-based stress, and are good candidates for yeast engineering to improve bioethanol production.
A diminuição progressiva das reservas de combustíveis fósseis nestes últimos anos levou à necessidade de uma indústria biotecnológica baseada em matérias-primas lenhocelulósicas. A biomassa lenhocelulósica, tal como a palha, é uma fonte abundante de baixo preço para a produção de biocombustíveis, como o bioetanol, que não compete com as necessidades alimentares. Contudo, o processo de conversão de biomassa lenhocelulósica a etanol envolve um pré-tratamento da biomassa para obtenção imediata de açúcares fermentescíveis, levando à acumulação de produtos inibitórios (ex. derivados de furano, compostos fenólicos, ácidos orgânicos). Avanços significativos têm sido efectuados no que concerne à compreensão de determinantes da tolerância de leveduras a inibidores derivados da biomassa lenhocelulósica, tal como a concentrações elevadas de etanol. No entanto, um maior conhecimento a nível genético é essencial para o melhoramento de tecnologias para a conversão de bioetanol de segunda geração. Num trabalho anterior, 5 genes, ERG2, PRS3, RAV1, RPB4 e VMA8 foram identificados como importantes para a manutenção da viabilidade celular e/ou para maximizar a taxa de fermentação em hidrolisados de palha de trigo. Considerando os efeitos negativos reportados da sobre-expressão singular dos genes ERG2, RAV1 e VMA8 na ausência de stress, estes genes foram considerados, neste trabalho, como não sendo bons alvos para engenharia genética. Adicionalmente, o gene HAA1, essencial na resposta à presença de ácido acético em leveduras, foi acrescentado ao conjunto de genes considerado neste estudo. Na tentativa de ultrapassar os problemas fermentativos acima referidos, ferramentas de biologia molecular foram usadas para: (1) desvendar o papel dos genes HAA1, PRS3 e RPB4, na adaptação a hidrolisados de biomassa tóxicos, avaliando os seus níveis de expressão por qRT-PCR, no excepcional organismo fermentativo Saccharomyces cerevisiae PE-2 quando exposto a ácido acético, HMF e furfural, e (2) melhorar a tolerância e adaptação da levedura através da sobre-expressão destes genes na estirpe auxotrófica S. cerevisiae BY4741, usando vectores multi-cópia, e avaliar os efeitos em hidrolisado de madeira de Eucalyptus globulus. Níveis de expressão aumentados dos genes HAA1, PRS3 e RPB4 foram observados no final da fase de adaptação e/ou no inicio da fase estacionária da fermentação na presença de inibidores. Todavia, a sobre-expressão destes genes sob o controlo do promotor constitutivo e forte ScPGK1 não demonstrou um melhoramento dos perfis de crescimento e fermentativos. Em contrapartida a sobre-expressão dos genes HAA1 e PRS3 sob a regulação dos seus promotores nativos resultaram em perfis de fermentação com reduzida fase de adaptação. Estes resultados indicam que a sobre-expressão do PRS3 e principalmente do HAA1 tem um papel importante na adaptação ao stress derivado de biomassa lenhocelulósica, sendo bons candidatos para a engenharia genética de leveduras, de modo a obter melhorias na produção de bioetanol.
Fundação para a Ciência e a Tecnologia (FCT) - Project GlycoCBMs FCT PTDC/AGR-FOR/3090/2012 – FCOMP-01-0124-FEDER-027948
Richardson, Terri. « Strain improvement of Scheffersomyces stipitis for the bioconversion of lignocellulosic biomass into ethanol ». Thesis, 2013. http://hdl.handle.net/10214/6624.
Texte intégralNSERC Bioconversion Network
« Inhibitory effects of acids found in crude glycerol and lignocellulosic biomass on clostridium pasteurianum for butanol production ». Tulane University, 2020.
Trouver le texte intégralAs fossil fuel resources decrease while pollution and greenhouse gas emissions from gasoline increase, the need for an alternative transportation fuel is pressing (Cassia et al. 2018). Current substitutes include ethanol-mixed gasolines, which have lower efficiency than gasoline and still rely on fossil fuels. Butanol, another possible gasoline substitution, is promising. It is a much more efficient fuel than ethanol and can be directly substituted for gasoline (Seggiani et al. 2012). Current techniques to mass-produce butanol depend on fermentation of sugars for butanol production. While sugar can be found in most natural matter, such as lumber or agriculture, it is an expensive material to process. In order to decrease the expense, agricultural waste, known as lignocellulosic biomass, is fermented instead (Baral et al. 2016). Another substrate that undergoes fermentation is crude glycerol, the waste product of producing biodiesel. Both crude glycerol and lignocellulosic biomass contain sugars that are fermentable. Certain strains of a bacterial genus Clostridium can ferment biomass and create acetone, butanol, and ethanol in a process known as ABE fermentation. A specific strain, Clostridium pasteurianum, is used in this study, as it has the ability to ferment sugars found in lignocellulosic biomass and crude glycerol (Venkataramanan et al. 2012). Unfortunately, both crude glycerol and lignocellulosic biomass also contain many toxic compounds, which kill or damage the bacteria and decrease butanol production. To ensure efficiency, it is important to determine which acids in these two substrates are causing inhibitory effects on Clostridium pasteurianum, specifically. This specific study investigates six different acids and their inhibitory effects on this strain of bacteria: D-glucuronic acid, furfural, hydroxymethylfurfural, levulinic acid, linoleic acid, and oleic acid. Based on these findings, furfural, linoleic, and oleic acid are the most toxic to Clostridium pasteurianum, and a tolerance to these specific acids should be engineered in order to create a more efficient butanol production system.
1
Caroline Duncan
TSAI, JIA-YIN, et 蔡佳吟. « Effect of lignocellulosic hydrolysis inhibitors on biotransforming 5-hydroxy-methylfurfural into 2,5-furan-dicarboxylic acid using immobilized cells of Burkholderia cepacia ». Thesis, 2017. http://ndltd.ncl.edu.tw/handle/n54ss3.
Texte intégral國立雲林科技大學
環境與安全衛生工程系
105
Lignocellulose is the most abundant biomass on Earth, and its cellulosic polysaccharide is suitable used as raw material for bioenergy production. To release polysaccharide from lignocellulose and further hydrolyze polysaccharide into simple sugar, pretreatment is necessary and beneficial for subsequent fermentation process. Thermal acid hydrolysis is extensively applied and econamic pretreatment method to deal with lignocellulosic biomasses, but inhibitors are inevitably formed during this process. 5-Hydroxymethylfurfural (5-HMF) is the main inhibitor compound produced, and other inhibitors, such as organic acids, furfural and phenols are also commonly generated during thermal acid hydrolysis. These inhibitors seriously influence downstream bioenergy production. Therefore, inhibitors removal is an important issue. In 2004, the US Department of Energy announced 12 top biomass platform molecules for the sustainable future. 2,5-Furan-dicarboxylic acid (FDCA) is present in this list. FDCA can be obtained by 5-HMF biotransformation, and it can replace terephthalic acid (TA) to produce synthetic green plastic material, polyethylene-2,5- furandicarboxylate (PEF). Compared with suspended cells, immobilized cells have several advantages. The adventages include easy solid-liquid separation, low separation cost, high cell density maintenance and toxic compounds resistance. Based on the connection between 5-HMF detoxification in lignocellulosic hydrolysates and FDCA production, our previous isolate strain Burkholderia cepacia H-2 capable of biotransforming 5-HMF into FDCA was used in this study. In order to evaluate the feasibility of the immobilized Burkholderia cepacia H-2 for 5-HMF biotransformation. First, 5-HMF biotransformation using suspended cells and immobilized cells was compared. Then, the optimal inoculum size and stability of immobilized cells were studied. Finally, the effects of various inhibitors/salinity and thier concentrations on 5-HMF biotransformation were investigated. The results showed that the immobilized cells had better 5-HMF biotransformation and FDCA production efficiencies, and stable 5-HMF conversion at low pH. 1851 mg/L 5-HMF could be completely converted into FDCA within 32 hours. As increasing bacterial concentrations in the immobilized cells, 5-HMF biotransformation time was shortened. The optimal inoculum size in the immobilized cells was 175 mg/L (equal to O.D. 0.3). 1894 mg/L 5-HMF could be entirely biotransformed within 24 hours, and 1917 mg/L FDCA was received at the end of experiment. Immobilized cells with and without dead bacterial cells could adsorb 5-HMF and FDCA. As reuse cycles numbers of the immobilized cells increased, 5-HMF conversion efficiency decreased. 5-HMF conversion efficiency was higher than 75% after 16 reuse cycles. The higher the formic acid concentration, the lower the 5-HMF conversion rate. 5-HMF conversion efficiency was not significantly affected as formic acid concentration was 3000 mg/L, but enhanced as formic acid concentration was lower than 1000 mg/L. When increasing formic acid concentration to 5000 mg/L, FDCA production and 5-HMF conversion efficiencies obviously declined. In addition, strain Burkholderia cepacia H-2 was capable of degrading formic acid. Acetic acid concentration lower than 4390 mg/L did not affect 5-HMF biotransformation and FDCA formation, and 5-HMF conversion efficiency was between 87~90%. High furfural concentration had a negative effect on 5-HMF conversion and FDCA generation rates. When furfural concentration was higher than 1000 mg/L, 2000 mg/L 5-HMF could not be completely converted. Besides, furfural was utilized by immobilized strain Burkholderia cepacia H-2. There was no significant effect of levulinic acid on 5-HMF biotransformation. Furthermore, strain Burkholderia cepacia H-2 could use levulinic acid as carbon source to support biomass growth. The higher the phenol concentration, the lower the 5-HMF conversion rate. However, phenol had no significant effect on 5-HMF conversion efficiency. With the increase of NaCl concentration, 5-HMF conversion and FDCA production rates both obviously decreased. When NaCl concentration was higher than 6%, 5-HMF could not be completely biotransformed, but 5-HMF conversion efficiency was not influenced.
Soudham, Venkata Prabhakar. « Biochemical conversion of biomass to biofuels : pretreatment–detoxification–hydrolysis–fermentation ». Doctoral thesis, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-102722.
Texte intégral