Littérature scientifique sur le sujet « Life cycle emission (LCE) »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Life cycle emission (LCE) ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Life cycle emission (LCE)"
Li, Qiangnian, Tongze Han, Changlin Niu et Ping Liu. « Life Cycle Carbon Emission Analyzing of Rural Residential Energy Efficiency Retrofit-A Case Study of Gansu province ». E3S Web of Conferences 329 (2021) : 01063. http://dx.doi.org/10.1051/e3sconf/202132901063.
Texte intégralKumar, Ashok, Pardeep Singh, Nishant Raj Kapoor, Chandan Swaroop Meena, Kshitij Jain, Kishor S. Kulkarni et Raffaello Cozzolino. « Ecological Footprint of Residential Buildings in Composite Climate of India—A Case Study ». Sustainability 13, no 21 (28 octobre 2021) : 11949. http://dx.doi.org/10.3390/su132111949.
Texte intégralThaipradit, Pipat, Nantamol Limphitakphong, Premrudee Kanchanapiya, Thanapol Tantisattayakul et Orathai Chavalparit. « The Influence of Building Envelop Materials on its Life Cycle Performance : A Case Study of Educational Building in Thailand ». Key Engineering Materials 780 (septembre 2018) : 74–79. http://dx.doi.org/10.4028/www.scientific.net/kem.780.74.
Texte intégralSantamaria, Belen Moreno, Fernando del Ama Gonzalo, Matthew Griffin, Benito Lauret Aguirregabiria et Juan A. Hernandez Ramos. « Life Cycle Assessment of Dynamic Water Flow Glazing Envelopes : A Case Study with Real Test Facilities ». Energies 14, no 8 (14 avril 2021) : 2195. http://dx.doi.org/10.3390/en14082195.
Texte intégralMoazzen, Nazanin, Mustafa Erkan Karaguler et Touraj Ashrafian. « Assessment of the Life Cycle Energy Efficiency of a Primary School Building in Turkey ». Applied Mechanics and Materials 887 (janvier 2019) : 335–43. http://dx.doi.org/10.4028/www.scientific.net/amm.887.335.
Texte intégralShoaib-ul-Hasan, Sayyed, Malvina Roci, Farazee M. A. Asif, Niloufar Salehi et Amir Rashid. « Analyzing Temporal Variability in Inventory Data for Life Cycle Assessment : Implications in the Context of Circular Economy ». Sustainability 13, no 1 (2 janvier 2021) : 344. http://dx.doi.org/10.3390/su13010344.
Texte intégralGrenz, Julian, Moritz Ostermann, Karoline Käsewieter, Felipe Cerdas, Thorsten Marten, Christoph Herrmann et Thomas Tröster. « Integrating Prospective LCA in the Development of Automotive Components ». Sustainability 15, no 13 (25 juin 2023) : 10041. http://dx.doi.org/10.3390/su151310041.
Texte intégralTighnavard Balasbaneh, Ali, Abdul Kadir Bin Marsono et Emad Kasra Kermanshahi. « Balancing of life cycle carbon and cost appraisal on alternative wall and roof design verification for residential building ». Construction Innovation 18, no 3 (9 juillet 2018) : 274–300. http://dx.doi.org/10.1108/ci-03-2017-0024.
Texte intégralIslam, Hamidul, Muhammed Bhuiyan, Quddus Tushar, Satheeskumar Navaratnam et Guomin Zhang. « Effect of Star Rating Improvement of Residential Buildings on Life Cycle Environmental Impacts and Costs ». Buildings 12, no 10 (4 octobre 2022) : 1605. http://dx.doi.org/10.3390/buildings12101605.
Texte intégralBetten, Thomas, Shivenes Shammugam et Roberta Graf. « Adjustment of the Life Cycle Inventory in Life Cycle Assessment for the Flexible Integration into Energy Systems Analysis ». Energies 13, no 17 (27 août 2020) : 4437. http://dx.doi.org/10.3390/en13174437.
Texte intégralThèses sur le sujet "Life cycle emission (LCE)"
Andersson, Lucas, et Tim Fjällström. « LCC och LCA-baserad jämförelse mellan batteridriven och bensindriven produkt ». Thesis, Linnéuniversitetet, Institutionen för maskinteknik (MT), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-96203.
Texte intégralMany countries are trying to reduce the usage of fossil fuels and instead they are trying to find renewable alternatives. A common way to do this is to go from gasoline engines to electric engines. The purpose of the study is to gain a greater understanding of the products costs and environmental impact during their usage. The study was conducted as a case study at Swepac, Ljungby. The study’s implementation follows parts from LCC, LCA, CELA and the breakeven method in order to achieve the purpose. The environmental impact is measured in carbon dioxide equivalents and a conversion factor is used to convert the emissions to a monetary value that can be used in calculations of costs. The result shows that breakeven between the machines arises after 6.9 years, however, the service life is only 5 years. Both environmental impact, operating and maintenance costs is lower for the electrical option, however, the big difference in purchase price makes it take a long time for a breakeven to occur.
Krbalová, Maria. « Posuzování vlivu na životní prostředí při konstrukci výrobních strojů z pohledu emise vybraných skleníkových plynů ». Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2016. http://www.nusl.cz/ntk/nusl-256573.
Texte intégralUnsbo, Hanna. « Update of the LCA-software WAMPS : Proposing new emission factors and investigating the implications ». Thesis, KTH, Hållbar utveckling, miljövetenskap och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-302402.
Texte intégralUnder de senaste decennierna har livscykelanalys (LCA) blivit ett vanligt tillvägagångssätt världen över vid analyser av potentiella miljöeffekter kopplade till avfallshanteringssystem. Dessa system är av komplex natur och inkluderar allt från teknologiska lösningar, miljöpåverkan samt flera intressenter. För att underlätta dessa studier används idag ofta olika LCA-modeller. WAMPS är ett program som är särskilt utvecklad för att bedöma både miljömässiga- och ekonomiska konsekvenser kopplat till avfallshanteringssystem. Under de senaste åren har arbetet med att uppdatera modellen påbörjat eftersom programvaran inte har uppdaterats sedan början av 2000-talet. Syftet med detta examensarbete är att föreslå nya emissionsfaktorer för återvinning och jungfrulig produktion av glas, aluminium, stål, och plast. Utöver detta avser studien att studera hur implementeringen av de nya siffrorna inverkar på resultatet som erhålls i WAMPS. För att uppfylla tesen av detta arbete samlades LCI data in för varje material och utvärderades enligt tre DQI:er (Temporal representativitet, geografisk representativitet och dokumentation). Nya utsläppsfaktorer utvecklades baserat på utvärderingen och genom diskussioner inom projektgruppen. Framförallt för att säkerhetsställa att alla relevanta aktiviteter i de studerade livscyklerna är inkluderade. Konsekvenserna av implementeringen av utsläppsfaktorerna undersöktes genom en jämförelse av resultat som erhölls i WAMPS då de nya samt de tidigare faktorerna nyttjas. Detta gjordes både per ton material samt genom ett enkelt scenario. Utvärderingen av den insamlade LCI datan påvisar att många av dataseten representerar genomsnittlig produktion inom Europa och att datan generellt var insamlad för minst 5 år sedan. Resultatet påvisar att dataseten är väldokumenterad enlig indikatorn som ställts upp i denna studie. Främst användes processer från EcoInvent för att utveckla de nya emissionsfaktorerna. Implementeringen av emissionsfaktorerna i WAMPS resulterade i signifikanta skillnader i potentiell miljöpåverkan per ton material, främst för bildning av fotooxid. För fallet med scenariot indikerade studiens resultat att en betydande förändring av den potentiella miljöbelastningen erhålls när de nya utsläppsfaktorerna implementeras. Dessutom påvisades en minskning av miljöeffekterna för alla kategorier varav eutrofiering visade den största absoluta skillnaden. Slutligen anses de utvecklade emissions faktorerna vara lämpliga utifrån utformningen av denna tes. Dock dras slutsatsen att dessa har flertalet begränsningar som är viktiga att ta i hänsyn ifall dessa implementeras i WAMPS i framtiden. Dessutom anses det vara fastställt att en fortsatt uppdatering kan anses rimlig utifrån det erhållna resultatet.
Dicksen, Jesper. « Skillnaden i koldioxidutsläpp mellan limträ och stål : En studie som jämför två olika stommaterial ». Thesis, Högskolan Dalarna, Institutionen för information och teknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:du-38146.
Texte intégralToday, life-cycle assessment (LCA) are performed to identify the buildingcomponents that cause large carbon dioxide emissions in the construction industry.The purpose of this study is to use the life-cycle assessment tool One Click LCA tocompare how large carbon dioxide emissions are formed by the materials in aglulam frame, which belongs to an indoor arena compared to the materials in afictitious steel frame, which is dimensioned to withstand the same loads andfunction as the glulam frame. This is done in order to highlight the differencesbetween the carbon dioxide emissions in the product phase (A1-A3) between aglulam frame and a steel frame.A designer has designed the steel frame for comparison. The designer producedthe dimensions and building materials, but the steel frame was not sufficientlyworked out and projected for the comparison to be made directly.In One Click LCA, the quantities and building components for both frames areneeded to be able to make complete life-cycle assessment. By quantities is meantvolumes and weights for the building components. The study initially lackedquantities for some of the building components and part of the purpose wastherefore to produce all quantities for the frames. To get the right amounts in thestudy, two programs were used, Bluebeam and Excel. With these programs, thelength measurements for different building components were taken from drawings.Together with the other information about the building components, the quantitiescould then be produced.In One Click LCA, resources need to be selected. These can be linked to specificbuilding components and contain data on how large carbon dioxide emissions thatbuilding components cause. Based on building components and quantities,resources were then selected in One Click LCA. When resources are selected, theprogram calculates how large carbon dioxide emissions are formed in the productphase (A1-A3) for the building components. With quantities and resources, tworesults could be obtained in the software. The results show that 55 tonnes ofcarbon dioxide are formed by the glulam frame and 779.9 tonnes of carbon dioxideare formed by the steel frame. In the steel frame, it is the trusses that cause themost carbon dioxide emissions and in the glulam frame, the beams in the upperpart of the indoor arena cause the most carbon dioxide emissions.
Cangini, Francesco. « Valutazione della sostenibilità economico-ambientale della sopraelevazione di un edificio residenziale tramite l'applicazione dei metodi LCA e LCC ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017.
Trouver le texte intégralDu, Guangli. « Life cycle assessment of bridges, model development and case studies ». Doctoral thesis, KTH, Bro- och stålbyggnad, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-161196.
Texte intégralQC 20150311
Facibeni, Gabriele. « Emissioni da uso dei pesticidi negli studi di Life Cycle Assessment : calcolo dell’inventario ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017.
Trouver le texte intégralAlmutairi, Badriya L. « Investigating the feasibility and soil-structure integrity of onshore wind turbine systems in Kuwait ». Thesis, Loughborough University, 2017. https://dspace.lboro.ac.uk/2134/27612.
Texte intégralMiliutenko, Sofiia. « Life Cycle Impacts of Road Infrastructure : Assessment of energy use and greenhouse gas emissions ». Licentiate thesis, KTH, Miljöstrategisk analys, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-89885.
Texte intégralQC 20120229
Miliutenko, Sofiia. « Consideration of life cycle energy use and greenhouse gas emissions for improved road infrastructure planning ». Doctoral thesis, KTH, Miljöstrategisk analys (fms), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-184163.
Texte intégralQC 20160329
Livres sur le sujet "Life cycle emission (LCE)"
Engineers, Society of Automotive, et SAE World Congress (2006 : Detroit, Mich.), dir. Emission : Measurement, testing & modeling. Warrendale, PA : Society of Automotive Engineers, 2006.
Trouver le texte intégralHorne, Ralph E., Tim Grant et Karli Verghese. Life Cycle Assessment. CSIRO Publishing, 2009. http://dx.doi.org/10.1071/9780643097964.
Texte intégralSadiq, Rehan, Kasun Hewage, Rajeev Ruparathna et Hirushie Karunathilake. Life Cycle Thinking for Net-Zero Energy and Emission Transformation. Elsevier Science & Technology Books, 2020.
Trouver le texte intégralEnvironmental life cycle cost analysis : A review of economic, energy and green house gas emission impacts of asphalt and concrete pavements. Ottawa : National Library of Canada, 2000.
Trouver le texte intégralPaulson, CAJ. Greenhouse Gas Control Technologies. Sous la direction de RA Durie, DJ Williams, AY Smith et P. McMullan. CSIRO Publishing, 2001. http://dx.doi.org/10.1071/9780643105027.
Texte intégralChapitres de livres sur le sujet "Life cycle emission (LCE)"
Holst, Jens-Christian, Katrin Müller, Florian Ansgar Jaeger et Klaus Heidinger. « City Air Management : LCA-Based Decision Support Model to Improve Air Quality ». Dans Towards a Sustainable Future - Life Cycle Management, 39–47. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77127-0_4.
Texte intégralLange, Nora, David Moosmann, Stefan Majer, Kathleen Meisel, Katja Oehmichen, Stefan Rauh et Daniela Thrän. « Assessment of Greenhouse Gas Emission Reduction from Biogas Supply Chains in Germany in Context of a Newly Implemented Sustainability Certification ». Dans Sustainable Production, Life Cycle Engineering and Management, 85–101. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-29294-1_6.
Texte intégralAggarwal, Neeraj K., Naveen Kumar et Mahak Mittal. « Life Cycle Analysis (LCA) in GHG Emission and Techno-economic Analysis (TEA) of Bioethanol Production ». Dans Green Chemistry and Sustainable Technology, 179–90. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-05091-6_14.
Texte intégralCerdas, Felipe. « LCE and Electromobility ». Dans Sustainable Production, Life Cycle Engineering and Management, 11–55. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82934-6_2.
Texte intégralKeller, Heiko, Horst Fehrenbach, Nils Rettenmaier et Marie Hemmen. « Extending LCA Methodology for Assessing Liquid Biofuels by Phosphate Resource Depletion and Attributional Land Use/Land Use Change ». Dans Towards a Sustainable Future - Life Cycle Management, 121–31. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77127-0_11.
Texte intégralCerdas, Felipe. « State of Research—Review on LCE Modelling and Assessment Approaches for Electromobility ». Dans Sustainable Production, Life Cycle Engineering and Management, 57–85. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82934-6_3.
Texte intégralAlkhawaldeh, Ayah, Nour Betoush, Ansam Sawalha, Mohammad Alhassan et Khairedin Abdalla. « Life Cycle Assessment and Sustainability Characteristics of Built Environment Systems ». Dans Lecture Notes in Civil Engineering, 523–31. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-57800-7_48.
Texte intégralCerdas, Felipe. « Exemplary Application : Analysis of Variability in the LCE of Batteries for Electric Vehicles ». Dans Sustainable Production, Life Cycle Engineering and Management, 129–61. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-82934-6_5.
Texte intégralTippett, Arron Wilde. « Life Cycle Assessment of Fishing and Aquaculture Rope Recycling ». Dans Marine Plastics : Innovative Solutions to Tackling Waste, 121–34. Cham : Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-31058-4_7.
Texte intégralDalla Valle, Anna. « Life Cycle Assessment at the Early Stage of Building Design ». Dans The Urban Book Series, 461–70. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-29515-7_42.
Texte intégralActes de conférences sur le sujet "Life cycle emission (LCE)"
Wen, Ching-Mei, Charles Foster et Marianthi Ierapetritou. « Exploring Net-Zero Greenhouse Gas Emission Routes for Bio-Production of Triacetic Acid Lactone : An Evaluation through Techno-Economic Analysis and Life Cycle Assessment ». Dans Foundations of Computer-Aided Process Design, 933–40. Hamilton, Canada : PSE Press, 2024. http://dx.doi.org/10.69997/sct.182968.
Texte intégralLeon, David, David Bolonio, Isabel Amez, Roberto Paredes et Blanca Castells. « LIFE-CYCLE ANALYSIS OF FIREWORKS : ENVIRONMENTAL IMPACT AND IMPROVEMENT OPPORTUNITIES ». Dans 24th SGEM International Multidisciplinary Scientific GeoConference 24, 139–48. STEF92 Technology, 2024. https://doi.org/10.5593/sgem2024/4.1/s17.18.
Texte intégralLokesh, Kadambari, Atma Prakash, Vishal Sethi, Eric Goodger et Pericles Pilidis. « Assessment of Life Cycle Emissions of Bio-SPKs for Jet Engines ». Dans ASME Turbo Expo 2013 : Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gt2013-94238.
Texte intégralKalluri, Sumanth, Pasi Lautala et Robert Handler. « Toward Integrated Life Cycle Assessment and Life Cycle Cost Analysis for Road and Multimodal Transportation Alternatives : A Case Study of the Highland Copper Project ». Dans 2016 Joint Rail Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/jrc2016-5841.
Texte intégralDeru, Michael. « Establishing Standard Source Energy and Emission Factors for Energy Use in Buildings ». Dans ASME 2007 Energy Sustainability Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/es2007-36105.
Texte intégralAl‐Gburi, Majid, Jaime Gonzalez‐Libreros, Gabriel Sas et Martin Nilsson. « Quantifying the Environmental Impact of Railway Bridges Using Life Cycle Assessment : A Case Study ». Dans IABSE Symposium, Prague 2022 : Challenges for Existing and Oncoming Structures. Zurich, Switzerland : International Association for Bridge and Structural Engineering (IABSE), 2022. http://dx.doi.org/10.2749/prague.2022.1796.
Texte intégralKominiarz, Mathis, et Zeina Al-Nabulsi. « Life-cycle analysis of the Colne Valley Viaduct and assessment of optimised solutions ». Dans IABSE Symposium, Manchester 2024 : Construction’s Role for a World in Emergency. Zurich, Switzerland : International Association for Bridge and Structural Engineering (IABSE), 2024. http://dx.doi.org/10.2749/manchester.2024.0451.
Texte intégralFu, Yang, Buyu Wang et Shijin Shuai. « Life-cycle Analysis of Methanol Production from Coke Oven Gas in China ». Dans Energy & Propulsion Conference & Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States : SAE International, 2023. http://dx.doi.org/10.4271/2023-01-1646.
Texte intégralMorita, Yasutomo, Kenji Shimizu, Hirokazu Kato, Naoki Shibahara et Toshihiro Yamasaki. « A Study for the Measurement of Environmental Impact Resulting From Railway Construction ». Dans 2011 Joint Rail Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/jrc2011-56006.
Texte intégralLéonard, Angélique, et S. Gerbinet. « Using Life Cycle Assessment methodology to minimize the environmental impact of dryers ». Dans 21st International Drying Symposium. Valencia : Universitat Politècnica València, 2018. http://dx.doi.org/10.4995/ids2018.2018.7851.
Texte intégralRapports d'organisations sur le sujet "Life cycle emission (LCE)"
Koroma, Michael Samsu, Xun Xu et Abdulrahman Alwosheel. Life Cycle Assessment of Road Freight Decarbonization in Saudi Arabia. King Abdullah Petroleum Studies and Research Center, décembre 2024. https://doi.org/10.30573/ks--2024-dp63.
Texte intégralSharma, Bhavna, Bryan Swanton, Joseph Kuo, Kimny Sysawang, Sachi Yagyu, Aneesa Motala, Danica Tolentino, Najmedin Meshkati et Susanne Hempel. Use of Life Cycle Assessment in the Healthcare Industry : Environmental Impacts and Emissions Associated With Products, Processes, and Waste. Agency for Healthcare Research and Quality (AHRQ), novembre 2024. http://dx.doi.org/10.23970/ahrqepctb48.
Texte intégralShen, Bo, et Zhenning LI. Perform Life Cycle Energy and GHG Emission Analysis, Select Candidate Refrigerant(s). Office of Scientific and Technical Information (OSTI), septembre 2021. http://dx.doi.org/10.2172/1819592.
Texte intégralGathorne-Hardy, Alfred. A Life Cycle Assessment (LCA) of Greenhouse Gas Emissions from SRI and Flooded Rice Production in SE India. Taiwan Water Conservancy Journal, 2013. http://dx.doi.org/10.35648/20.500.12413/11781/ii250.
Texte intégralAl-Qadi, Imad, Hasan Ozer, Mouna Krami Senhaji, Qingwen Zhou, Rebekah Yang, Seunggu Kang, Marshall Thompson et al. A Life-Cycle Methodology for Energy Use by In-Place Pavement Recycling Techniques. Illinois Center for Transportation, octobre 2020. http://dx.doi.org/10.36501/0197-9191/20-018.
Texte intégralLinan, Dun. Research on carbon emission of urban residents’ three types of dining based on the whole life cycle. Envirarxiv, avril 2022. http://dx.doi.org/10.55800/envirarxiv276.
Texte intégralAlwosheel, Abdulrahman, et Michael Samsu Koroma. Environmental Performance of Passenger Cars in the KSA : Comparison of Different Technologies via a Life Cycle Assessment Approach. King Abdullah Petroleum Studies and Research Center, décembre 2024. https://doi.org/10.30573/ks--2024-dp69.
Texte intégralKester, Josco, Ji Liu et Ashish Binani. Carbon Footprint of Floating PV Systems. International Energy Agency Photovoltaic Power Systems Programme, 2024. http://dx.doi.org/10.69766/jgaz9626.
Texte intégralFact Sheet : Environmental Life Cycle Assessment of Electricity from PV Systems. IEA Photovoltaic Power Systems Programme (PVPS), 2024. http://dx.doi.org/10.69766/algs2169.
Texte intégral