Littérature scientifique sur le sujet « LiBH4 »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « LiBH4 ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "LiBH4"
de Kort, Laura M., Valerio Gulino, Didier Blanchard et Peter Ngene. « Effects of LiBF4 Addition on the Lithium-Ion Conductivity of LiBH4 ». Molecules 27, no 7 (28 mars 2022) : 2187. http://dx.doi.org/10.3390/molecules27072187.
Texte intégralChen, X. Y., Y. H. Guo, L. Gao et X. B. Yu. « Improved dehydrogenation of LiBH4 supported on nanoscale SiO2 via liquid phase method ». Journal of Materials Research 25, no 12 (décembre 2010) : 2415–21. http://dx.doi.org/10.1557/jmr.2010.0301.
Texte intégralXu, Lan, Yu Wang, Ling tong Zhou, Wei Xia, Zhu jian Li, Mei Qiang Fan et Yong Jin Zou. « Enhanced Hydrogen Generation by LiBH4 Hydrolysis in MOH/water Solutions (MOH : C2H5OH, C4H8O, C4H9OH, CH3COOH) for Micro Proton Exchange Membrane Fuel Cell Application ». Journal of New Materials for Electrochemical Systems 17, no 2 (15 mai 2014) : 077–83. http://dx.doi.org/10.14447/jnmes.v17i2.427.
Texte intégralLeiner, Stefanie, Peter Mayer et Heinrich Nöth. « Synthesis and Structures of LiBH4 Complexes with N-Heterocycles [1] ». Zeitschrift für Naturforschung B 64, no 7 (1 juillet 2009) : 793–99. http://dx.doi.org/10.1515/znb-2009-0703.
Texte intégralPuszkiel, Julián, Aurelien Gasnier, Guillermina Amica et Fabiana Gennari. « Tuning LiBH4 for Hydrogen Storage : Destabilization, Additive, and Nanoconfinement Approaches ». Molecules 25, no 1 (31 décembre 2019) : 163. http://dx.doi.org/10.3390/molecules25010163.
Texte intégralHe, Qing, Dongdong Zhu, Xiaocheng Wu, Duo Dong, Xiaoying Jiang et Meng Xu. « The Dehydrogenation Mechanism and Reversibility of LiBH4 Doped by Active Al Derived from AlH3 ». Metals 9, no 5 (13 mai 2019) : 559. http://dx.doi.org/10.3390/met9050559.
Texte intégralLIU, YONGFENG, HAI ZHOU, YUFAN DING, MINGXIA GAO et HONGGE PAN. « LOW-TEMPERATURE HYDROGEN DESORPTION FROM LiBH4–TiF4 COMPOSITE ». Functional Materials Letters 04, no 04 (décembre 2011) : 395–99. http://dx.doi.org/10.1142/s1793604711002305.
Texte intégralGhaani, Mohammad R., Michele Catti et Niall J. English. « In Situ Synchrotron X-ray Diffraction Studies of Hydrogen-Desorption Properties of 2LiBH4–Mg2FeH6 Composite ». Molecules 26, no 16 (11 août 2021) : 4853. http://dx.doi.org/10.3390/molecules26164853.
Texte intégralYan, Xia Yan, You Li, Jie Du, Xiao Na Luo et Cheng Qin. « Preparation of High Weight Loading Lithium Borohydride in Carbon Aerogels ». Advanced Materials Research 631-632 (janvier 2013) : 287–90. http://dx.doi.org/10.4028/www.scientific.net/amr.631-632.287.
Texte intégralKim, Ji Woo, Kee-Bum Kim, Jae-Hyeok Shim, Young Whan Cho et Kyu Hwan Oh. « Microstructural Characterization of Dehydrogenated Products of the LiBH4-YH3 Composite ». Microscopy and Microanalysis 20, no 6 (28 octobre 2014) : 1798–804. http://dx.doi.org/10.1017/s1431927614013373.
Texte intégralThèses sur le sujet "LiBH4"
Bösenberg, Ulrike Verfasser], et Rüdiger [Akademischer Betreuer] [Bormann. « LiBH4-MgH2 Composites for Hydrogen Storage : LiBH4-MgH2 Komposite für die Wasserstoffspeicherung / Ulrike Bösenberg ; Betreuer : Rüdiger Bormann ». Hamburg : Universitätsbibliothek der Technischen Universität Hamburg-Harburg, 2009. http://d-nb.info/1175884405/34.
Texte intégralRivera, Luis A. « Destabilization and characterization of LiBH4/MgH2 complex hydride for hydrogen storage ». [Tampa, Fla.] : University of South Florida, 2007. http://purl.fcla.edu/usf/dc/et/SFE0001984.
Texte intégralMorin, François. « Effet de la pression et de l'addition de fer sur la désorption du système LIBH4 + MgH2 ». Thèse, Université du Québec à Trois-Rivières, 2012. http://depot-e.uqtr.ca/4464/1/030300172.pdf.
Texte intégralMarizy, Adrien. « Super-hydrures sous pression pour le stockage de l’hydrogène et la supraconductivité : développement d’outils et résultats sur H3S, CrHx, LiBH4 et NaBHx ». Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLX115/document.
Texte intégralRecently, under pressures of several gigapascals, new hydrides have been synthesised with striking properties that may herald technological breakthroughs for hydrogen storage and superconductivity. In this PhD thesis, several superhydrides have been studied experimentally and simulated by DFT. The pressure phase diagrams of LiBH4 and NaBH4, two compounds of interest for hydrogen storage, have been explored thanks to X-ray diffraction and Raman and infrared spectroscopy up to pressures of 300 GPa without observing any decomposition. The insertion of hydrogen inside NaBH4 generates the superhydride NaBH4(H2)0.5. To refine the interpretation of the record superconductivity found in H2S under pressure at 200 K, the superhydride H3S has been synthesised from S and H elements. The results of the diffraction study seem to be at odds with the commonly accepted interpretation that Im-3m H3S is responsible for the superconductivity observed and leaves the door open to other interpretations. Finally, CrHx hydrides with x = 1, 1.5 and 2 have also been synthesised from the elements and characterised by X-ray diffraction. Although these hydrides do correspond to the ones that had been numerically predicted, the absence of the expected higher stoichiometries is discussed. To measure the superconductivity temperatures calculated for MHx hydrides, a miniature diamond anvil cell which allows the detection of a Meissner effect has been developed
GHAANI, MOHAMMAD REZA. « Study of new materials and their functionality for hydrogen storage and other energy applications ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2014. http://hdl.handle.net/10281/49808.
Texte intégralŠašek, Martin. « Charakterizace elektrolytů na bázi směsi iontová kapalina a aprotické rozpouštědlo ». Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-318870.
Texte intégralТретьяков, Дмитро Олегович. « Фізико-хімічні властивості систем сіль літію (LiBF4, LiCIO4, LiNO3, LiSO3CF3, LiN(SO2CF3)2) - апротонний диполярний розчинник ((CH3)2SO2, (C2H5)2SO2,(CH3)2SO, C3H4O3, C8H18O4) ». Diss. de candidat en sciences chimiques, Міжвідомче відділ. електрохім. енергетики Нац. акад. наук України, 2012.
Trouver le texte intégralLee, Jeremy J. « Fabrication and Characterizations of LAGP/PEO Composite Electrolytes for All Solid-State Lithium-Ion Batteries ». Wright State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=wright1527273235003087.
Texte intégralCheng, Yi-Ting, et 鄭宜庭. « The Effect of Pd and Co Additives on the Enhancement of the Dehydrogenation Characteristics for LiBH4 and LiBH4+2LiNH2 systems ». Thesis, 2011. http://ndltd.ncl.edu.tw/handle/87727432772319427866.
Texte intégral國立中央大學
材料科學與工程研究所
99
LiBH4 is a potential hydrogen storage material and gains lots of interests recently due to the extremely high hydrogen capacity (18.4 wt%). However, the initial decomposition temperature (Ti) and main dehydrogenation temperature (Tm) of LiBH4 are as high as 567 and 754 K, respectively. In order to overcome the drawbacks, there are several approaches developed to modify the system thermodynamically or kinetically. In this study, LiBH4 is modified by various additives or mixing with LiNH2 to form a new Li-B-N-H quaternary hydride by ball-milling process. Besides, their dehydrogenation properties are analyzed through temperature programmed reduction (TPR) and temperature programmed dehydrogenation-mass spectrometers (TPD-MS), and the phase structures of the systems are characterized by the X-ray powder diffraction (XRD) method. Based on the results, it can be observed that the dehydrogenation properties of the LiBH4 can be successfully improved by doping 33 wt% of Pd-Co/C additives, and among the three different samples, Pd25Co75/C doped sample shows the optimal enhancement in promoting the dehydrogenation properties of LiBH4¬ by reducing the Ti to 523 K with the capacity as 10.5 wt%. Besides, it is found out that when the Co content in the additives increases, the Tis gradually decrease and capacities gently increase. Moreover, for the system modified by various amounts of Pd-Co/C, the results reveal that when the system is modified by 50 wt% of Pd-Co/C, Pd50Co50/C doped sample has better performance than Pd75Co25/C and Pd25Co75/C doped samples, which Ti and Tm can decrease to 533 and 639 K with 10 wt% of hydrogen desorbed. On the other hand, for 33 wt% of Pd-Co/C modified LiBH4+2LiNH2 binary system, the sample doped with Pd50Co50/C shows the effective modification, and the Ti is dramatically reduced from 523 K of the pristine binary system to 396 K and the capacity is 9.5 wt%. In terms of various metal (Pd and Co) chlorides and hydroxides modified LiBH4 and binary systems, the improvement of the dehydrogenation properties can both be observed. However, the reasons of the enhancements by metal chlorides and hydroxides may be different. For LiBH4 systems, the metal chlorides modified samples may have some ion exchange reactions and then form the unstable transition metal borohydrides during the heating process, thus the dehydrogenation properties can be enhanced. However, for metal hydroxides doped samples, the enhancement may be ascribed as the combinational effects of hydrolysis and redox reactions during the decomposition processes. On the other hand, for the metal (Pd and Co) chlorides and hydroxides modified binary systems, although the Tis and Tms can both significantly decrease to lower temperature ranges, the capacities of the samples modified by metal hydroxides also conspicuously reduce. Therefore, metal chlorides modified binary samples shows the better performance in improving the dehydrogenation properties than metal hydroxides.
CHAN, CHEN-WEI, et 詹鎮瑋. « Computational Study on the Structuresof (LiBH4)n,n=1~12 Clusters forHydrogen Storage ». Thesis, 2014. http://ndltd.ncl.edu.tw/handle/41085857259458507073.
Texte intégral中原大學
化學研究所
102
In the present study, we used density functional theory with B3LYP/6-311g++(d, p) method to calculate the structures, frequencies and energies of (LiBH4)n, n=1~12 clusters which has been known as a candidate hydrogen storage materials. We found that each cluster has several isomers. In order to enhance the hydrogen storage capacity of (LiBH4)n clusters, we added excess electrons to(LiBH4)n clusters. Our calculations show that the hydrogen storage capacity as well as the weight percent is improved with the existence of excess electrons. In addition, we also analyzed the distribution of the charge.
Livres sur le sujet "LiBH4"
Uaidh, Mícheál Mac. Slán Libh Boys. Lulu.com, 2019.
Trouver le texte intégralAr Aghaidh Libh ! : Scrúdú Cainte Agus Cluaistuisceana Na HArdteistiméireachta. Edco, The Educational Company of Ireland, 2008.
Trouver le texte intégralVilas-Boas, Gonçalo. Em torno de viagens e outras deslocações. Sous la direction de Fátima Outeirinho. FLUP-ILC, 2020. http://dx.doi.org/10.21747/9789895478439/lib24.
Texte intégralChapitres de livres sur le sujet "LiBH4"
Price, T. E. C., D. M. Grant et G. S. Walker. « Synergistic Effect of LiBH4 + MgH2 as a Potential Reversible High Capacity Hydrogen Storage Material ». Dans Ceramic Transactions Series, 97–104. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2008. http://dx.doi.org/10.1002/9780470483428.ch10.
Texte intégralLaversenne, L. « Synthesis and crystal structure of alkali metal borohydrides LiBH4, NaBH4, KBH4, RbBH4 and CsBH4 ». Dans Hydrogen Storage Materials, 282–89. Berlin, Heidelberg : Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-662-54261-3_50.
Texte intégralHolze, Rudolf. « Ionic conductance of LiBF4 ». Dans Electrochemistry, 1165. Berlin, Heidelberg : Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-49251-2_1049.
Texte intégralDonoso, J. P., M. G. Cavalcante, W. Gorecki, C. Berthier et M. Armand. « NMR Study of the Polymer Solid Electrolyte PEO (LIBF4)x ». Dans 25th Congress Ampere on Magnetic Resonance and Related Phenomena, 331–32. Berlin, Heidelberg : Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-76072-3_171.
Texte intégralHolze, Rudolf. « Ionic conductivities of binary mixture of LiBF4 and acetonitrile+methanol ». Dans Electrochemistry, 1603–6. Berlin, Heidelberg : Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-642-02723-9_1424.
Texte intégralHolze, Rudolf. « Ionic conductivities of gelled and polymerized TMP+EC+DEC+LiBF4 ». Dans Electrochemistry, 2126. Berlin, Heidelberg : Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-642-02723-9_1723.
Texte intégralHolze, Rudolf. « Ionic conductivities of binary mixture of LiBF4 and 1B3MIm-BF4+ EC ». Dans Electrochemistry, 1541. Berlin, Heidelberg : Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-642-02723-9_1388.
Texte intégralHolze, Rudolf. « Ionic conductivities of binary mixture of LiBF4 and 1B3MIm-BF4+ PC ». Dans Electrochemistry, 1542. Berlin, Heidelberg : Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-642-02723-9_1389.
Texte intégralHolze, Rudolf. « Ionic conductivities of binary mixture of LiBF4 and 1E3MIm-BF4+EC ». Dans Electrochemistry, 1543. Berlin, Heidelberg : Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-642-02723-9_1390.
Texte intégralHolze, Rudolf. « Ionic conductivities of binary mixture of LiBF4 and 1E3MIm-BF4+PC ». Dans Electrochemistry, 1544. Berlin, Heidelberg : Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-642-02723-9_1391.
Texte intégralActes de conférences sur le sujet "LiBH4"
Zamponi, Flavio, Johannes Stingl, Benjamin Freyer, Michael Woerner, Thomas Elsaesser et Andreas Borgschulte. « Femtosecond X-Ray Powder Diffraction on LiBH4 ». Dans International Conference on Ultrafast Structural Dynamics. Washington, D.C. : OSA, 2012. http://dx.doi.org/10.1364/icusd.2012.im2d.5.
Texte intégralZamponi, Flavio, Johannes Stingl, Benjamin Freyer, Michael Woerner, Thomas Elsaesser et Andreas Borgschulte. « LiBH4 Studied by Femtosecond X-Ray Powder Diffraction ». Dans Quantum Electronics and Laser Science Conference. Washington, D.C. : OSA, 2012. http://dx.doi.org/10.1364/qels.2012.qth4h.3.
Texte intégralNiemann, Michael U., Sesha S. Srinivasan, Ashok Kumar, Elias K. Stefanakos, D. Yogi Goswami et Kimberly McGrath. « Processing Analysis of the Ternary LiNH2-MgH2-LiBH4 System for Hydrogen Storage ». Dans ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-11520.
Texte intégralBenzidi, H., O. Mounkachi, M. Lakhal, A. Benyoussef et A. El Kenz. « Compression effect on electronic properties and hydrogen desroption of LiBH4 : First principal study ». Dans 2016 International Renewable and Sustainable Energy Conference (IRSEC). IEEE, 2016. http://dx.doi.org/10.1109/irsec.2016.7984054.
Texte intégralKretzschmar, H. J., I. Stoecker, I. Jaehne, S. Herrmann et M. Kunick. « Property Libraries for Working Fluids for Calculating Heat Cycles, Turbines, Heat Pumps, and Refrigeration Processes ». Dans ASME 2007 International Mechanical Engineering Congress and Exposition. ASMEDC, 2007. http://dx.doi.org/10.1115/imece2007-42033.
Texte intégralSangeetha, M., A. Mallikarjun, M. Jaipal Reddy et J. Siva Kumar. « SEM, XRD and electrical conductivity studies of PVDF-HFP-LiBF4 –EC plasticized gel polymer electrolyte ». Dans INTERNATIONAL CONFERENCE ON FUNCTIONAL MATERIALS, CHARACTERIZATION, SOLID STATE PHYSICS, POWER, THERMAL AND COMBUSTION ENERGY : FCSPTC-2017. Author(s), 2017. http://dx.doi.org/10.1063/1.4990217.
Texte intégralMariam, Siti Nor, Bohari M. Yamin et Azizan Ahmad. « Synthesis of tetraaza bromide macrocyclic and studies of its effect on poly(methyl methacrylate) grafted natural rubber (MG49) - lithium tertrafluoroborate (LiBF4) films ». Dans THE 2013 UKM FST POSTGRADUATE COLLOQUIUM : Proceedings of the Universiti Kebangsaan Malaysia, Faculty of Science and Technology 2013 Postgraduate Colloquium. AIP Publishing LLC, 2013. http://dx.doi.org/10.1063/1.4858774.
Texte intégral