Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Leukemia inhibitory factor.

Articles de revues sur le sujet « Leukemia inhibitory factor »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Leukemia inhibitory factor ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Nicola, Nicos A., et Jeffrey J. Babon. « Leukemia inhibitory factor (LIF) ». Cytokine & ; Growth Factor Reviews 26, no 5 (octobre 2015) : 533–44. http://dx.doi.org/10.1016/j.cytogfr.2015.07.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Metcalf, Donald. « The leukemia inhibitory factor (LIF) ». International Journal of Cell Cloning 9, no 2 (1991) : 95–108. http://dx.doi.org/10.1002/stem.5530090201.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Vanchieri, C. « Leukemia Inhibitory Factor Has Multiple Personalities ». JNCI Journal of the National Cancer Institute 86, no 4 (16 février 1994) : 262. http://dx.doi.org/10.1093/jnci/86.4.262.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Hinds, Mark G., Till Maurer, Jian-Guo Zhang, Nicos A. Nicola et Raymond S. Norton. « Solution Structure of Leukemia Inhibitory Factor ». Journal of Biological Chemistry 273, no 22 (29 mai 1998) : 13738–45. http://dx.doi.org/10.1074/jbc.273.22.13738.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Senturk, Levent M., et Aydin Arici. « Leukemia Inhibitory Factor in Human Reproduction ». American Journal of Reproductive Immunology 39, no 2 (février 1998) : 144–51. http://dx.doi.org/10.1111/j.1600-0897.1998.tb00346.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

RAY, DAVID W., SONG-GUANG REN et SHLOMO MELMED. « Leukemia Inhibitory Factor Regulates Proopiomelanocortin Transcriptiona ». Annals of the New York Academy of Sciences 840, no 1 (mai 1998) : 162–73. http://dx.doi.org/10.1111/j.1749-6632.1998.tb09560.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Lass, Amir, Weishui Weiser, Alain Munafo et Ernest Loumaye. « Leukemia inhibitory factor in human reproduction ». Fertility and Sterility 76, no 6 (décembre 2001) : 1091–96. http://dx.doi.org/10.1016/s0015-0282(01)02878-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Hilton, Douglas J., et Nicholas M. Gough. « Leukemia inhibitory factor : A biological perspective ». Journal of Cellular Biochemistry 46, no 1 (mai 1991) : 21–26. http://dx.doi.org/10.1002/jcb.240460105.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Pehlivan, Melek, Ceyda Caliskan, Zeynep Yuce et Hakkı Ogun Sercan. « Forced expression of Wnt antagonists sFRP1 and WIF1 sensitizes chronic myeloid leukemia cells to tyrosine kinase inhibitors ». Tumor Biology 39, no 5 (mai 2017) : 101042831770165. http://dx.doi.org/10.1177/1010428317701654.

Texte intégral
Résumé :
Chronic myeloid leukemia is a clonal myeloproliferative disorder that arises from the neoplastic transformation of the hematopoietic stem cell, in which the Wnt/β-catenin signaling pathway has been demonstrated to play an important role in disease progression. However, the role of Wnt signaling antagonists in therapy resistance and disease progression has not been fully investigated. We aimed to study the effects of Wnt/β-catenin pathway antagonists—secreted frizzled-related protein 1 and Wnt inhibitory factor 1—on resistance toward tyrosine kinase inhibitors in chronic myeloid leukemia. Response to tyrosine kinase inhibitors was analyzed in secreted frizzled-related protein 1 and Wnt inhibitory factor 1 stably transfected K562 cells. Experiments were repeated using a tetracycline-inducible expression system, confirming previous results. In addition, response to tyrosine kinase inhibitor treatment was also analyzed using the secreted frizzled-related protein 1 expressing, BCR-ABL positive MEG01 cell line, in the presence and absence of a secreted frizzled-related protein 1 inhibitor. Our data suggests that total cellular β-catenin levels decrease in the presence of secreted frizzled-related protein 1 and Wnt inhibitory factor 1, and a significant increase in cell death after tyrosine kinase inhibitor treatment is observed. On the contrary, when secreted frizzled-related protein 1 is suppressed, total β-catenin levels increase in the cell and the cells become resistant to tyrosine kinase inhibitors. We suggest that Wnt antagonists carry the potential to be exploited in designing new agents and strategies for the advanced and resistant forms of chronic myeloid leukemia.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Pepper, M. S., N. Ferrara, L. Orci et R. Montesano. « Leukemia inhibitory factor (LIF) inhibits angiogenesis in vitro ». Journal of Cell Science 108, no 1 (1 janvier 1995) : 73–83. http://dx.doi.org/10.1242/jcs.108.1.73.

Texte intégral
Résumé :
Using an in vitro model in which endothelial cells can be induced to invade a three-dimensional collagen gel to form capillary-like tubular structures, we demonstrate that leukemia inhibitory factor (LIF) inhibits angiogenesis in vitro. The inhibitory effect was observed on both bovine aortic endothelial (BAE) and bovine microvascular endothelial (BME) cell, and occurred irrespective of the angiogenic stimulus, which included basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), the synergistic effect of the two in combination, or the tumor promoter phorbol myristate acetate. LIF inhibited bFGF- and VEGF-induced proliferation in BAE and BME cells. In addition, LIF inhibited BAE but not BME cell migration in a conventional two-dimensional assay. Finally, LIF decreased the proteolytic activity of BAE and BME cells and increased their expression of plasminogen activator inhibitor-1. These results demonstrate that LIF inhibits angiogenesis in vitro, an effect that can be correlated with a LIF-mediated decrease in endothelial cell proliferation, migration and extracellular proteolysis.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Hanington, Patrick C., Shunmoogum A. Patten, Laura M. Reaume, Andrew J. Waskiewicz, Miodrag Belosevic et Declan W. Ali. « Analysis of leukemia inhibitory factor and leukemia inhibitory factor receptor in embryonic and adult zebrafish (Danio rerio) ». Developmental Biology 314, no 2 (février 2008) : 250–60. http://dx.doi.org/10.1016/j.ydbio.2007.10.012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Na, Bon Hyang, Thi Xoan Hoang et Jae Young Kim. « Hsp90 Inhibition Reduces TLR5 Surface Expression and NF-κB Activation in Human Myeloid Leukemia THP-1 Cells ». BioMed Research International 2018 (2018) : 1–8. http://dx.doi.org/10.1155/2018/4319369.

Texte intégral
Résumé :
Tumors highly express active heat shock protein 90 (Hsp90), which is involved in tumor survival and progression. Enhanced Toll-like receptor (TLR) 5 expression and signaling were reported to be associated with acute myeloid leukemia. In the present study, we investigated the possible modulatory effects of Hsp90 inhibitors on TLR5 expression and signaling in the human myeloid leukemia cell line THP-1. Cells were pretreated with various concentrations of the Hsp90 inhibitor geldanamycin (GA) or the Hsp70 inhibitor VER155008, followed by stimulation with bacterial flagellin. Flagellin-induced nuclear factor-κB (NF-κB) activation was significantly reduced by treatment with GA or VER155008. To elucidate the underlying mechanism of this effect, mRNA and cell surface expression of TLR5 was examined. TLR5 mRNA expression was enhanced by both GA and VER155008, whereas cell surface expression of TLR5 was reduced by three different Hsp90 inhibitors, including GA, 17-(allylamino)-17-demethoxygeldanamycin, and radicicol, and an Hsp70 inhibitor. The inhibitory effect of Hsp90 inhibitors was much higher than that of Hsp70 inhibitor. Our results suggest that Hsp90 inhibitors suppress TLR5 surface expression and activation of NF-κB in THP-1 cells in response to TLR5 ligand, and these inhibitory effects may be associated with the possible mechanisms by which Hsp90 inhibitors suppress myeloid leukemia.
Styles APA, Harvard, Vancouver, ISO, etc.
13

McKenzie, RC, D. Paglia, S. Kondo et DN Sauder. « A novel endogenous mediator of cutaneous inflammation : leukemia inhibitory factor. » Acta Dermato-Venereologica 76, no 2 (1 mars 1996) : 111–14. http://dx.doi.org/10.2340/0001555576111114.

Texte intégral
Résumé :
Keratinocytes produce a variety of cytokines, including leukemia inhibitory factor. We hypothesised that this cytokine may play a pro-inflammatory role in the skin and tested this hypothesis by injecting recombinant leukemia inhibitory factor (1-100 ng) into the ear pinnae of C3H/HeJ mice. To other groups of animals, we injected boiled leukemia inhibitory factor or phosphate-buffered saline (negative control) or 0.4 ng human interleukin-1 alpha as a positive control. Following injection of 100 ng leukemia inhibitory factor, ear thickness, measured by micrometer, increased 66% over controls at 12 h and 100% at 24 h (overall p = 0.041 by analysis of variance). Injection of 0.4 ng interleukin-1 alpha caused greater ear swelling. Compared with controls, swelling increased by 67% at 6 h, 100% at 12 h and 340% after 24 h (overall p < or = 0.00001). Leukemia inhibitory factor (100 ng only) stimulated a 3.5-fold increase in leukocytes after 6 h. After 12 h, a 14-fold increase was seen in ears injected with 10 ng leukemia inhibitory factor and a 12-fold increase with 100 ng leukemia inhibitory factor, which remained elevated (17-fold) at 24 h (overall p = 0.0001). Injection of interleukin-1 alpha led to a 3.4-fold increase in leukocytes (mean per 20 high-power fields) after 6 h, a 14-fold increase at 12 h and a 25-fold increase at 24 h (overall p < or = 0.00001). These results demonstrate that leukemia inhibitory factor appears to be a mediator of cutaneous inflammation.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Vernallis, Ann B., Keith R. Hudson et John K. Heath. « An Antagonist for the Leukemia Inhibitory Factor Receptor Inhibits Leukemia Inhibitory Factor, Cardiotrophin-1, Ciliary Neurotrophic Factor, and Oncostatin M ». Journal of Biological Chemistry 272, no 43 (24 octobre 1997) : 26947–52. http://dx.doi.org/10.1074/jbc.272.43.26947.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Okabe, M., Y. Kuni-eda, T. Sugiwura, M. Tanaka, T. Miyagishima, I. Saiki, T. Minagawa, M. Kurosawa, T. Itaya et T. Miyazaki. « Inhibitory effect of interleukin-4 on the in vitro growth of Ph1- positive acute lymphoblastic leukemia cells ». Blood 78, no 6 (15 septembre 1991) : 1574–80. http://dx.doi.org/10.1182/blood.v78.6.1574.1574.

Texte intégral
Résumé :
Abstract We investigated the effect of recombinant human interleukin-4 (rhIL-4) on the in vitro growth of human leukemia cells in liquid culture and 3H- thymidine incorporation and found inhibitory effects on the growth of leukemic cells from patients with Ph1-positive acute lymphoblastic leukemia (Ph1 ALL) and three Ph1 ALL cell lines. However, no inhibitory effects were seen in Ph1-positive leukemic cell lines derived from patients with chronic myelogenous leukemia in blast crisis and various types of Ph1-negative leukemia cells, including B-lineage leukemia cells. In a flow cytometry assay of IL-4 receptor (IL-4R), all three Ph1-positive ALL cell lines showed the presence of IL-4R on their cell surfaces, and the IL-4-dependent inhibition on the growth of Ph1- positive ALL cells was abrogated by the addition of either monoclonal or polyclonal antibodies against rhIL-4. Other cytokines, including IL- 2, IL-3, granulocyte-macrophage colony-stimulating factor (CSF), granulocyte-CSF, and IL-6, showed no inhibitory effects on the growth of Ph1-ALL cells, but tumor necrosis factor-alpha (TNF-alpha) and interferon (IFN)-alpha, -beta, and -gamma displayed slight inhibitory effects in a high concentration. The growth inhibition induced by rhIL- 4 in the Ph1-positive ALL cells was not abrogated by the addition of antibodies against either IFN-gamma or TNF-alpha. Furthermore, these cells showed no significant production of IFN-alpha, -beta, or -gamma or TNF-alpha after exposure to rhIL-4, thus indicating that the growth inhibition of Ph1-positive ALL cells by rhIL-4 is not associated with IL-4-stimulating production of these factors. rhIL-4 caused significant inhibition of the tyrosine kinase activity in these Ph1-positive ALL cells, similar to Herbimycin A, an inhibitor of tyrosine kinase that inhibited the tyrosine kinase activity in these cells. Our finding suggests that the clinical evaluation of rhIL-4 may offer promising therapeutic possibilities for patients with Ph1-positive ALL.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Okabe, M., Y. Kuni-eda, T. Sugiwura, M. Tanaka, T. Miyagishima, I. Saiki, T. Minagawa, M. Kurosawa, T. Itaya et T. Miyazaki. « Inhibitory effect of interleukin-4 on the in vitro growth of Ph1- positive acute lymphoblastic leukemia cells ». Blood 78, no 6 (15 septembre 1991) : 1574–80. http://dx.doi.org/10.1182/blood.v78.6.1574.bloodjournal7861574.

Texte intégral
Résumé :
We investigated the effect of recombinant human interleukin-4 (rhIL-4) on the in vitro growth of human leukemia cells in liquid culture and 3H- thymidine incorporation and found inhibitory effects on the growth of leukemic cells from patients with Ph1-positive acute lymphoblastic leukemia (Ph1 ALL) and three Ph1 ALL cell lines. However, no inhibitory effects were seen in Ph1-positive leukemic cell lines derived from patients with chronic myelogenous leukemia in blast crisis and various types of Ph1-negative leukemia cells, including B-lineage leukemia cells. In a flow cytometry assay of IL-4 receptor (IL-4R), all three Ph1-positive ALL cell lines showed the presence of IL-4R on their cell surfaces, and the IL-4-dependent inhibition on the growth of Ph1- positive ALL cells was abrogated by the addition of either monoclonal or polyclonal antibodies against rhIL-4. Other cytokines, including IL- 2, IL-3, granulocyte-macrophage colony-stimulating factor (CSF), granulocyte-CSF, and IL-6, showed no inhibitory effects on the growth of Ph1-ALL cells, but tumor necrosis factor-alpha (TNF-alpha) and interferon (IFN)-alpha, -beta, and -gamma displayed slight inhibitory effects in a high concentration. The growth inhibition induced by rhIL- 4 in the Ph1-positive ALL cells was not abrogated by the addition of antibodies against either IFN-gamma or TNF-alpha. Furthermore, these cells showed no significant production of IFN-alpha, -beta, or -gamma or TNF-alpha after exposure to rhIL-4, thus indicating that the growth inhibition of Ph1-positive ALL cells by rhIL-4 is not associated with IL-4-stimulating production of these factors. rhIL-4 caused significant inhibition of the tyrosine kinase activity in these Ph1-positive ALL cells, similar to Herbimycin A, an inhibitor of tyrosine kinase that inhibited the tyrosine kinase activity in these cells. Our finding suggests that the clinical evaluation of rhIL-4 may offer promising therapeutic possibilities for patients with Ph1-positive ALL.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Metcalf, D. « The Unsolved Enigmas of Leukemia Inhibitory Factor ». Stem Cells 21, no 1 (1 janvier 2003) : 5–14. http://dx.doi.org/10.1634/stemcells.21-1-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Gulluoglu, Sukru, Mesut Sahin, Emre Can Tuysuz, Cumhur Kaan Yaltirik, Aysegul Kuskucu, Ferda Ozkan, Fikrettin Sahin, Ugur Ture et Omer Faruk Bayrak. « Leukemia Inhibitory Factor Promotes Aggressiveness of Chordoma ». Oncology Research Featuring Preclinical and Clinical Cancer Therapeutics 25, no 7 (7 août 2017) : 1177–88. http://dx.doi.org/10.3727/096504017x14874349473815.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

AGHAJANOVA, LUSINE. « Leukemia Inhibitory Factor and Human Embryo Implantation ». Annals of the New York Academy of Sciences 1034, no 1 (décembre 2004) : 176–83. http://dx.doi.org/10.1196/annals.1335.020.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Metcalf, Donald. « Leukemia Inhibitory Factor—A Puzzling Polyfunctional Regulator ». Growth Factors 7, no 3 (janvier 1992) : 169–73. http://dx.doi.org/10.3109/08977199209046921.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

GEARING, DAVID P. « Leukemia Inhibitory Factor : Does the Cap Fit ? » Annals of the New York Academy of Sciences 628, no 1 Negative Regu (juillet 1991) : 9–18. http://dx.doi.org/10.1111/j.1749-6632.1991.tb17218.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

KURZROCK, RAZELLE, ZEEV ESTROV, MEIR WETZLER, JORDAN U. GUTTERMAN et OSHE MTALPAZ. « LIF : Not Just a Leukemia Inhibitory Factor* ». Endocrine Reviews 12, no 3 (août 1991) : 208–17. http://dx.doi.org/10.1210/edrv-12-3-208.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Cornish, J., K. E. Callon, S. G. Edgar et I. R. Reid. « Leukemia inhibitory factor is mitogenic to osteoblasts ». Bone 21, no 3 (septembre 1997) : 243–47. http://dx.doi.org/10.1016/s8756-3282(97)00144-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Tran, Ami, Kalman Kovacs, Lucia Stefaneanu, George Kontogeorgos, Bernd W. Scheithauer et Shlomo Melmed. « Expression of leukemia inhibitory factor in craniopharyngioma ». Endocrine Pathology 10, no 2 (juin 1999) : 103–8. http://dx.doi.org/10.1007/bf02739822.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Waring, Paul M., Roberto Romero, Nihay Laham, Ricardo Gomez et Gregory E. Rice. « Leukemia inhibitory factor : Association with intraamniotic infection ». American Journal of Obstetrics and Gynecology 171, no 5 (novembre 1994) : 1335–41. http://dx.doi.org/10.1016/0002-9378(94)90157-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Weber, Marietta A., Silvia Schnyder-Candrian, Bruno Schnyder, Valerie Quesniaux, Valeria Poli, Colin L. Stewart et Bernhard Ryffel. « Endogenous leukemia inhibitory factor attenuates endotoxin response ». Laboratory Investigation 85, no 2 (20 décembre 2004) : 276–84. http://dx.doi.org/10.1038/labinvest.3700216.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Lemons, Angela R., et Rajesh K. Naz. « Birth control vaccine targeting leukemia inhibitory factor ». Molecular Reproduction and Development 79, no 2 (2 décembre 2011) : 97–106. http://dx.doi.org/10.1002/mrd.22002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Hemme, E., M. A. C. Depuydt, L. Delfos, J. Kuiper et I. Bot. « Leukemia inhibitory factor receptor inhibition in atherosclerosis ». Atherosclerosis 379 (août 2023) : S36. http://dx.doi.org/10.1016/j.atherosclerosis.2023.06.784.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Hanson, J. M., J. A. Mol et B. P. Meij. « Expression of leukemia inhibitory factor and leukemia inhibitory factor receptor in the canine pituitary gland and corticotrope adenomas ». Domestic Animal Endocrinology 38, no 4 (mai 2010) : 260–71. http://dx.doi.org/10.1016/j.domaniend.2009.11.005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Uno, Kanako, Takeshi Inukai, Nobuhiko Kayagaki, Kumiko Goi, Hiroki Sato, Atsushi Nemoto, Kazuya Takahashi et al. « TNF-related apoptosis-inducing ligand (TRAIL) frequently induces apoptosis in Philadelphia chromosome–positive leukemia cells ». Blood 101, no 9 (1 mai 2003) : 3658–67. http://dx.doi.org/10.1182/blood-2002-06-1770.

Texte intégral
Résumé :
Tumor necrosis factor (TNF)–related apoptosis-inducing ligand (TRAIL) and Fas ligand (FasL) have been implicated in antitumor immunity and therapy. In the present study, we investigated the sensitivity of Philadelphia chromosome (Ph1)–positive leukemia cell lines to TRAIL- or FasL-induced cell death to explore the possible contribution of these molecules to immunotherapy against Ph1-positive leukemias. TRAIL, but not FasL, effectively induced apoptotic cell death in most of 5 chronic myelogenous leukemia–derived and 7 acute leukemia–derived Ph1-positive cell lines. The sensitivity to TRAIL was correlated with cell-surface expression of death-inducing receptors DR4 and/or DR5. The TRAIL-induced cell death was caspase-dependent and enhanced by nuclear factor κB inhibitors. Moreover, primary leukemia cells from Ph1-positive acute lymphoblastic leukemia patients were also sensitive to TRAIL, but not to FasL, depending on DR4/DR5 expression. Fas-associated death domain protein (FADD) and caspase-8, components of death-inducing signaling complex (DISC), as well as FLIP (FLICE [Fas-associating protein with death domain–like interleukin-1–converting enzyme]/caspase-8 inhibitory protein), a negative regulator of caspase-8, were expressed ubiquitously in Ph1-positive leukemia cell lines irrespective of their differential sensitivities to TRAIL and FasL. Notably, TRAIL could induce cell death in the Ph1-positive leukemia cell lines that were refractory to a BCR-ABL–specific tyrosine kinase inhibitor imatinib mesylate (STI571; Novartis Pharma, Basel, Switzerland). These results suggested the potential utility of recombinant TRAIL as a novel therapeutic agent and the possible contribution of endogenously expressed TRAIL to immunotherapy against Ph1-positive leukemias.
Styles APA, Harvard, Vancouver, ISO, etc.
31

Auernhammer, C. J., et S. Melmed. « Leukemia-Inhibitory Factor—Neuroimmune Modulator of Endocrine Function* ». Endocrine Reviews 21, no 3 (1 juin 2000) : 313–45. http://dx.doi.org/10.1210/edrv.21.3.0400.

Texte intégral
Résumé :
Abstract Leukemia-inhibitory factor (LIF) is a pleiotropic cytokine expressed by multiple tissue types. The LIF receptor shares a common gp130 receptor subunit with the IL-6 cytokine superfamily. LIF signaling is mediated mainly by JAK-STAT (janus-kinase-signal transducer and activator of transcription) pathways and is abrogated by the SOCS (suppressor-of cytokine signaling) and PIAS (protein inhibitors of activated STAT) proteins. In addition to classic hematopoietic and neuronal actions, LIF plays a critical role in several endocrine functions including the utero-placental unit, the hypothalamo-pituitary-adrenal axis, bone cell metabolism, energy homeostasis, and hormonally responsive tumors. This paper reviews recent advances in our understanding of molecular mechanisms regulating LIF expression and action and also provides a systemic overview of LIF-mediated endocrine regulation. Local and systemic LIF serve to integrate multiple developmental and functional cell signals, culminating in maintaining appropriate hormonal and metabolic homeostasis. LIF thus functions as a critical molecular interface between the neuroimmune and endocrine systems.
Styles APA, Harvard, Vancouver, ISO, etc.
32

Reinart, Nina, Malgorzata Ciesla, Cornelia Rudolph, Astrid Stein, Guenter Krause, Brigitte Schlegelberger, Michael Hallek et Guenter Fingerle-Rowson. « Macrophage Migration Inhibitory Factor (MIF) Promotes the Development of Murine Chronic Lymphocytic Leukemia (CLL) ». Blood 112, no 11 (16 novembre 2008) : 27. http://dx.doi.org/10.1182/blood.v112.11.27.27.

Texte intégral
Résumé :
Abstract Introduction: Tumor formation results from a complex interplay between genetic/epigenetic alterations, cell cycle dysregulation and promotion by the tumor environment. Stimulation by extracellular survival factors is important for chronic lymphocytic leukemia (CLL), since the leukemic cells undergo spontaneous apoptosis when removed from their normal milieu. Since preliminary experiments demonstrated that macrophage migration inhibitory factor (MIF), a chemokine-like proinflammatory mediator and an intracellular regulator of growth and apoptosis, is overexpressed in human CLL, we investigated whether MIF participates in the pathogenesis of murine CLL. Methods: We studied the role of MIF in CLL by crossing the Eμ-TCL1-transgenic mouse model with MIF knockout (MIF−/−) mice. B-cell-specific overexpression of T cell leukemia-1 (TCL1) leads to accumulation and proliferation of IgM+/CD5+ mature B-cells via activation of AKT. This results in a CLL-like disease with peripheral lymphocytic leukemia, lymphadenopathy, splenomegaly, BM infiltration and premature death after 8–15 months. TCL1+/wtMIF−/− and TCL1+/wtMIF+/+ mice were compared with respect to leukemia development, tumor burden, cytogenetics and survival. Results: The MIF receptors CD74/CD44 and CXCR2 are expressed on murine B-cells. TCL1+/wtMIF+/+ mice exhibited increased numbers of IgM+/CD5+ B-cells already in the preleukemic phase at month 3 and developed overt leukemia (WBC &gt; 20G/l) 3 months earlier than their MIF−/− counterparts (p = 0.02). Leukemia load at 12 months of age as measured by hepatosplenomegaly was increased in TCL1+/wtMIF+/+ animals and lymphatic organs were densely infiltrated by small, mature lymphocytes. The accelerated disease progression in the presence of MIF translated into a median survival which was 60 days shorter than in the absence of MIF (TCL1+/wtMIF+/+ 400 days, TCL1+/wtMIF−/− 460 days, p = 0.04). SKY analysis in leukemic splenocytes yielded various complex genetic aberrations with trisomies (e.g. +15), tetraploidy, translocations and deletions. Overexpression of tp53 due to the presence of an inactivating mutation in the p53 gene was found more frequently in TCL1+/wtMIF+/+ than in TCL1+/wtMIF−/− animals. Although the rates of DNA-damage-induced apoptosis in pre-leukemic and leukemic mice ex vivo were not significantly different between the genotypes, this defect in the p53-dependent apoptosis pathway corresponded with a reduced rate of spontaneous apoptosis in spleens of leukemic TCL1+/wtMIF+/+ animals. Conclusions: Our experience with the Eμ-TCL-1-transgenic mice shows that this model is suitable for the identification of novel regulators of CLL-like disease. We provide genetic proof that MIF acts to promote the early preleukemic and the leukemic phase of TCL1-induced CLL and thereby identify MIF as a novel regulator of CLL pathogenesis. Ongoing efforts are focussing on further characterizing the differences in pathology, the activation of the AKT pathway and cell cycle control between TCL1+/wtMIF−/− and TCL1+/wtMIF+/+ mice.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Conover, J. C., N. Y. Ip, W. T. Poueymirou, B. Bates, M. P. Goldfarb, T. M. DeChiara et G. D. Yancopoulos. « Ciliary neurotrophic factor maintains the pluripotentiality of embryonic stem cells ». Development 119, no 3 (1 novembre 1993) : 559–65. http://dx.doi.org/10.1242/dev.119.3.559.

Texte intégral
Résumé :
Ciliary neurotrophic factor was discovered based on its ability to support the survival of ciliary neurons, and is now known to act on a variety of neuronal and glial populations. Two distant relatives of ciliary neurotrophic factor, leukemia inhibitory factor and oncostatin M, mimic ciliary neurotrophic factor with respect to its actions on cells of the nervous system. In contrast to ciliary neurotrophic factor, leukemia inhibitory factor and oncostatin M also display a broad array of actions on cells outside of the nervous system. The overlapping activities of leukemia inhibitory factor, oncostatin M and ciliary neurotrophic factor can be attributed to shared receptor components. The specificity of ciliary neurotrophic factor for cells of the nervous system results from the restricted expression of the alpha component of the ciliary neurotrophic factor receptor complex, which is required to convert a functional leukemia inhibitory factor/oncostatin M receptor complex into a ciliary neurotrophic factor receptor complex. The recent observation that the alpha component of the ciliary neurotrophic factor receptor complex is expressed by very early neuronal precursors suggested that ciliary neurotrophic factor may act on even earlier precursors, particularly on cells previously thought to be targets for leukemia inhibitory factor action. Here we show the first example of ciliary neurotrophic factor responsiveness in cells residing outside of the nervous system by demonstrating that embryonic stem cells express a functional ciliary neurotrophic factor receptor complex, and that ciliary neurotrophic factor is similar to leukemia inhibitory factor in its ability to maintain the pluripotentiality of these cells.
Styles APA, Harvard, Vancouver, ISO, etc.
34

LI, Yong, Lizhou SUN, Denmei ZHAO, Jun OUYANG et Mei XIANG. « Aberrant expression of leukemia inhibitory factor receptor (LIFR) and leukemia inhibitory factor (LIF) is associated with tubal pregnancy occurrence ». TURKISH JOURNAL OF MEDICAL SCIENCES 45 (2015) : 214–20. http://dx.doi.org/10.3906/sag-1307-103.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Wysoczynski, Marcin, Katarzyna Miekus, Kacper Jankowski, Jens Wanzeck, Salvatore Bertolone, Anna Janowska-Wieczorek, Janina Ratajczak et Mariusz Z. Ratajczak. « Leukemia Inhibitory Factor : A Newly Identified Metastatic Factor in Rhabdomyosarcomas ». Cancer Research 67, no 5 (1 mars 2007) : 2131–40. http://dx.doi.org/10.1158/0008-5472.can-06-1021.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Yokoyama, A., J. Okabe-Kado, A. Sakashita, N. Maseki, Y. Kaneko, K. Hino, S. Tomoyasu, N. Tsuruoka, T. Kasukabe et Y. Honma. « Differentiation inhibitory factor nm23 as a new prognostic factor in acute monocytic leukemia ». Blood 88, no 9 (1 novembre 1996) : 3555–61. http://dx.doi.org/10.1182/blood.v88.9.3555.bloodjournal8893555.

Texte intégral
Résumé :
Differentiation inhibitory factor (nm23 protein) inhibited the induction of differentiation of mouse myeloid leukemia M1 and WEHI-3BD+ and human erythroleukemia HEL, KU812, and K562 cells. Block of differentiation may be associated with the aggressive behavior of leukemia. To examine the role of nm23 in human myeloid leukemia, we investigated the relative levels of nm23-H1, nm23-H2, and c-myc transcripts in 42 patients with acute myelogenous leukemia (AML), and in 5 with chronic myelogenous leukemia at chronic phase by reverse transcriptase polymerase chain reaction. The expression of nm23-H1 and -H2 but not of c-myc in AML was significantly higher than that in normal blood cells. Among AMLs, acute monocytic leukemia (presentation with AML-M5 morphology) was especially associated with elevated nm23-H1 and -H2 mRNA levels. On the other hand, the elevated levels of c-myc expression in AML-M5 were less evident. An analysis of correlation between nm23 expression and clinicopathological parameters showed that resistance to initial chemotherapy is associated with increased nm23-H1 mRNA levels and that a high initial white blood cell count is associated with increased nm23-H2 mRNA levels. Elevated nm23-H1 mRNA levels were associated with significantly reduced the overall survival of AML, especially of AML-M5 patients. The present results indicate that nm23-H1 and -H2 are overexpressed in AML and especially nm23-H1 gene expression predicts the prognosis of AML, especially of AML-M5.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Park, Hye-Rin, Hee-Jung Choi, Bo-Sung Kim, Tae-Wook Chung, Keuk-Jun Kim, Jong-Kil Joo, Dongryeol Ryu, Sung-Jin Bae et Ki-Tae Ha. « Paeoniflorin Enhances Endometrial Receptivity through Leukemia Inhibitory Factor ». Biomolecules 11, no 3 (16 mars 2021) : 439. http://dx.doi.org/10.3390/biom11030439.

Texte intégral
Résumé :
Despite advances in assisted reproductive technology, treatment for deficient endometrial receptivity is a major clinical unmet need. In our previous study, the water extract of Paeonia lactiflora Pall. enhanced endometrial receptivity in vitro and in vivo via induction of leukemia inhibitory factor (LIF), an interleukin (IL)-6 family cytokine. In the present study, we found that paeoniflorin, a monoterpene glycoside, is the major active compound of P. lactiflora. Paeoniflorin significantly improved the embryo implantation rate in a murine model of mifepristone (RU486)-induced implantation failure. In addition, paeoniflorin increased the adhesion of human trophectoderm-derived JAr cells to endometrial Ishikawa cells through the expression of LIF in vitro. Moreover, using the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database of the human endometrium, we confirmed that LIF signaling is a key regulator for improving human endometrial receptivity. Therefore, these results suggest that paeoniflorin might be a potent drug candidate for the treatment of endometrial implantation failure by enhancing endometrial receptivity.
Styles APA, Harvard, Vancouver, ISO, etc.
38

Estrov, Zeev, Moshe Talpaz, Meir Wetzler et Razelle Kurzrock. « The Modulatory Hematopoietic Activities of Leukemia Inhibitory Factor ». Leukemia & ; Lymphoma 8, no 1-2 (janvier 1992) : 1–7. http://dx.doi.org/10.3109/10428199209049811.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

REID, I. R., C. LOWE, J. CORNISH, S. J. M. SKINNER, D. J. HILTON, T. A. WILLSON, D. P. GEARING et T. J. MARTIN. « Leukemia Inhibitory Factor : A Novel Bone-Active Cytokine* ». Endocrinology 126, no 3 (mars 1990) : 1416–20. http://dx.doi.org/10.1210/endo-126-3-1416.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Knight, D., et T. Bai. « Roles for leukemia inhibitory factor in lung biology ». Drug News & ; Perspectives 12, no 5 (1999) : 261. http://dx.doi.org/10.1358/dnp.1999.12.5.863620.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Auernhammer, C. J. « Leukemia-Inhibitory Factor--Neuroimmune Modulator of Endocrine Function ». Endocrine Reviews 21, no 3 (1 juin 2000) : 313–45. http://dx.doi.org/10.1210/er.21.3.313.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

van den Bent, Martin J. « Prevention of Chemotherapy-Induced Neuropathy : Leukemia Inhibitory Factor ». Clinical Cancer Research 11, no 5 (1 mars 2005) : 1691–93. http://dx.doi.org/10.1158/1078-0432.ccr-05-0079.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Ishizaki, Seiji, Takashi Murase, Yoshihisa Sugimura, Ryoichi Banno, Hiroshi Arima, Yoshitaka Miura et Yutaka Oiso. « Leukemia inhibitory factor stimulates vasopressin release in rats ». Neuroscience Letters 359, no 1-2 (avril 2004) : 77–80. http://dx.doi.org/10.1016/j.neulet.2004.02.019.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

McCoy, A. J., V. Staton, A. Van Donkelaar, J. N. Varghese et P. M. Colman. « X-ray crystallographic studies of leukemia inhibitory factor ». Acta Crystallographica Section A Foundations of Crystallography 49, s1 (21 août 1993) : c113. http://dx.doi.org/10.1107/s0108767378096750.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Gearing, David P. « Molecular characterization of the leukemia inhibitory factor receptor ». Fresenius' Journal of Analytical Chemistry 343, no 1 (1992) : 14–15. http://dx.doi.org/10.1007/bf00331947.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Cornish, J., C. Lowe, S. J. M. Skinner, D. J. Hilton, T. A. Willson, D. P. Gearing, T. J. Martin et I. R. Reid. « Leukemia inhibitory factor : A novel bone-active cytokine ». Bone and Mineral 10, no 3 (septembre 1990) : S290. http://dx.doi.org/10.1016/0169-6009(90)90322-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Liu, Shu-Chen, et Yu-Sun Chang. « Role of leukemia inhibitory factor in nasopharyngeal carcinogenesis ». Molecular & ; Cellular Oncology 1, no 1 (janvier 2014) : e29900. http://dx.doi.org/10.4161/mco.29900.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Villiger, P. M., Y. Geng et M. Lotz. « Induction of cytokine expression by leukemia inhibitory factor. » Journal of Clinical Investigation 91, no 4 (1 avril 1993) : 1575–81. http://dx.doi.org/10.1172/jci116363.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Marshall, Jean S., Jack Gauldie, Laurie Nielsen et John Bienenstock. « Leukemia inhibitory factor production by rat mast cells ». European Journal of Immunology 23, no 9 (septembre 1993) : 2116–20. http://dx.doi.org/10.1002/eji.1830230911.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Lowe, Carolyn, Jill Cornish, Karon Callon, John T. Martin et Ian R. Reid. « Regulation of osteoblast proliferation by leukemia inhibitory factor ». Journal of Bone and Mineral Research 6, no 12 (3 décembre 2009) : 1277–83. http://dx.doi.org/10.1002/jbmr.5650061203.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie