Articles de revues sur le sujet « Learning – Econometric models »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Learning – Econometric models ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Kim, Dong-sup, et Seungwoo Shin. « THE ECONOMIC EXPLAINABILITY OF MACHINE LEARNING AND STANDARD ECONOMETRIC MODELS-AN APPLICATION TO THE U.S. MORTGAGE DEFAULT RISK ». International Journal of Strategic Property Management 25, no 5 (13 juillet 2021) : 396–412. http://dx.doi.org/10.3846/ijspm.2021.15129.
Texte intégralLiao, Ruofan, Paravee Maneejuk et Songsak Sriboonchitta. « Beyond Deep Learning : An Econometric Example ». International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 28, Supp01 (28 août 2020) : 31–38. http://dx.doi.org/10.1142/s0218488520400036.
Texte intégralSalmon, Timothy C. « An Evaluation of Econometric Models of Adaptive Learning ». Econometrica 69, no 6 (novembre 2001) : 1597–628. http://dx.doi.org/10.1111/1468-0262.00258.
Texte intégralPérez-Pons, María E., Javier Parra-Dominguez, Sigeru Omatu, Enrique Herrera-Viedma et Juan Manuel Corchado. « Machine Learning and Traditional Econometric Models : A Systematic Mapping Study ». Journal of Artificial Intelligence and Soft Computing Research 12, no 2 (1 avril 2021) : 79–100. http://dx.doi.org/10.2478/jaiscr-2022-0006.
Texte intégralZapata, Hector O., et Supratik Mukhopadhyay. « A Bibliometric Analysis of Machine Learning Econometrics in Asset Pricing ». Journal of Risk and Financial Management 15, no 11 (17 novembre 2022) : 535. http://dx.doi.org/10.3390/jrfm15110535.
Texte intégralAthey, Susan, et Guido W. Imbens. « Machine Learning Methods That Economists Should Know About ». Annual Review of Economics 11, no 1 (2 août 2019) : 685–725. http://dx.doi.org/10.1146/annurev-economics-080217-053433.
Texte intégralFan, Jianqing, Kunpeng Li et Yuan Liao. « Recent Developments in Factor Models and Applications in Econometric Learning ». Annual Review of Financial Economics 13, no 1 (1 novembre 2021) : 401–30. http://dx.doi.org/10.1146/annurev-financial-091420-011735.
Texte intégralShen, Ze, Qing Wan et David J. Leatham. « Bitcoin Return Volatility Forecasting : A Comparative Study between GARCH and RNN ». Journal of Risk and Financial Management 14, no 7 (20 juillet 2021) : 337. http://dx.doi.org/10.3390/jrfm14070337.
Texte intégralIfft, Jennifer, Ryan Kuhns et Kevin Patrick. « Can machine learning improve prediction – an application with farm survey data ». International Food and Agribusiness Management Review 21, no 8 (7 décembre 2018) : 1083–98. http://dx.doi.org/10.22434/ifamr2017.0098.
Texte intégralRondina, Francesca. « An Econometric Learning Approach to Approximate Expectations in Empirical Macro Models ». International Advances in Economic Research 23, no 4 (novembre 2017) : 437–38. http://dx.doi.org/10.1007/s11294-017-9662-8.
Texte intégralStorm, Hugo, Kathy Baylis et Thomas Heckelei. « Machine learning in agricultural and applied economics ». European Review of Agricultural Economics 47, no 3 (21 août 2019) : 849–92. http://dx.doi.org/10.1093/erae/jbz033.
Texte intégralJia, Fang, et Boli Yang. « Forecasting Volatility of Stock Index : Deep Learning Model with Likelihood-Based Loss Function ». Complexity 2021 (25 février 2021) : 1–13. http://dx.doi.org/10.1155/2021/5511802.
Texte intégralErtuğrul, Hasan Murat, Mustafa Tevfik Kartal, Serpil Kılıç Depren et Uğur Soytaş. « Determinants of Electricity Prices in Turkey : An Application of Machine Learning and Time Series Models ». Energies 15, no 20 (12 octobre 2022) : 7512. http://dx.doi.org/10.3390/en15207512.
Texte intégralChlebus, Marcin, Michał Dyczko et Michał Woźniak. « Nvidia's Stock Returns Prediction Using Machine Learning Techniques for Time Series Forecasting Problem ». Central European Economic Journal 8, no 55 (1 janvier 2021) : 44–62. http://dx.doi.org/10.2478/ceej-2021-0004.
Texte intégralShin, Sun-Youn, et Han-Gyun Woo. « Energy Consumption Forecasting in Korea Using Machine Learning Algorithms ». Energies 15, no 13 (2 juillet 2022) : 4880. http://dx.doi.org/10.3390/en15134880.
Texte intégralUlussever, Talat, Hasan Murat Ertuğrul, Serpil Kılıç Depren, Mustafa Tevfik Kartal et Özer Depren. « Estimation of Impacts of Global Factors on World Food Prices : A Comparison of Machine Learning Algorithms and Time Series Econometric Models ». Foods 12, no 4 (18 février 2023) : 873. http://dx.doi.org/10.3390/foods12040873.
Texte intégralNi, Zhehan, et Weilun Chen. « A Comparative Analysis of the Application of Machine Learning Algorithms and Econometric Models in Stock Market Prediction ». BCP Business & ; Management 34 (14 décembre 2022) : 879–90. http://dx.doi.org/10.54691/bcpbm.v34i.3108.
Texte intégralZholudeva, Vera V. « Econometric modeling of the higher education system in Yaroslavl region ». Open Education 22, no 4 (28 août 2018) : 12–20. http://dx.doi.org/10.21686/1818-4243-2018-4-12-20.
Texte intégralJang, H., et J. Lee. « Machine learning versus econometric jump models in predictability and domain adaptability of index options ». Physica A : Statistical Mechanics and its Applications 513 (janvier 2019) : 74–86. http://dx.doi.org/10.1016/j.physa.2018.08.091.
Texte intégralGanicheva, Antonina Valerianovna, et Alexey Valerianovich Ganichev. « Modeling of Trajectories of Obtaining and Assimilation of Knowledge ». Journal of Pedagogical Innovations, no 3 (16 octobre 2022) : 16–24. http://dx.doi.org/10.15293/1812-9463.2203.02.
Texte intégralValier, Agostino. « Who performs better ? AVMs vs hedonic models ». Journal of Property Investment & ; Finance 38, no 3 (26 mars 2020) : 213–25. http://dx.doi.org/10.1108/jpif-12-2019-0157.
Texte intégralHlushak, Oksana M., Svetlana O. Semenyaka, Volodymyr V. Proshkin, Stanislav V. Sapozhnykov et Oksana S. Lytvyn. « The usage of digital technologies in the university training of future bachelors (having been based on the data of mathematical subjects) ». CTE Workshop Proceedings 7 (20 mars 2020) : 210–24. http://dx.doi.org/10.55056/cte.354.
Texte intégralBasu, Rounaq, et Joseph Ferreira. « Understanding household vehicle ownership in Singapore through a comparison of econometric and machine learning models ». Transportation Research Procedia 48 (2020) : 1674–93. http://dx.doi.org/10.1016/j.trpro.2020.08.207.
Texte intégralADAM, KLAUS. « LEARNING TO FORECAST AND CYCLICAL BEHAVIOR OF OUTPUT AND INFLATION ». Macroeconomic Dynamics 9, no 1 (février 2005) : 1–27. http://dx.doi.org/10.1017/s1365100505040101.
Texte intégralLei, Bolin, Boyu Zhang et Yuping Song. « Volatility Forecasting for High-Frequency Financial Data Based on Web Search Index and Deep Learning Model ». Mathematics 9, no 4 (5 février 2021) : 320. http://dx.doi.org/10.3390/math9040320.
Texte intégralCasinillo, Leomarich F., et Emily L. Casinillo. « Econometric Evidence on Self-Determination Theory in Learning Calculus Among Agribusiness Students ». Indonesian Journal of Social Studies 3, no 1 (15 juillet 2020) : 1. http://dx.doi.org/10.26740/ijss.v3n1.p1-12.
Texte intégralCasinillo, Leomarich F., et Emily L. Casinillo. « Econometric Modelling on Happiness in Learning Mathematics : The Case of Senior High Students ». Indonesian Journal of Curriculum and Educational Technology Studies 8, no 1 (29 avril 2020) : 22–31. http://dx.doi.org/10.15294/ijcets.v8i1.38031.
Texte intégralSarkodie, Samuel Asumadu, Emmanuel Ackom, Festus Victor Bekun et Phebe Asantewaa Owusu. « Energy–Climate–Economy–Population Nexus : An Empirical Analysis in Kenya, Senegal, and Eswatini ». Sustainability 12, no 15 (31 juillet 2020) : 6202. http://dx.doi.org/10.3390/su12156202.
Texte intégralDuan, Lingyun, Ziyuan Liu, Wen Yu, Wei Chen, Dongyan Jin, Denghua Li, Suhua Sun et Ruixi Dai. « Modeling Analysis and Comparision of Neural Network Simulation Based on ECM and LSTM ». Journal of Physics : Conference Series 2068, no 1 (1 octobre 2021) : 012041. http://dx.doi.org/10.1088/1742-6596/2068/1/012041.
Texte intégralZhang, Junhao, et Yifei Lei. « Deep Reinforcement Learning for Stock Prediction ». Scientific Programming 2022 (30 avril 2022) : 1–9. http://dx.doi.org/10.1155/2022/5812546.
Texte intégralCasinillo, Emily L., Eusebio R. Lina, Jr., Leomarich F. Casinillo, Paulo G. Batidor et Meralyn R. Lebante. « Econometric Evidence on Statistical Anxiety of Engineering Students during the New Normal Setup ». Philippine Social Science Journal 5, no 4 (15 décembre 2022) : 9–17. http://dx.doi.org/10.52006/main.v5i4.564.
Texte intégralNymoen, Ragnar. « Economic Covid-19 effects analysed by macro econometric models—the case of Norway ». National Accounting Review 5, no 1 (2023) : 1–22. http://dx.doi.org/10.3934/nar.2023001.
Texte intégralCelbiş, Mehmet Güney, Pui-Hang Wong, Karima Kourtit et Peter Nijkamp. « Innovativeness, Work Flexibility, and Place Characteristics : A Spatial Econometric and Machine Learning Approach ». Sustainability 13, no 23 (3 décembre 2021) : 13426. http://dx.doi.org/10.3390/su132313426.
Texte intégralMenculini, Lorenzo, Andrea Marini, Massimiliano Proietti, Alberto Garinei, Alessio Bozza, Cecilia Moretti et Marcello Marconi. « Comparing Prophet and Deep Learning to ARIMA in Forecasting Wholesale Food Prices ». Forecasting 3, no 3 (15 septembre 2021) : 644–62. http://dx.doi.org/10.3390/forecast3030040.
Texte intégralSultana, Abira, et Murshida Khanam. « Forecasting Rice Production of Bangladesh Using ARIMA and Artificial Neural Network Models ». Dhaka University Journal of Science 68, no 2 (29 octobre 2020) : 143–47. http://dx.doi.org/10.3329/dujs.v68i2.54612.
Texte intégralSheng, Yankai, et Ding Ma. « Stock Index Spot–Futures Arbitrage Prediction Using Machine Learning Models ». Entropy 24, no 10 (13 octobre 2022) : 1462. http://dx.doi.org/10.3390/e24101462.
Texte intégralVarian, Hal R. « Big Data : New Tricks for Econometrics ». Journal of Economic Perspectives 28, no 2 (1 mai 2014) : 3–28. http://dx.doi.org/10.1257/jep.28.2.3.
Texte intégralAdamopoulos, Panagiotis, Anindya Ghose et Alexander Tuzhilin. « Heterogeneous Demand Effects of Recommendation Strategies in a Mobile Application : Evidence from Econometric Models and Machine-Learning Instruments ». MIS Quarterly 46, no 1 (15 février 2022) : 101–50. http://dx.doi.org/10.25300/misq/2021/15611.
Texte intégralRosienkiewicz, Maria. « Artificial intelligence-based hybrid forecasting models for manufacturing systems ». Eksploatacja i Niezawodnosc - Maintenance and Reliability 23, no 2 (17 février 2021) : 263–77. http://dx.doi.org/10.17531/ein.2021.2.6.
Texte intégralNieto, M. R., R. B. Carmona Benitez et J. N. Martinez. « Comparing models to forecast cargo volume at port terminals ». Journal of Applied Research and Technology 19, no 3 (30 juin 2021) : 238–49. http://dx.doi.org/10.22201/icat.24486736e.2021.19.3.1695.
Texte intégralchougale, Jeevan, Abhishek Shinde, Ninad Deshmukh, Dhananjay Sawant et Vaishali Latke. « House Price Prediction using Machine learning and Image Processing ». Journal of University of Shanghai for Science and Technology 23, no 06 (18 juin 2021) : 961–65. http://dx.doi.org/10.51201/jusst/21/05280.
Texte intégralKhoa, Bui Thanh, et Tran Trong Huynh. « Forecasting stock price movement direction by machine learning algorithm ». International Journal of Electrical and Computer Engineering (IJECE) 12, no 6 (1 décembre 2022) : 6625. http://dx.doi.org/10.11591/ijece.v12i6.pp6625-6634.
Texte intégralShankar, Venky. « Big Data and Analytics in Retailing ». NIM Marketing Intelligence Review 11, no 1 (1 mai 2019) : 36–40. http://dx.doi.org/10.2478/nimmir-2019-0006.
Texte intégralChen, Mary, Matthew DeHaven, Isabel Kitschelt, Seung Jung Lee et Martin J. Sicilian. « Identifying Financial Crises Using Machine Learning on Textual Data ». Journal of Risk and Financial Management 16, no 3 (1 mars 2023) : 161. http://dx.doi.org/10.3390/jrfm16030161.
Texte intégralAmpomah, Ernest Kwame, Zhiguang Qin et Gabriel Nyame. « Evaluation of Tree-Based Ensemble Machine Learning Models in Predicting Stock Price Direction of Movement ». Information 11, no 6 (20 juin 2020) : 332. http://dx.doi.org/10.3390/info11060332.
Texte intégralJi, Xuan, Jiachen Wang et Zhijun Yan. « A stock price prediction method based on deep learning technology ». International Journal of Crowd Science 5, no 1 (5 mars 2021) : 55–72. http://dx.doi.org/10.1108/ijcs-05-2020-0012.
Texte intégralJacob, Daniel. « CATE meets ML ». Digital Finance 3, no 2 (juin 2021) : 99–148. http://dx.doi.org/10.1007/s42521-021-00033-7.
Texte intégralGhosh, Indranil, Rabin K. Jana et Manas K. Sanyal. « Analysis of temporal pattern, causal interaction and predictive modeling of financial markets using nonlinear dynamics, econometric models and machine learning algorithms ». Applied Soft Computing 82 (septembre 2019) : 105553. http://dx.doi.org/10.1016/j.asoc.2019.105553.
Texte intégralGeraldo-Campos, Luis Alberto, Juan J. Soria et Tamara Pando-Ezcurra. « Machine Learning for Credit Risk in the Reactive Peru Program : A Comparison of the Lasso and Ridge Regression Models ». Economies 10, no 8 (30 juillet 2022) : 188. http://dx.doi.org/10.3390/economies10080188.
Texte intégralAgbenyega, Diana Ayorkor, John Andoh, Samuel Iddi et Louis Asiedu. « Modelling Customs Revenue in Ghana Using Novel Time Series Methods ». Applied Computational Intelligence and Soft Computing 2022 (18 avril 2022) : 1–8. http://dx.doi.org/10.1155/2022/2111587.
Texte intégral