Articles de revues sur le sujet « Learning – Econometric models »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Learning – Econometric models ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Silahtaroğlu, Yenilmez Oğuz. "Machine Learning Integration in Econometric Models." Next Generation Journal for The Young Researchers 8, no. 1 (2024): 77. http://dx.doi.org/10.62802/8c33p210.
Texte intégralDokumacı, Melis. "AI-Driven Econometric Models for Legal Issues." Human Computer Interaction 8, no. 1 (2024): 137. https://doi.org/10.62802/btfvze98.
Texte intégralKim, Dong-sup, and Seungwoo Shin. "THE ECONOMIC EXPLAINABILITY OF MACHINE LEARNING AND STANDARD ECONOMETRIC MODELS-AN APPLICATION TO THE U.S. MORTGAGE DEFAULT RISK." International Journal of Strategic Property Management 25, no. 5 (2021): 396–412. http://dx.doi.org/10.3846/ijspm.2021.15129.
Texte intégralLiao, Ruofan, Paravee Maneejuk, and Songsak Sriboonchitta. "Beyond Deep Learning: An Econometric Example." International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 28, Supp01 (2020): 31–38. http://dx.doi.org/10.1142/s0218488520400036.
Texte intégralSalmon, Timothy C. "An Evaluation of Econometric Models of Adaptive Learning." Econometrica 69, no. 6 (2001): 1597–628. http://dx.doi.org/10.1111/1468-0262.00258.
Texte intégralPérez-Pons, María E., Javier Parra-Dominguez, Sigeru Omatu, Enrique Herrera-Viedma, and Juan Manuel Corchado. "Machine Learning and Traditional Econometric Models: A Systematic Mapping Study." Journal of Artificial Intelligence and Soft Computing Research 12, no. 2 (2021): 79–100. http://dx.doi.org/10.2478/jaiscr-2022-0006.
Texte intégralZapata, Hector O., and Supratik Mukhopadhyay. "A Bibliometric Analysis of Machine Learning Econometrics in Asset Pricing." Journal of Risk and Financial Management 15, no. 11 (2022): 535. http://dx.doi.org/10.3390/jrfm15110535.
Texte intégralAnand, Kumar Dohare, and Abuzaid Mohammad. "Forecasting Stock Prices through Time Series, Econometric, Machine Learning, and Deep Learning Models." International Journal of Engineering and Management Research 14, no. 1 (2024): 77–85. https://doi.org/10.5281/zenodo.10688767.
Texte intégralAthey, Susan, and Guido W. Imbens. "Machine Learning Methods That Economists Should Know About." Annual Review of Economics 11, no. 1 (2019): 685–725. http://dx.doi.org/10.1146/annurev-economics-080217-053433.
Texte intégralBukina, T., and D. Kashin. "Regional Inflation Forecasting: Econometric Models Versus Machine Learning Methods?" Higher School of Economics Economic Journal 28, no. 1 (2024): 81–107. http://dx.doi.org/10.17323/1813-8691-2024-28-1-81-107.
Texte intégralShen, Ze, Qing Wan, and David J. Leatham. "Bitcoin Return Volatility Forecasting: A Comparative Study between GARCH and RNN." Journal of Risk and Financial Management 14, no. 7 (2021): 337. http://dx.doi.org/10.3390/jrfm14070337.
Texte intégralGOUD, KEKKERENI GANESH, and BANDI SHIVARAMA DEEKSHITH. "Forecasting Stock Prices Using Time-Series Analysis, Regression Learning, and Deep Learning Models." INTERANTIONAL JOURNAL OF SCIENTIFIC RESEARCH IN ENGINEERING AND MANAGEMENT 08, no. 03 (2024): 1–13. http://dx.doi.org/10.55041/ijsrem28956.
Texte intégralFan, Jianqing, Kunpeng Li, and Yuan Liao. "Recent Developments in Factor Models and Applications in Econometric Learning." Annual Review of Financial Economics 13, no. 1 (2021): 401–30. http://dx.doi.org/10.1146/annurev-financial-091420-011735.
Texte intégralЯРОМЕНКО, Н. Н., Р. В. ТКАЧ, Р. Р. ХАБОХОВ, З. Н. СОРОКА, and М. М. РАШИДОВ. "MACHINE LEARNING AS INNOVATION IN ECONOMETRICS." Экономика и предпринимательство, no. 7(168) (August 6, 2024): 1116–19. http://dx.doi.org/10.34925/eip.2024.168.7.222.
Texte intégralIfft, Jennifer, Ryan Kuhns, and Kevin Patrick. "Can machine learning improve prediction – an application with farm survey data." International Food and Agribusiness Management Review 21, no. 8 (2018): 1083–98. http://dx.doi.org/10.22434/ifamr2017.0098.
Texte intégralJia, Fang, and Boli Yang. "Forecasting Volatility of Stock Index: Deep Learning Model with Likelihood-Based Loss Function." Complexity 2021 (February 25, 2021): 1–13. http://dx.doi.org/10.1155/2021/5511802.
Texte intégralDr. Osama Ali, Dr. Surayya Jamal, Fakhra Aslam, Salman Malik, Muhammad Abdul Rehman, and Muhammad Ali. "Empirical Dynamics in Econometrics: Analyzing Behavioral Patterns, Predictive Modeling, and Policy Implications in Economic Data." Critical Review of Social Sciences Studies 3, no. 2 (2025): 753–73. https://doi.org/10.59075/wcde7a13.
Texte intégralDr. Osama Ali, Dr. Surayya Jamal, Fakhra Aslam, Salman Malik, Muhammad Abdul Rehman, and Muhammad Ali. "Empirical Dynamics in Econometrics: Analyzing Behavioral Patterns, Predictive Modeling, and Policy Implications in Economic Data." Critical Review of Social Sciences Studies 3, no. 2 (2025): 753–73. https://doi.org/10.59075/dqyche92.
Texte intégralKONTSEVAYA, NATALIA V., NATALIA V. GRINEVA, SVETLANA S. MIKHAILOVA, and RAMZAN M. BASNUKAEV. "DEMOGRAPHIC PROCESSES IN RUSSIA: A COMPARATIVE ANALYSIS OF PREDICTIVE MODELS." Economic Problems and Legal Practice 21, no. 1 (2025): 195–211. https://doi.org/10.33693/2541-8025-2025-21-1-195-211.
Texte intégralStorm, Hugo, Kathy Baylis, and Thomas Heckelei. "Machine learning in agricultural and applied economics." European Review of Agricultural Economics 47, no. 3 (2019): 849–92. http://dx.doi.org/10.1093/erae/jbz033.
Texte intégralTripathy, Nrusingha, Debahuti Mishra, Sarbeswara Hota, et al. "Bitcoin volatility forecasting: a comparative analysis of conventional econometric models with deep learning models." International Journal of Electrical and Computer Engineering (IJECE) 15, no. 1 (2025): 614. http://dx.doi.org/10.11591/ijece.v15i1.pp614-623.
Texte intégralTripathy, Nrusingha, Debahuti Mishra, Sarbeswara Hota, et al. "Bitcoin volatility forecasting: a comparative analysis of conventional econometric models with deep learning models." International Journal of Electrical and Computer Engineering (IJECE) 15, no. 1 (2025): 614–23. https://doi.org/10.11591/ijece.v15i1.pp614-623.
Texte intégralRondina, Francesca. "An Econometric Learning Approach to Approximate Expectations in Empirical Macro Models." International Advances in Economic Research 23, no. 4 (2017): 437–38. http://dx.doi.org/10.1007/s11294-017-9662-8.
Texte intégralErtuğrul, Hasan Murat, Mustafa Tevfik Kartal, Serpil Kılıç Depren, and Uğur Soytaş. "Determinants of Electricity Prices in Turkey: An Application of Machine Learning and Time Series Models." Energies 15, no. 20 (2022): 7512. http://dx.doi.org/10.3390/en15207512.
Texte intégralMartjanov, Dmytro, Yaroslav Vyklyuk, and Mariya Fleychuk. "Modeling cryptocurrency market dynamics using machine learning tools." System research and information technologies, no. 4 (December 26, 2023): 54–68. http://dx.doi.org/10.20535/srit.2308-8893.2023.4.04.
Texte intégralSoliev, Oybek, and Matekub Bakoev. "ECONOMETRIC ANALYSIS AND FORECASTING OF FDI INFLOWS USING NEURAL NETWORKS (AI)." ACUMEN: INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY RESEARCH 2, no. 5 (2025): 11–17. https://doi.org/10.5281/zenodo.15375134.
Texte intégralChlebus, Marcin, Michał Dyczko, and Michał Woźniak. "Nvidia's Stock Returns Prediction Using Machine Learning Techniques for Time Series Forecasting Problem." Central European Economic Journal 8, no. 55 (2021): 44–62. http://dx.doi.org/10.2478/ceej-2021-0004.
Texte intégralKomal Batool, Mirza Faizan Ahmed, and Muhammad Ali Ismail. "A Hybrid Model of Machine Learning Model and Econometrics’ Model to Predict Volatility of KSE-100 Index." Reviews of Management Sciences 4, no. 1 (2022): 225–39. http://dx.doi.org/10.53909/rms.04.01.0125.
Texte intégralUlussever, Talat, Hasan Murat Ertuğrul, Serpil Kılıç Depren, Mustafa Tevfik Kartal, and Özer Depren. "Estimation of Impacts of Global Factors on World Food Prices: A Comparison of Machine Learning Algorithms and Time Series Econometric Models." Foods 12, no. 4 (2023): 873. http://dx.doi.org/10.3390/foods12040873.
Texte intégralShin, Sun-Youn, and Han-Gyun Woo. "Energy Consumption Forecasting in Korea Using Machine Learning Algorithms." Energies 15, no. 13 (2022): 4880. http://dx.doi.org/10.3390/en15134880.
Texte intégralNi, Zhehan, and Weilun Chen. "A Comparative Analysis of the Application of Machine Learning Algorithms and Econometric Models in Stock Market Prediction." BCP Business & Management 34 (December 14, 2022): 879–90. http://dx.doi.org/10.54691/bcpbm.v34i.3108.
Texte intégralXia, Shaoliang, Zhen Wu, and Qingqing Song. "Scenarios Driving Economic Forecasts: Choosing Econometrics or Machine Learning." Journal of Economic Theory and Business Management 1, no. 2 (2024): 7–26. https://doi.org/10.5281/zenodo.10927145.
Texte intégralDROBYSHEVSKAYA, Larisa N., and Nikita A. DANKOV. "Short-term forecasting of inflation, output of goods and services using machine learning." Finance and Credit 31, no. 1 (2025): 91–112. https://doi.org/10.24891/fc.31.1.91.
Texte intégralZholudeva, Vera V. "Econometric modeling of the higher education system in Yaroslavl region." Open Education 22, no. 4 (2018): 12–20. http://dx.doi.org/10.21686/1818-4243-2018-4-12-20.
Texte intégralMasala, Giovanni, and Amelie Schischke. "Forecasting Wind–Photovoltaic Energy Production and Income with Traditional and ML Techniques." Econometrics 12, no. 4 (2024): 34. http://dx.doi.org/10.3390/econometrics12040034.
Texte intégralAbhijit Biswas, Chandrim Banerjee, Meghdoot Ghosh, Moumita Saha, Saurabh Bakshi, and Anirban Ghosh. "A Comparative Lens on Econometric Standards and Fusion-Based Models." Metallurgical and Materials Engineering 31, no. 3 (2025): 310–25. https://doi.org/10.63278/1372.
Texte intégralJang, H., and J. Lee. "Machine learning versus econometric jump models in predictability and domain adaptability of index options." Physica A: Statistical Mechanics and its Applications 513 (January 2019): 74–86. http://dx.doi.org/10.1016/j.physa.2018.08.091.
Texte intégralAhrens, Achim, Christian B. Hansen, Mark E. Schaffer, and Thomas Wiemann. "ddml: Double/debiased machine learning in Stata." Stata Journal: Promoting communications on statistics and Stata 24, no. 1 (2024): 3–45. http://dx.doi.org/10.1177/1536867x241233641.
Texte intégralGanicheva, Antonina Valerianovna, and Alexey Valerianovich Ganichev. "Modeling of Trajectories of Obtaining and Assimilation of Knowledge." Journal of Pedagogical Innovations, no. 3 (October 16, 2022): 16–24. http://dx.doi.org/10.15293/1812-9463.2203.02.
Texte intégralÖztürk, Cemal. "INTEGRATING ECONOMETRIC AND DEEP LEARNING MODELS FOR ENERGY PRICE PREDICTION: A HYBRID APPROACH USING WEATHER AND MARKET DATA." İstanbul Ticaret Üniversitesi Fen Bilimleri Dergisi 24, no. 47 (2025): 135–75. https://doi.org/10.55071/ticaretfbd.1578209.
Texte intégralMa, Xiaoya, Mengxiu Li, Jin Tong, and Xiaying Feng. "Deep Learning Combinatorial Models for Intelligent Supply Chain Demand Forecasting." Biomimetics 8, no. 3 (2023): 312. http://dx.doi.org/10.3390/biomimetics8030312.
Texte intégralHlushak, Oksana M., Svetlana O. Semenyaka, Volodymyr V. Proshkin, Stanislav V. Sapozhnykov, and Oksana S. Lytvyn. "The usage of digital technologies in the university training of future bachelors (having been based on the data of mathematical subjects)." CTE Workshop Proceedings 7 (March 20, 2020): 210–24. http://dx.doi.org/10.55056/cte.354.
Texte intégralShaker, Atheel Sabih, Guma Ali, Wamusi Robert, and Habib Hassan. "Deep Learning-Based Neural Network Modeling for Economic Performance Prediction: An Empirical Study on Iraq." EDRAAK 2025 (February 20, 2025): 47–56. https://doi.org/10.70470/edraak/2025/007.
Texte intégralValier, Agostino. "Who performs better? AVMs vs hedonic models." Journal of Property Investment & Finance 38, no. 3 (2020): 213–25. http://dx.doi.org/10.1108/jpif-12-2019-0157.
Texte intégralChenfan Duan, Bin Li,. "Construction and Optimization of Macroeconomic Data Forecasting Model Based on Machine Learning." Journal of Electrical Systems 20, no. 3s (2024): 436–47. http://dx.doi.org/10.52783/jes.1310.
Texte intégralGadhi, Adel Hassan A., Shelton Peiris, and David E. Allen. "Improving Volatility Forecasting: A Study through Hybrid Deep Learning Methods with WGAN." Journal of Risk and Financial Management 17, no. 9 (2024): 380. http://dx.doi.org/10.3390/jrfm17090380.
Texte intégralKufile, Omolola Temitope, Bisayo Oluwatosin Otokiti, Abiodun Yusuf Onifade, Bisi Ogunwale, and Chinelo Harriet Okolo. "Designing Retargeting Optimization Models Based on Predictive Behavioral Triggers." International Journal of Multidisciplinary Research and Growth Evaluation 3, no. 2 (2022): 767–77. https://doi.org/10.54660/.ijmrge.2022.3.2.767-777.
Texte intégralZhang, Gongrun. "Using Machine Learning for Stock Return Prediction." Advances in Economics, Management and Political Sciences 185, no. 1 (2025): 119–26. https://doi.org/10.54254/2754-1169/2025.lh23915.
Texte intégralWang, Shuo. "Machine Learning Approaches to Stock Index Prediction." Advances in Economics, Management and Political Sciences 176, no. 1 (2025): 135–40. https://doi.org/10.54254/2754-1169/2025.22100.
Texte intégralXin, Lee Yong, Chin Wen Cheong, Gloria Teng Ai Hui, and Lim Min. "Gold market risk evaluations using GARCH incorporate with machine learning." Journal of Statistics and Management Systems 27, no. 7 (2024): 1381–91. https://doi.org/10.47974/jsms-1214.
Texte intégral