Littérature scientifique sur le sujet « Learning – Econometric models »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Learning – Econometric models ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Learning – Econometric models"
Kim, Dong-sup, et Seungwoo Shin. « THE ECONOMIC EXPLAINABILITY OF MACHINE LEARNING AND STANDARD ECONOMETRIC MODELS-AN APPLICATION TO THE U.S. MORTGAGE DEFAULT RISK ». International Journal of Strategic Property Management 25, no 5 (13 juillet 2021) : 396–412. http://dx.doi.org/10.3846/ijspm.2021.15129.
Texte intégralLiao, Ruofan, Paravee Maneejuk et Songsak Sriboonchitta. « Beyond Deep Learning : An Econometric Example ». International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 28, Supp01 (28 août 2020) : 31–38. http://dx.doi.org/10.1142/s0218488520400036.
Texte intégralSalmon, Timothy C. « An Evaluation of Econometric Models of Adaptive Learning ». Econometrica 69, no 6 (novembre 2001) : 1597–628. http://dx.doi.org/10.1111/1468-0262.00258.
Texte intégralPérez-Pons, María E., Javier Parra-Dominguez, Sigeru Omatu, Enrique Herrera-Viedma et Juan Manuel Corchado. « Machine Learning and Traditional Econometric Models : A Systematic Mapping Study ». Journal of Artificial Intelligence and Soft Computing Research 12, no 2 (1 avril 2021) : 79–100. http://dx.doi.org/10.2478/jaiscr-2022-0006.
Texte intégralZapata, Hector O., et Supratik Mukhopadhyay. « A Bibliometric Analysis of Machine Learning Econometrics in Asset Pricing ». Journal of Risk and Financial Management 15, no 11 (17 novembre 2022) : 535. http://dx.doi.org/10.3390/jrfm15110535.
Texte intégralAthey, Susan, et Guido W. Imbens. « Machine Learning Methods That Economists Should Know About ». Annual Review of Economics 11, no 1 (2 août 2019) : 685–725. http://dx.doi.org/10.1146/annurev-economics-080217-053433.
Texte intégralFan, Jianqing, Kunpeng Li et Yuan Liao. « Recent Developments in Factor Models and Applications in Econometric Learning ». Annual Review of Financial Economics 13, no 1 (1 novembre 2021) : 401–30. http://dx.doi.org/10.1146/annurev-financial-091420-011735.
Texte intégralShen, Ze, Qing Wan et David J. Leatham. « Bitcoin Return Volatility Forecasting : A Comparative Study between GARCH and RNN ». Journal of Risk and Financial Management 14, no 7 (20 juillet 2021) : 337. http://dx.doi.org/10.3390/jrfm14070337.
Texte intégralIfft, Jennifer, Ryan Kuhns et Kevin Patrick. « Can machine learning improve prediction – an application with farm survey data ». International Food and Agribusiness Management Review 21, no 8 (7 décembre 2018) : 1083–98. http://dx.doi.org/10.22434/ifamr2017.0098.
Texte intégralRondina, Francesca. « An Econometric Learning Approach to Approximate Expectations in Empirical Macro Models ». International Advances in Economic Research 23, no 4 (novembre 2017) : 437–38. http://dx.doi.org/10.1007/s11294-017-9662-8.
Texte intégralThèses sur le sujet "Learning – Econometric models"
Boumediene, Farid Jimmy. « Determinacy and learning stability of economic policy in asymmetric monetary union models ». Thesis, University of St Andrews, 2010. http://hdl.handle.net/10023/972.
Texte intégralPesantez, Narvaez Jessica Estefania. « Risk Analytics in Econometrics ». Doctoral thesis, Universitat de Barcelona, 2021. http://hdl.handle.net/10803/671864.
Texte intégralRopele, Andrea <1994>. « The Blockchain technology and a comparison between classical statistical models and machine learning methods for time series analysis ». Master's Degree Thesis, Università Ca' Foscari Venezia, 2018. http://hdl.handle.net/10579/13238.
Texte intégralNguyen, Trong Nghia. « Deep Learning Based Statistical Models for Business and Financial Data ». Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/26944.
Texte intégralAzari, Soufiani Hossein. « Revisiting Random Utility Models ». Thesis, Harvard University, 2014. http://dissertations.umi.com/gsas.harvard:11605.
Texte intégralEngineering and Applied Sciences
Zhao, Zilong. « Extracting knowledge from macroeconomic data, images and unreliable data ». Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALT074.
Texte intégralSystem identification and machine learning are two similar concepts independently used in automatic and computer science community. System identification uses statistical methods to build mathematical models of dynamical systems from measured data. Machine learning algorithms build a mathematical model based on sample data, known as "training data" (clean or not), in order to make predictions or decisions without being explicitly programmed to do so. Except prediction accuracy, converging speed and stability are another two key factors to evaluate the training process, especially in the online learning scenario, and these properties have already been well studied in control theory. Therefore, this thesis will implement the interdisciplinary researches for following topic: 1) System identification and optimal control on macroeconomic data: We first modelize the China macroeconomic data on Vector Auto-Regression (VAR) model, then identify the cointegration relation between variables and use Vector Error Correction Model (VECM) to study the short-time fluctuations around the long-term equilibrium, Granger Causality is also studied with VECM. This work reveals the trend of China's economic growth transition: from export-oriented to consumption-oriented; Due to limitation of China economic data, we turn to use France macroeconomic data in the second study. We represent the model in state-space, put the model into a feedback control framework, the controller is designed by Linear-Quadratic Regulator (LQR). The system can apply the control law to bring the system to a desired state. We can also impose perturbations on outputs and constraints on inputs, which emulates the real-world situation of economic crisis. Economists can observe the recovery trajectory of economy, which gives meaningful implications for policy-making. 2) Using control theory to improve the online learning of deep neural network: We propose a performance-based learning rate algorithm: E (Exponential)/PD (Proportional Derivative) feedback control, which consider the Convolutional Neural Network (CNN) as plant, learning rate as control signal and loss value as error signal. Results show that E/PD outperforms the state-of-the-art in final accuracy, final loss and converging speed, and the result are also more stable. However, one observation from E/PD experiments is that learning rate decreases while loss continuously decreases. But loss decreases mean model approaches optimum, we should not decrease the learning rate. To prevent this, we propose an event-based E/PD. Results show that it improves E/PD in final accuracy, final loss and converging speed; Another observation from E/PD experiment is that online learning fixes a constant training epoch for each batch. Since E/PD converges fast, the significant improvement only comes from the beginning epochs. Therefore, we propose another event-based E/PD, which inspects the historical loss, when the progress of training is lower than a certain threshold, we turn to next batch. Results show that it can save up to 67% epochs on CIFAR-10 dataset without degrading much performance. 3) Machine learning out of unreliable data: We propose a generic framework: Robust Anomaly Detector (RAD), The data selection part of RAD is a two-layer framework, where the first layer is used to filter out the suspicious data, and the second layer detects the anomaly patterns from the remaining data. We also derive three variations of RAD namely, voting, active learning and slim, which use additional information, e.g., opinions of conflicting classifiers and queries of oracles. We iteratively update the historical selected data to improve accumulated data quality. Results show that RAD can continuously improve model's performance under the presence of noise on labels. Three variations of RAD show they can all improve the original setting, and the RAD Active Learning performs almost as good as the case where there is no noise on labels
Mayer, Alexander Simon [Verfasser], Michael [Gutachter] Massmann et Jörg [Gutachter] Breitung. « Testing for exogeneity and an essay on the econometrics of adaptive learning models / Alexander Simon Mayer ; Gutachter : Michael Massmann, Jörg Breitung ». Vallendar : WHU - Otto Beisheim School of Management, 2021. http://d-nb.info/1238595677/34.
Texte intégralMachado, Vicente da Gama. « Essays on inflation and monetary policy ». reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2011. http://hdl.handle.net/10183/40247.
Texte intégralThis thesis is composed of three essays on monetary policy and inflation that share particular emphasis on the importance of expectations for both monetary policy design and inflation dynamics. First we contribute to the debate on the appropriate response of monetary policy to asset price fluctuations in an adaptive learning context. Our model accounts for two types of instrumental rules in the spirit of Bullard and Mitra (2002), but with an additional role for asset prices. From the point of view of EStability, we find that a response to stock prices is not desirable under both a forward expectations policy rule and an interest rate rule responding to contemporaneous values. Heterogeneous beliefs about the dynamics of asset price fluctuations, inflation and the output gap are introduced. We also evaluate an optimal monetary policy rule including a weight on asset prices. Overall we find that the Taylor principle remain important over all interest rate rules analysed and that central banks should remain cautious when considering the introduction of stock prices in monetary policy. In the second essay, we provide recent estimates of inflation persistence in Brazil in a multivariate framework of unobserved components, whereby we account for the following sources affecting inflation persistence: First, deviations of expectations from the actual policy target; second, persistence of the factors driving inflation; and third, lagged inflation terms. Data on inflation, output and interest rates are decomposed into unobserved components and to simplify the estimation of a great number of unknown variables, we utilize bayesian analysis as in Dossche and Everaert (2005). Our results indicate that expectations-based persistence matters considerably for inflation persistence in Brazil, which has experienced an overall decrease in the last few years. This finding implies that traditional price-setting frictions used in macroeconomic models are not enough to represent actual inflation persistence. In the last chapter we estimate alternative reduced-form Phillips curves with recent Brazilian data, using a framework of time series with unobserved components, as an alternative to traditional GMM estimations of the New Keynesian Phillips Curve (NKPC), which have seldom been empirically successful. The decomposition into trend, seasonal and cycle features offers, through the graphical output, straightforward economic interpretations. Differently from Harvey (2011), we allow for inflation expectations as in the usual NKPC. Inflation in Brazil seems to have responded gradually less to measures of economic activity in recent years. This provides some evidence of a flattening of the Phillips curve in Brazil, which means higher costs of disinflation on the one hand, but also lower inflationary pressures derived from output growth, on the other.
Ormeño, Sánchez Arturo. « Essays on Inflation Expectations, Heterogeneous Agents, and the Use of Approximated Solutions in the Estimation of DSGE models ». Doctoral thesis, Universitat Pompeu Fabra, 2011. http://hdl.handle.net/10803/51247.
Texte intégralEn esta tesis analizo desvíos de tres supuestos comunes en la elaboración y estimación de modelos macroeconómicos. Estos supuestos son la Hipótesis de Expectativas Racionales (ER), el supuesto del Agente Representativo, y el uso de aproximaciones de primer orden en la estimación de los modelos de equilibrio general. En el primer capítulo determino como el empleo de datos de expectativas de inflación en la estimación de un modelo puede alterar la evaluación del supuesto de ER en comparación a un supuesto alternativo como learning. En el segundo capítulo, utilizo modelos de agentes heterogéneos para determinar la relación entre la volatilidad de los ingresos y la demanda de bienes durables. En el tercer capítulo, analizo si el uso de aproximaciones de primer orden afecta la evaluación de los determinantes de la Gran Moderación.
ADAM, Klaus. « Learning and Price Behavior : microeconomic and macroeconomic implications ». Doctoral thesis, 2001. http://hdl.handle.net/1814/4863.
Texte intégralExamining board: Prof. Seppo Honkapohja, University of Helsinki ; Prof. Ramon Marimon, EUI and Under-Secretary for Science and Technology, Madrid, Supervisor ; Prof. Thomas Sargent, Hoover Institution, Stanford University ; Prof. Karl Schlag, EUI
PDF of thesis uploaded from the Library digitised archive of EUI PhD theses completed between 2013 and 2017
Livres sur le sujet "Learning – Econometric models"
Acemoglu, Daron. Learning and disagreement in an uncertain world. Cambridge, Mass : National Bureau of Economic Research, 2006.
Trouver le texte intégralAcemoglu, Daron. Learning and disagreement in an uncertain world. Cambridge, MA : Massachusetts Institute of Technology, Dept. of Economics, 2006.
Trouver le texte intégralGourinchas, Pierre-Olivier. Exchange rate dynamics and learning. Cambridge, MA : National Bureau of Economic Research, 1996.
Trouver le texte intégralGuidolin, Massimo. Home bias and high turnover in an overlapping generations model with learning. [St. Louis, Mo.] : Federal Reserve Bank of St. Louis, 2005.
Trouver le texte intégralGuidolin, Massimo. Pessimistic beliefs under rational learning : Quantitative implications for the equity premium puzzle. [St. Louis, Mo.] : Federal Reserve Bank of St. Louis, 2005.
Trouver le texte intégralGuidolin, Massimo. Properties of equilibrium asset prices under alternative learning schemes. [St. Louis, Mo.] : Federal Reserve Bank of St. Louis, 2005.
Trouver le texte intégralGilchrist, Simon. Expectations, asset prices, and monetary policy : The role of learning. Cambridge, Mass : National Bureau of Economic Research, 2006.
Trouver le texte intégralBouakez, Hafedh. Learning-by-doing or habit formation ? Ottawa : Bank of Canada, 2005.
Trouver le texte intégralBouakez, Hafedh. Learning-by-doing or habit formation ? Ottawa : Bank of Canada, 2005.
Trouver le texte intégralJacques. Productivity shocks, learning, and open economy dynamics. [Washington D.C.] : International Monetary Fund, IMF Institute, 2004.
Trouver le texte intégralChapitres de livres sur le sujet "Learning – Econometric models"
Chan, Felix, et László Mátyás. « Linear Econometric Models with Machine Learning ». Dans Advanced Studies in Theoretical and Applied Econometrics, 1–39. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15149-1_1.
Texte intégralChan, Felix, Mark N. Harris, Ranjodh B. Singh et Wei Ern Yeo. « Nonlinear Econometric Models with Machine Learning ». Dans Advanced Studies in Theoretical and Applied Econometrics, 41–78. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15149-1_2.
Texte intégralMariel, Petr, David Hoyos, Jürgen Meyerhoff, Mikolaj Czajkowski, Thijs Dekker, Klaus Glenk, Jette Bredahl Jacobsen et al. « Econometric Modelling : Extensions ». Dans Environmental Valuation with Discrete Choice Experiments, 83–101. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62669-3_6.
Texte intégralLehrer, Steven F., Tian Xie et Guanxi Yi. « Do the Hype of the Benefits from Using New Data Science Tools Extend to Forecasting Extremely Volatile Assets ? » Dans Data Science for Economics and Finance, 287–330. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66891-4_13.
Texte intégralBuckmann, Marcus, Andreas Joseph et Helena Robertson. « Opening the Black Box : Machine Learning Interpretability and Inference Tools with an Application to Economic Forecasting ». Dans Data Science for Economics and Finance, 43–63. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66891-4_3.
Texte intégralVovsha, Peter. « Comparison of Traditional Econometric Models and Machine Learning Methods in the Context of Travel Decision Making and Perspectives for Synergy ». Dans Decision Economics : Minds, Machines, and their Society, 177–86. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75583-6_18.
Texte intégralArminger, Gerhard. « The Analysis of Growth and Learning Curves with Mean- and Covariance Structure Models ». Dans Econometrics in Theory and Practice, 143–58. Heidelberg : Physica-Verlag HD, 1998. http://dx.doi.org/10.1007/978-3-642-47027-1_14.
Texte intégralParvin Hosseini, Seyed Mehrshad, et Aydin Azizi. « Machine Learning Approach to Identify Predictors in an Econometric Model of Innovation ». Dans Big Data Approach to Firm Level Innovation in Manufacturing, 41–52. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6300-3_4.
Texte intégralYu, Lean, Shouyang Wang et Kin Keung Lai. « A Hybrid Econometric-AI Ensemble Learning Model for Chinese Foreign Trade Prediction ». Dans Computational Science – ICCS 2007, 106–13. Berlin, Heidelberg : Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-72590-9_14.
Texte intégralSeregina, Ekaterina. « Graphical Models and their Interactions with Machine Learning in the Context of Economics and Finance ». Dans Advanced Studies in Theoretical and Applied Econometrics, 251–90. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15149-1_8.
Texte intégralActes de conférences sur le sujet "Learning – Econometric models"
Sedlak, Otilija, Jelena Birovljev, Zoran Ciric, Jelica Eremic et Ivana Ciric. « ANALYSIS OF COMPETITIVENESS OF HIGHER EDUCATION WITH ECONOMETRIC MODELS ». Dans International Conference on Education and New Learning Technologies. IATED, 2016. http://dx.doi.org/10.21125/edulearn.2016.1121.
Texte intégralChatterjee, Ananda, Hrisav Bhowmick et Jaydip Sen. « Stock Price Prediction Using Time Series, Econometric, Machine Learning, and Deep Learning Models ». Dans 2021 IEEE Mysore Sub Section International Conference (MysuruCon). IEEE, 2021. http://dx.doi.org/10.1109/mysurucon52639.2021.9641610.
Texte intégralAsensio, Omar Isaac, Daniel J. Marchetto, Sooji Ha et Sameer Dharur. « Extracting User Behavior at Electric Vehicle Charging Stations with Transformer Deep Learning Models ». Dans CARMA 2020 - 3rd International Conference on Advanced Research Methods and Analytics. Valencia : Universitat Politècnica de València, 2020. http://dx.doi.org/10.4995/carma2020.2020.11613.
Texte intégralDehon, Catherine, Philippe Emplit et Emma Van Lierde. « A case study of learning analytics within a statistics course for undergraduate students in economics ». Dans Decision Making Based on Data. International Association for Statistical Education, 2019. http://dx.doi.org/10.52041/srap.19407.
Texte intégralTakara, Lucas de Azevedo, Viviana Cocco Mariani et Leandro dos Santos Coelho. « Autoencoder Neural Network Approaches for Anomaly Detection in IBOVESPA Stock Market Index ». Dans Congresso Brasileiro de Inteligência Computacional. SBIC, 2021. http://dx.doi.org/10.21528/cbic2021-37.
Texte intégralSilva, Roberto, Bruna Barreira, Fernando Xavier, Antonio Saraiva et Carlos Cugnasca. « Use of econometrics and machine learning models to predict the number of new cases per day of COVID-19 ». Dans Anais Principais do Simpósio Brasileiro de Computação Aplicada à Saúde. Sociedade Brasileira de Computação - SBC, 2020. http://dx.doi.org/10.5753/sbcas.2020.11525.
Texte intégralSilva, Roberto F., Bruna L. Barreira et Carlos E. Cugnasca. « Prediction of Corn and Sugar Prices Using Machine Learning, Econometrics, and Ensemble Models ». Dans EFITA International Conference. Basel Switzerland : MDPI, 2021. http://dx.doi.org/10.3390/engproc2021009031.
Texte intégralRen, Yi, et Panos Y. Papalambros. « On the Use of Active Learning in Engineering Design ». Dans ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-70624.
Texte intégralOladipo, Adenike, Esther Oladele et David Oke. « Perceived Influence of Emerging Technologies on Lifelong Learning and Resilience among Women Who Dare Open Distance Learning ». Dans Tenth Pan-Commonwealth Forum on Open Learning. Commonwealth of Learning, 2022. http://dx.doi.org/10.56059/pcf10.8949.
Texte intégralGui, Jiyuan, et Xiaoyun Wu. « Forecasting the stock price of vaccine manufacturers in China using machine learning and econometrics model ». Dans International Conference on Cyber Security, Artificial Intelligence, and Digital Economy (CSAIDE 2022), sous la direction de Yuanchang Zhong. SPIE, 2022. http://dx.doi.org/10.1117/12.2647506.
Texte intégralRapports d'organisations sur le sujet "Learning – Econometric models"
Hlushak, Oksana M., Svetlana O. Semenyaka, Volodymyr V. Proshkin, Stanislav V. Sapozhnykov et Oksana S. Lytvyn. The usage of digital technologies in the university training of future bachelors (having been based on the data of mathematical subjects). [б. в.], juillet 2020. http://dx.doi.org/10.31812/123456789/3860.
Texte intégral