Littérature scientifique sur le sujet « Learning – Econometric models »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Learning – Econometric models ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Learning – Econometric models"
Silahtaroğlu, Yenilmez Oğuz. "Machine Learning Integration in Econometric Models." Next Generation Journal for The Young Researchers 8, no. 1 (2024): 77. http://dx.doi.org/10.62802/8c33p210.
Texte intégralDokumacı, Melis. "AI-Driven Econometric Models for Legal Issues." Human Computer Interaction 8, no. 1 (2024): 137. https://doi.org/10.62802/btfvze98.
Texte intégralKim, Dong-sup, and Seungwoo Shin. "THE ECONOMIC EXPLAINABILITY OF MACHINE LEARNING AND STANDARD ECONOMETRIC MODELS-AN APPLICATION TO THE U.S. MORTGAGE DEFAULT RISK." International Journal of Strategic Property Management 25, no. 5 (2021): 396–412. http://dx.doi.org/10.3846/ijspm.2021.15129.
Texte intégralLiao, Ruofan, Paravee Maneejuk, and Songsak Sriboonchitta. "Beyond Deep Learning: An Econometric Example." International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 28, Supp01 (2020): 31–38. http://dx.doi.org/10.1142/s0218488520400036.
Texte intégralSalmon, Timothy C. "An Evaluation of Econometric Models of Adaptive Learning." Econometrica 69, no. 6 (2001): 1597–628. http://dx.doi.org/10.1111/1468-0262.00258.
Texte intégralPérez-Pons, María E., Javier Parra-Dominguez, Sigeru Omatu, Enrique Herrera-Viedma, and Juan Manuel Corchado. "Machine Learning and Traditional Econometric Models: A Systematic Mapping Study." Journal of Artificial Intelligence and Soft Computing Research 12, no. 2 (2021): 79–100. http://dx.doi.org/10.2478/jaiscr-2022-0006.
Texte intégralZapata, Hector O., and Supratik Mukhopadhyay. "A Bibliometric Analysis of Machine Learning Econometrics in Asset Pricing." Journal of Risk and Financial Management 15, no. 11 (2022): 535. http://dx.doi.org/10.3390/jrfm15110535.
Texte intégralAnand, Kumar Dohare, and Abuzaid Mohammad. "Forecasting Stock Prices through Time Series, Econometric, Machine Learning, and Deep Learning Models." International Journal of Engineering and Management Research 14, no. 1 (2024): 77–85. https://doi.org/10.5281/zenodo.10688767.
Texte intégralAthey, Susan, and Guido W. Imbens. "Machine Learning Methods That Economists Should Know About." Annual Review of Economics 11, no. 1 (2019): 685–725. http://dx.doi.org/10.1146/annurev-economics-080217-053433.
Texte intégralBukina, T., and D. Kashin. "Regional Inflation Forecasting: Econometric Models Versus Machine Learning Methods?" Higher School of Economics Economic Journal 28, no. 1 (2024): 81–107. http://dx.doi.org/10.17323/1813-8691-2024-28-1-81-107.
Texte intégralThèses sur le sujet "Learning – Econometric models"
Boumediene, Farid Jimmy. "Determinacy and learning stability of economic policy in asymmetric monetary union models." Thesis, University of St Andrews, 2010. http://hdl.handle.net/10023/972.
Texte intégralPesantez, Narvaez Jessica Estefania. "Risk Analytics in Econometrics." Doctoral thesis, Universitat de Barcelona, 2021. http://hdl.handle.net/10803/671864.
Texte intégralRopele, Andrea <1994>. "The Blockchain technology and a comparison between classical statistical models and machine learning methods for time series analysis." Master's Degree Thesis, Università Ca' Foscari Venezia, 2018. http://hdl.handle.net/10579/13238.
Texte intégralNguyen, Trong Nghia. "Deep Learning Based Statistical Models for Business and Financial Data." Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/26944.
Texte intégralAzari, Soufiani Hossein. "Revisiting Random Utility Models." Thesis, Harvard University, 2014. http://dissertations.umi.com/gsas.harvard:11605.
Texte intégralZhao, Zilong. "Extracting knowledge from macroeconomic data, images and unreliable data." Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALT074.
Texte intégralMayer, Alexander Simon [Verfasser], Michael [Gutachter] Massmann, and Jörg [Gutachter] Breitung. "Testing for exogeneity and an essay on the econometrics of adaptive learning models / Alexander Simon Mayer ; Gutachter: Michael Massmann, Jörg Breitung." Vallendar : WHU - Otto Beisheim School of Management, 2021. http://d-nb.info/1238595677/34.
Texte intégralMachado, Vicente da Gama. "Essays on inflation and monetary policy." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2011. http://hdl.handle.net/10183/40247.
Texte intégralOrmeño, Sánchez Arturo. "Essays on Inflation Expectations, Heterogeneous Agents, and the Use of Approximated Solutions in the Estimation of DSGE models." Doctoral thesis, Universitat Pompeu Fabra, 2011. http://hdl.handle.net/10803/51247.
Texte intégralADAM, Klaus. "Learning and Price Behavior: microeconomic and macroeconomic implications." Doctoral thesis, 2001. http://hdl.handle.net/1814/4863.
Texte intégralLivres sur le sujet "Learning – Econometric models"
Acemoglu, Daron. Learning and disagreement in an uncertain world. National Bureau of Economic Research, 2006.
Trouver le texte intégralAcemoglu, Daron. Learning and disagreement in an uncertain world. Massachusetts Institute of Technology, Dept. of Economics, 2006.
Trouver le texte intégralGourinchas, Pierre-Olivier. Exchange rate dynamics and learning. National Bureau of Economic Research, 1996.
Trouver le texte intégralGuidolin, Massimo. Properties of equilibrium asset prices under alternative learning schemes. Federal Reserve Bank of St. Louis, 2005.
Trouver le texte intégralGuidolin, Massimo. Home bias and high turnover in an overlapping generations model with learning. Federal Reserve Bank of St. Louis, 2005.
Trouver le texte intégralGuidolin, Massimo. Pessimistic beliefs under rational learning: Quantitative implications for the equity premium puzzle. Federal Reserve Bank of St. Louis, 2005.
Trouver le texte intégralGilchrist, Simon. Expectations, asset prices, and monetary policy: The role of learning. National Bureau of Economic Research, 2006.
Trouver le texte intégralBouakez, Hafedh. Learning-by-doing or habit formation? Bank of Canada, 2005.
Trouver le texte intégralBouakez, Hafedh. Learning-by-doing or habit formation? Bank of Canada, 2005.
Trouver le texte intégralJacques. Productivity shocks, learning, and open economy dynamics. International Monetary Fund, IMF Institute, 2004.
Trouver le texte intégralChapitres de livres sur le sujet "Learning – Econometric models"
Chan, Felix, and László Mátyás. "Linear Econometric Models with Machine Learning." In Advanced Studies in Theoretical and Applied Econometrics. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15149-1_1.
Texte intégralChan, Felix, Mark N. Harris, Ranjodh B. Singh, and Wei Ern Yeo. "Nonlinear Econometric Models with Machine Learning." In Advanced Studies in Theoretical and Applied Econometrics. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15149-1_2.
Texte intégralMariel, Petr, David Hoyos, Jürgen Meyerhoff, et al. "Econometric Modelling: Extensions." In Environmental Valuation with Discrete Choice Experiments. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62669-3_6.
Texte intégralLehrer, Steven F., Tian Xie, and Guanxi Yi. "Do the Hype of the Benefits from Using New Data Science Tools Extend to Forecasting Extremely Volatile Assets?" In Data Science for Economics and Finance. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66891-4_13.
Texte intégralBuckmann, Marcus, Andreas Joseph, and Helena Robertson. "Opening the Black Box: Machine Learning Interpretability and Inference Tools with an Application to Economic Forecasting." In Data Science for Economics and Finance. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-66891-4_3.
Texte intégralBiswas, Abhijit, and Meghdoot Ghosh. "Application of Machine Learning, Deep Learning, and Econometric Models in Stock Price Movement of Rain Industries." In Deep Learning Applications in Operations Research. Auerbach Publications, 2024. http://dx.doi.org/10.1201/9781032725444-10.
Texte intégralJahnavi, M., Purushottam Bung, N. Nagasubba Reddy, and Katari Santosh. "Comparing Econometric and Machine Learning Models for Gold Price Forecasting: A Comprehensive Approach." In Studies in Big Data. Springer Nature Switzerland, 2025. https://doi.org/10.1007/978-3-031-83915-3_22.
Texte intégralVovsha, Peter. "Comparison of Traditional Econometric Models and Machine Learning Methods in the Context of Travel Decision Making and Perspectives for Synergy." In Decision Economics: Minds, Machines, and their Society. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75583-6_18.
Texte intégralCharpentier, Arthur. "Quantifying Fairness and Discrimination in Predictive Models." In Machine Learning for Econometrics and Related Topics. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-43601-7_3.
Texte intégralBriggs, William M. "What Makes a Good Model?" In Machine Learning for Econometrics and Related Topics. Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-43601-7_2.
Texte intégralActes de conférences sur le sujet "Learning – Econometric models"
Sedlak, Otilija, Jelena Birovljev, Zoran Ciric, Jelica Eremic, and Ivana Ciric. "ANALYSIS OF COMPETITIVENESS OF HIGHER EDUCATION WITH ECONOMETRIC MODELS." In International Conference on Education and New Learning Technologies. IATED, 2016. http://dx.doi.org/10.21125/edulearn.2016.1121.
Texte intégralRajaure, Tribikram. "Mode Choice Prediction: Comparing Econometric Models with Combination of Machine Learning Models." In International Conference on Transportation and Development 2025. American Society of Civil Engineers, 2025. https://doi.org/10.1061/9780784486191.035.
Texte intégralChatterjee, Ananda, Hrisav Bhowmick, and Jaydip Sen. "Stock Price Prediction Using Time Series, Econometric, Machine Learning, and Deep Learning Models." In 2021 IEEE Mysore Sub Section International Conference (MysuruCon). IEEE, 2021. http://dx.doi.org/10.1109/mysurucon52639.2021.9641610.
Texte intégralTsolacos, Sotiris, and Tatiana Franus. "Assessing the forecast performance of machine learning algorithms and econometric models in real estate." In 30th Annual European Real Estate Society Conference. European Real Estate Society, 2024. http://dx.doi.org/10.15396/eres2024-251.
Texte intégralAsensio, Omar Isaac, Daniel J. Marchetto, Sooji Ha, and Sameer Dharur. "Extracting User Behavior at Electric Vehicle Charging Stations with Transformer Deep Learning Models." In CARMA 2020 - 3rd International Conference on Advanced Research Methods and Analytics. Universitat Politècnica de València, 2020. http://dx.doi.org/10.4995/carma2020.2020.11613.
Texte intégralDehon, Catherine, Philippe Emplit, and Emma Van Lierde. "A case study of learning analytics within a statistics course for undergraduate students in economics." In Decision Making Based on Data. International Association for Statistical Education, 2019. http://dx.doi.org/10.52041/srap.19407.
Texte intégralOunsakul, T., T. Techanukul, C. Phasook, and P. Harke. "Spread Rate Forecasting in Well Cost Estimation – A Study of Methods and Applications." In SPE/IADC Asia Pacific Drilling Technology Conference and Exhibition. SPE, 2024. http://dx.doi.org/10.2118/219600-ms.
Texte intégralTakara, Lucas de Azevedo, Viviana Cocco Mariani, and Leandro dos Santos Coelho. "Autoencoder Neural Network Approaches for Anomaly Detection in IBOVESPA Stock Market Index." In Congresso Brasileiro de Inteligência Computacional. SBIC, 2021. http://dx.doi.org/10.21528/cbic2021-37.
Texte intégralSilva, Roberto, Bruna Barreira, Fernando Xavier, Antonio Saraiva, and Carlos Cugnasca. "Use of econometrics and machine learning models to predict the number of new cases per day of COVID-19." In Anais Principais do Simpósio Brasileiro de Computação Aplicada à Saúde. Sociedade Brasileira de Computação - SBC, 2020. http://dx.doi.org/10.5753/sbcas.2020.11525.
Texte intégralSilva, Roberto F., Bruna L. Barreira, and Carlos E. Cugnasca. "Prediction of Corn and Sugar Prices Using Machine Learning, Econometrics, and Ensemble Models." In EFITA International Conference. MDPI, 2021. http://dx.doi.org/10.3390/engproc2021009031.
Texte intégralRapports d'organisations sur le sujet "Learning – Econometric models"
Hlushak, Oksana M., Svetlana O. Semenyaka, Volodymyr V. Proshkin, Stanislav V. Sapozhnykov, and Oksana S. Lytvyn. The usage of digital technologies in the university training of future bachelors (having been based on the data of mathematical subjects). [б. в.], 2020. http://dx.doi.org/10.31812/123456789/3860.
Texte intégralKoop, Gary, Jamie Cross, and Aubrey Poon. Introduction to Bayesian Econometrics in MATLAB. Instats Inc., 2022. http://dx.doi.org/10.61700/t3wrch7yujr7a469.
Texte intégralKoop, Gary, Jamie Cross, and Aubrey Poon. Introduction to Bayesian Econometrics in MATLAB. Instats Inc., 2023. http://dx.doi.org/10.61700/aebi3thp50fr3469.
Texte intégralTorres, Arturo, Fernando Santiago, Natalia Gras, Claudia De Fuentes, and Gabriela Dutrénit. Innovation and Productivity in the Service Sector: The Case of Mexico. Inter-American Development Bank, 2013. http://dx.doi.org/10.18235/0006954.
Texte intégral