Articles de revues sur le sujet « Lax-Friedrichs method »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Lax-Friedrichs method ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.
Shampine, L. F. "Two-step Lax–Friedrichs method." Applied Mathematics Letters 18, no. 10 (2005): 1134–36. http://dx.doi.org/10.1016/j.aml.2004.11.007.
Texte intégralYu, Simin. "A survey of numerical schemes for transportation equation." E3S Web of Conferences 308 (2021): 01020. http://dx.doi.org/10.1051/e3sconf/202130801020.
Texte intégralBreuß, Michael. "The correct use of the Lax–Friedrichs method." ESAIM: Mathematical Modelling and Numerical Analysis 38, no. 3 (2004): 519–40. http://dx.doi.org/10.1051/m2an:2004027.
Texte intégralSharma, Deepika, and Kavita Goyal. "Wavelet optimized upwind conservative method for traffic flow problems." International Journal of Modern Physics C 31, no. 06 (2020): 2050086. http://dx.doi.org/10.1142/s0129183120500862.
Texte intégralChatterjee, N., and U. S. Fjordholm. "A convergent finite volume method for the Kuramoto equation and related nonlocal conservation laws." IMA Journal of Numerical Analysis 40, no. 1 (2018): 405–21. http://dx.doi.org/10.1093/imanum/dry074.
Texte intégralAraujo, Isamara L. N., Panters Rodríguez-Bermúdez, and Yoisell Rodríguez-Núñez. "Numerical Study for Two-Phase Flow with Gravity in Homogeneous and Piecewise-Homogeneous Porous Media." TEMA (São Carlos) 21, no. 1 (2020): 21. http://dx.doi.org/10.5540/tema.2020.021.01.21.
Texte intégralWang, Min, and Xiaohua Zhang. "A High–Order WENO Scheme Based on Different Numerical Fluxes for the Savage–Hutter Equations." Mathematics 10, no. 9 (2022): 1482. http://dx.doi.org/10.3390/math10091482.
Texte intégralAli, Ali Hasan, Ahmed Shawki Jaber, Mustafa T. Yaseen, Mohammed Rasheed, Omer Bazighifan, and Taher A. Nofal. "A Comparison of Finite Difference and Finite Volume Methods with Numerical Simulations: Burgers Equation Model." Complexity 2022 (June 27, 2022): 1–9. http://dx.doi.org/10.1155/2022/9367638.
Texte intégralSetiyowati, R., and Sumardi. "A Simulation of Shallow Water Wave Equation Using Finite Volume Method: Lax-Friedrichs Scheme." Journal of Physics: Conference Series 1306 (August 2019): 012022. http://dx.doi.org/10.1088/1742-6596/1306/1/012022.
Texte intégralKao, Chiu Yen, Carmeliza Navasca, and Stanley Osher. "The Lax–Friedrichs sweeping method for optimal control problems in continuous and hybrid dynamics." Nonlinear Analysis: Theory, Methods & Applications 63, no. 5-7 (2005): e1561-e1572. http://dx.doi.org/10.1016/j.na.2005.01.061.
Texte intégralArry Sanjoyo, Bandung, Mochamad Hariadi, and Mauridhi Hery Purnomo. "Stable Algorithm Based On Lax-Friedrichs Scheme for Visual Simulation of Shallow Water." EMITTER International Journal of Engineering Technology 8, no. 1 (2020): 19–34. http://dx.doi.org/10.24003/emitter.v8i1.479.
Texte intégralKrasnov, Mikhail Mikhailovich, Marina Eugenievna Ladonkina, Olga Alexandrovna Neklyudova, and Vladimir Fedorovich Tishkin. "On the influence of the choice of the numerical flow on the solution of problems with shock waves by the discontinuous Galerkin method." Keldysh Institute Preprints, no. 91 (2022): 1–21. http://dx.doi.org/10.20948/prepr-2022-91.
Texte intégralXu, J., M. Luo, Z. Wu, S. Wang, B. Qi, and Z. Qiao. "Pressure and Temperature Prediction of Transient Flow in HTHP Injection Wells by Lax-Friedrichs Method." Petroleum Science and Technology 31, no. 9 (2013): 960–76. http://dx.doi.org/10.1080/10916466.2010.535083.
Texte intégralRossi, Elena, Jennifer Weißen, Paola Goatin, and Simone Göttlich. "Well-posedness of a non-local model for material flow on conveyor belts." ESAIM: Mathematical Modelling and Numerical Analysis 54, no. 2 (2020): 679–704. http://dx.doi.org/10.1051/m2an/2019062.
Texte intégralFrenzel, David, and Jens Lang. "A third-order weighted essentially non-oscillatory scheme in optimal control problems governed by nonlinear hyperbolic conservation laws." Computational Optimization and Applications 80, no. 1 (2021): 301–20. http://dx.doi.org/10.1007/s10589-021-00295-2.
Texte intégralVosoughifar, Hamid Reza, Azam Dolatshah, and Seyed Kazem Sadat Shokouhi. "Discretization of Multidimensional Mathematical Equations of Dam Break Phenomena Using a Novel Approach of Finite Volume Method." Journal of Applied Mathematics 2013 (2013): 1–12. http://dx.doi.org/10.1155/2013/642485.
Texte intégralWang, Shu, and Yabo Ren. "Weak solutions to the Cauchy problem of the time-dependent Thomas–Fermi equations." Journal of Mathematical Physics 63, no. 6 (2022): 061507. http://dx.doi.org/10.1063/5.0082846.
Texte intégralOutada, Nisrine, Nicolas Vauchelet, Thami Akrid, and Mohamed Khaladi. "From kinetic theory of multicellular systems to hyperbolic tissue equations: Asymptotic limits and computing." Mathematical Models and Methods in Applied Sciences 26, no. 14 (2016): 2709–34. http://dx.doi.org/10.1142/s0218202516500640.
Texte intégralZhou, Shengcheng, Zhipeng Li, and Li Deng. "Spatial convergence study of Lax-Friedrichs WENO fast sweeping method on the SN transport equation with nonsmoothness." Annals of Nuclear Energy 166 (February 2022): 108707. http://dx.doi.org/10.1016/j.anucene.2021.108707.
Texte intégralMohamed, Kamel, Hanan A. Alkhidhr, and Mahmoud A. E. Abdelrahman. "The NHRS scheme for the Chaplygin gas model in one and two dimensions." AIMS Mathematics 7, no. 10 (2022): 17785–801. http://dx.doi.org/10.3934/math.2022979.
Texte intégralHong, Chengyu, Xuben Wang, Gaishan Zhao, et al. "Discontinuous finite element method for efficient three-dimensional elastic wave simulation." Journal of Geophysics and Engineering 18, no. 1 (2021): 98–112. http://dx.doi.org/10.1093/jge/gxaa070.
Texte intégralXu, Jiuping, Min Luo, Jiancheng Hu, Shize Wang, Bin Qi, and Zhiguo Qiao. "A Direct Eulerian GRP Scheme for the Prediction of Gas-Liquid Two-Phase Flow in HTHP Transient Wells." Abstract and Applied Analysis 2013 (2013): 1–7. http://dx.doi.org/10.1155/2013/171732.
Texte intégralMartínez-Aranda, S., A. Ramos-Pérez, and P. García-Navarro. "A 1D shallow-flow model for two-layer flows based on FORCE scheme with wet–dry treatment." Journal of Hydroinformatics 22, no. 5 (2020): 1015–37. http://dx.doi.org/10.2166/hydro.2020.002.
Texte intégralAmundsen, Lasse, and Ørjan Pedersen. "Time step n-tupling for wave equations." GEOPHYSICS 82, no. 6 (2017): T249—T254. http://dx.doi.org/10.1190/geo2017-0377.1.
Texte intégralPalm, Johannes, and Claes Eskilsson. "Influence of Bending Stiffness on Snap Loads in Marine Cables: A Study Using a High-Order Discontinuous Galerkin Method." Journal of Marine Science and Engineering 8, no. 10 (2020): 795. http://dx.doi.org/10.3390/jmse8100795.
Texte intégralHu, Jiangtao, Jianliang Qian, Jian Song, Min Ouyang, Junxing Cao, and Shingyu Leung. "Eulerian partial-differential-equation methods for complex-valued eikonals in attenuating media." GEOPHYSICS 86, no. 4 (2021): T179—T192. http://dx.doi.org/10.1190/geo2020-0659.1.
Texte intégralScandaliato, Angelo L., and Meng-Sing Liou. "AUSM-Based High-Order Solution for Euler Equations." Communications in Computational Physics 12, no. 4 (2012): 1096–120. http://dx.doi.org/10.4208/cicp.250311.081211a.
Texte intégralKeshari, Ashok K., Deba P. Satapathy, and Amod Kumar. "The influence of vertical density and velocity distributions on snow avalanche runout." Annals of Glaciology 51, no. 54 (2010): 200–206. http://dx.doi.org/10.3189/172756410791386409.
Texte intégralMo, Tiexiang, and Guodong Li. "Parallel Accelerated Fifth-Order WENO Scheme-Based Pipeline Transient Flow Solution Model." Applied Sciences 12, no. 14 (2022): 7350. http://dx.doi.org/10.3390/app12147350.
Texte intégralAriunaa, U., M. Dumbser, and Ts Sarantuya. "Complete Riemann Solvers for the Hyperbolic GPR Model of Continuum Mechanics." Bulletin of Irkutsk State University. Series Mathematics 35 (2021): 60–72. http://dx.doi.org/10.26516/1997-7670.2021.35.60.
Texte intégralBürger, Raimund, Harold Deivi Contreras, and Luis Miguel Villada. "A Hilliges-Weidlich-type scheme for a one-dimensional scalar conservation law with nonlocal flux." Networks and Heterogeneous Media 18, no. 2 (2023): 664–93. http://dx.doi.org/10.3934/nhm.2023029.
Texte intégralHanh, Nguyen Van, Nguyen Van Diep, and Ngo Huy Can. "On some numerical methods for solving the 1-D Saint-Venant equations of general flow regime. Part 1: Numerical methods." Vietnam Journal of Mechanics 24, no. 4 (2002): 236–48. http://dx.doi.org/10.15625/0866-7136/24/4/6623.
Texte intégralSpa, Carlos, Otilio Rojas, and Josep de la Puente. "Comparison of expansion-based explicit time-integration schemes for acoustic wave propagation." GEOPHYSICS 85, no. 3 (2020): T165—T178. http://dx.doi.org/10.1190/geo2019-0462.1.
Texte intégralGama, Italon Rilson Vicente, André Luiz Andrade Simões, Harry Edmar Schulz, and Rodrigo De Melo Porto. "CÓDIGO LIVRE PARA SOLUÇÃO NUMÉRICA DAS EQUAÇÕES DE SAINT-VENANT EM CANAIS TRAPEZOIDAIS ASSIMÉTRICOS." Revista Eletrônica de Gestão e Tecnologias Ambientais 8, no. 2 (2020): 145. http://dx.doi.org/10.9771/gesta.v8i2.38913.
Texte intégralZhou, Xiaole, Haiqiang Lan, Ling Chen, et al. "An iterative factored topography-dependent eikonal solver for anisotropic media." GEOPHYSICS 86, no. 5 (2021): U121—U134. http://dx.doi.org/10.1190/geo2020-0662.1.
Texte intégralZhalnin, Ruslan V., Victor F. Masyagin, Elizaveta E. Peskova, and Vladimir F. Tishkin. "Modeling the Flow of Multicomponent Reactive Gas on Unstructured Grids." Engineering Technologies and Systems 30, no. 1 (2020): 162–75. http://dx.doi.org/10.15507/2658-4123.030.202001.162-175.
Texte intégralCameron, Maria, Sergey Fomel, and James Sethian. "Time-to-depth conversion and seismic velocity estimation using time-migration velocity." GEOPHYSICS 73, no. 5 (2008): VE205—VE210. http://dx.doi.org/10.1190/1.2967501.
Texte intégralMwalimo, Delina Mshai, Mary Wainaina, and Winnie Kaluki. "Mixed Vehicular Traffic Flow Model on an Inclined Multilane Road." International Journal of Innovative Science and Research Technology 5, no. 7 (2020): 331–42. http://dx.doi.org/10.38124/ijisrt20jul276.
Texte intégralDallakyan, Gurgen. "Numerical Simulations for Chemotaxis Models." Biomath Communications 6, no. 1 (2019): 16. http://dx.doi.org/10.11145/bmc.2019.04.277.
Texte intégralBodnár, Tomáš, Philippe Fraunié, and Karel Kozel. "MODIFIED EQUATION FOR A CLASS OF EXPLICIT AND IMPLICIT SCHEMES SOLVING ONE-DIMENSIONAL ADVECTION PROBLEM." Acta Polytechnica 61, SI (2021): 49–58. http://dx.doi.org/10.14311/ap.2021.61.0049.
Texte intégralCoppo, Marco, Claudio Dongiovanni, and Claudio Negri. "Numerical Analysis and Experimental Investigation of a Common Rail-Type Diesel Injector." Journal of Engineering for Gas Turbines and Power 126, no. 4 (2004): 874–85. http://dx.doi.org/10.1115/1.1787502.
Texte intégralRider, W. J., and R. B. Lowrie. "The use of classical Lax-Friedrichs Riemann solvers with discontinuous Galerkin methods." International Journal for Numerical Methods in Fluids 40, no. 3-4 (2002): 479–86. http://dx.doi.org/10.1002/fld.334.
Texte intégralChen, Weitao, Ching-Shan Chou, and Chiu-Yen Kao. "Lax–Friedrichs fast sweeping methods for steady state problems for hyperbolic conservation laws." Journal of Computational Physics 234 (February 2013): 452–71. http://dx.doi.org/10.1016/j.jcp.2012.10.008.
Texte intégralCoelho, R. M. L., P. L. C. Lage, and A. Silva Telles. "A comparison of hyperbolic solvers II: ausm-type and Hybrid Lax-Wendroff-Lax-Friedrichs methods for two-phase flows." Brazilian Journal of Chemical Engineering 27, no. 1 (2010): 153–71. http://dx.doi.org/10.1590/s0104-66322010000100014.
Texte intégralCHEN, GUI-QIANG, and ELEUTERIO F. TORO. "CENTERED DIFFERENCE SCHEMES FOR NONLINEAR HYPERBOLIC EQUATIONS." Journal of Hyperbolic Differential Equations 01, no. 03 (2004): 531–66. http://dx.doi.org/10.1142/s0219891604000202.
Texte intégralChen, Weitao, Ching-Shan Chou, and Chiu-Yen Kao. "Lax–Friedrichs Multigrid Fast Sweeping Methods for Steady State Problems for Hyperbolic Conservation Laws." Journal of Scientific Computing 64, no. 3 (2015): 591–618. http://dx.doi.org/10.1007/s10915-015-0006-7.
Texte intégralLi, Jia, Dazhi Zhang, Xiong Meng, Boying Wu, and Qiang Zhang. "Discontinuous Galerkin Methods for Nonlinear Scalar Conservation Laws: Generalized Local Lax--Friedrichs Numerical Fluxes." SIAM Journal on Numerical Analysis 58, no. 1 (2020): 1–20. http://dx.doi.org/10.1137/19m1243798.
Texte intégralWang, Dean, and Tseelmaa Byambaakhuu. "High-Order Lax-Friedrichs WENO Fast Sweeping Methods for the SN Neutron Transport Equation." Nuclear Science and Engineering 193, no. 9 (2019): 982–90. http://dx.doi.org/10.1080/00295639.2019.1582316.
Texte intégralChen, Weitao, Ching-Shan Chou, and Chiu-Yen Kao. "Erratum to: Lax–Friedrichs Multigrid Fast Sweeping Methods for Steady State Problems for Hyperbolic Conservation Laws." Journal of Scientific Computing 64, no. 3 (2015): 619. http://dx.doi.org/10.1007/s10915-015-0025-4.
Texte intégralKoroche, Kedir Aliyi. "Numerical Solution of In-Viscid Burger Equation in the Application of Physical Phenomena: The Comparison between Three Numerical Methods." International Journal of Mathematics and Mathematical Sciences 2022 (March 29, 2022): 1–11. http://dx.doi.org/10.1155/2022/8613490.
Texte intégral