Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Lattice-ordered abelian groups.

Articles de revues sur le sujet « Lattice-ordered abelian groups »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Lattice-ordered abelian groups ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Jakubík, Ján. « Retracts of abelian lattice ordered groups ». Czechoslovak Mathematical Journal 39, no 3 (1989) : 477–85. http://dx.doi.org/10.21136/cmj.1989.102319.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Glass, A. M. W. « Weakly abelian lattice-ordered groups ». Proceedings of the American Mathematical Society 129, no 3 (20 septembre 2000) : 677–84. http://dx.doi.org/10.1090/s0002-9939-00-05706-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Glass, A. M. W., Angus Macintyre et Françoise Point. « Free abelian lattice-ordered groups ». Annals of Pure and Applied Logic 134, no 2-3 (juillet 2005) : 265–83. http://dx.doi.org/10.1016/j.apal.2004.10.017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Conrad, Paul, et J. Roger Teller. « Abelian pseudo lattice ordered groups ». Publicationes Mathematicae Debrecen 17, no 1-4 (1 juillet 2022) : 223–41. http://dx.doi.org/10.5486/pmd.1970.17.1-4.26.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Di Nola, Antonio, Giacomo Lenzi, Gaetano Vitale et Roberto Giuntini. « Expanding Lattice Ordered Abelian Groups to Riesz Spaces ». Mathematica Slovaca 72, no 1 (1 février 2022) : 1–10. http://dx.doi.org/10.1515/ms-2022-0001.

Texte intégral
Résumé :
Abstract First we give a necessary and sufficient condition for an abelian lattice ordered group to admit an expansion to a Riesz space (or vector lattice). Then we construct a totally ordered abelian group with two non-isomorphic Riesz space structures, thus improving a previous paper where the example was a non-totally ordered lattice ordered abelian group. This answers a question raised by Conrad in 1975. We give also a partial solution to another problem considered in the same paper. Finally, we apply our results to MV-algebras and Riesz MV-algebras.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Glass, A. M. W. « Finitely presented ordered groups ». Proceedings of the Edinburgh Mathematical Society 33, no 2 (juin 1990) : 299–301. http://dx.doi.org/10.1017/s0013091500018204.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Ploščica, Miroslav. « Cevian properties in ideal lattices of Abelian ℓ-groups ». Forum Mathematicum 33, no 6 (26 octobre 2021) : 1651–58. http://dx.doi.org/10.1515/forum-2021-0074.

Texte intégral
Résumé :
Abstract We consider the problem of describing the lattices of compact ℓ {\ell} -ideals of Abelian lattice-ordered groups. (Equivalently, describing the spectral spaces of Abelian lattice-ordered groups.) It is known that these lattices have countably based differences and admit a Cevian operation. Our first result says that these two properties are not sufficient: there are lattices having both countably based differences and Cevian operations, which are not representable by compact ℓ {\ell} -ideals of Abelian lattice-ordered groups. As our second result, we prove that every completely normal distributive lattice of cardinality at most ℵ 1 {\aleph_{1}} admits a Cevian operation. This complements the recent result of F. Wehrung, who constructed a completely normal distributive lattice having countably based differences, of cardinality ℵ 2 {\aleph_{2}} , without a Cevian operation.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Gluschankof, Daniel, et François Lucas. « Hyper-regular lattice-ordered groups ». Journal of Symbolic Logic 58, no 4 (décembre 1993) : 1342–58. http://dx.doi.org/10.2307/2275147.

Texte intégral
Résumé :
It is a well-known fact that the notion of an archimedean order cannot be formalized in the first-order calculus. In [12] and [18], A. Robinson and E. Zakon characterized the elementary class generated by all the archimedean, totally-ordered abelian groups (o-groups) in the language 〈+,<〉, calling it the class of regularly ordered or generalized archimedean abelian groups. Since difference (−) and 0 are definable in that language, it is immediate that in the expanded language 〈 +, −, 0, < 〉 the definable expansion of the class of regular groups is also the elementary class generated by the archimedean ones. In the more general context of lattice-ordered groups (l-groups), the notion of being archimedean splits into two different notions: a strong one (being hyperarchimedean) and a weak one (being archimedean). Using the representation theorem of K. Keimel for hyperarchimedean l-groups, we extend in this paper the Robinson and Zakon characterization to the elementary class generated by the prime-projectable, hyperarchimedean l-groups. This characterization is also extended here to the elementary class generated by the prime-projectable and projectable archimedean l-groups (including all complete l-groups). Finally, transferring a result of A. Touraille on the model theory of Boolean algebras with distinguished ideals, we give the classification up to elementary equivalence of the characterized class.We recall that a lattice-ordered group, l-group for short, is a structure
Styles APA, Harvard, Vancouver, ISO, etc.
9

Glass, A. M. W. « Corrigendum to “Weakly Abelian lattice-ordered groups” ». Proceedings of the American Mathematical Society 130, no 3 (11 octobre 2001) : 925–26. http://dx.doi.org/10.1090/s0002-9939-01-06502-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Cignoli, R., D. Gluschankof et F. Lucas. « Prime spectra of lattice-ordered abelian groups ». Journal of Pure and Applied Algebra 136, no 3 (mars 1999) : 217–29. http://dx.doi.org/10.1016/s0022-4049(98)00031-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Elliott, George A., et Daniele Mundici. « A characterisation of lattice-ordered abelian groups ». Mathematische Zeitschrift 213, no 1 (mai 1993) : 179–85. http://dx.doi.org/10.1007/bf03025717.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Mundici, Daniele. « Classes of Ultrasimplicial Lattice-Ordered Abelian Groups ». Journal of Algebra 213, no 2 (mars 1999) : 596–603. http://dx.doi.org/10.1006/jabr.1998.7679.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Cherri, Mona, et Wayne B. Powell. « Strong amalgamations of lattice ordered groups and modules ». International Journal of Mathematics and Mathematical Sciences 16, no 1 (1993) : 75–80. http://dx.doi.org/10.1155/s0161171293000080.

Texte intégral
Résumé :
We show that every variety of representable lattice ordered groups fails the strong amalgamation property. The same result holds for the variety off-modules over anf-ring. However, strong amalgamations do occur for abelian lattice ordered groups orf-modules when the embeddings are convex.
Styles APA, Harvard, Vancouver, ISO, etc.
14

Kala, Vítězslav. « Lattice-ordered abelian groups finitely generated as semirings ». Journal of Commutative Algebra 9, no 3 (juin 2017) : 387–412. http://dx.doi.org/10.1216/jca-2017-9-3-387.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Jakubík, Ján. « On cut completions of abelian lattice ordered groups ». Czechoslovak Mathematical Journal 50, no 3 (septembre 2000) : 587–602. http://dx.doi.org/10.1023/a:1022841828655.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Mundici, Daniele. « Free generating sets of lattice-ordered abelian groups ». Journal of Pure and Applied Algebra 211, no 2 (novembre 2007) : 400–403. http://dx.doi.org/10.1016/j.jpaa.2007.03.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Wehrung, Friedrich. « Spectral spaces of countable Abelian lattice-ordered groups ». Transactions of the American Mathematical Society 371, no 3 (23 octobre 2018) : 2133–58. http://dx.doi.org/10.1090/tran/7596.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Pajoohesh, Homeira. « A relationship between the category of chain MV-algebras and a subcategory of abelian groups ». Mathematica Slovaca 71, no 4 (1 août 2021) : 1027–45. http://dx.doi.org/10.1515/ms-2021-0037.

Texte intégral
Résumé :
Abstract The category of MV-algebras is equivalent to the category of abelian lattice ordered groups with strong units. In this article we introduce the category of circled abelian groups and prove that the category of chain MV-algebras is isomorphic with the category of chain circled abelian groups. In the last section we show that the category of chain MV-algebras is a subcategory of abelian cyclically ordered groups.
Styles APA, Harvard, Vancouver, ISO, etc.
19

CARAMELLO, OLIVIA, et ANNA CARLA RUSSO. « LATTICE-ORDERED ABELIAN GROUPS AND PERFECT MV-ALGEBRAS : A TOPOS-THEORETIC PERSPECTIVE ». Bulletin of Symbolic Logic 22, no 2 (juin 2016) : 170–214. http://dx.doi.org/10.1017/bsl.2015.47.

Texte intégral
Résumé :
AbstractWe establish, generalizing Di Nola and Lettieri’s categorical equivalence, a Morita-equivalence between the theory of lattice-ordered abelian groups and that of perfect MV-algebras. Further, after observing that the two theories are not bi-interpretable in the classical sense, we identify, by considering appropriate topos-theoretic invariants on their common classifying topos, three levels of bi-interpretability holding for particular classes of formulas: irreducible formulas, geometric sentences, and imaginaries. Lastly, by investigating the classifying topos of the theory of perfect MV-algebras, we obtain various results on its syntax and semantics also in relation to the cartesian theory of the variety generated by Chang’s MV-algebra, including a concrete representation for the finitely presentable models of the latter theory as finite products of finitely presentable perfect MV-algebras. Among the results established on the way, we mention a Morita-equivalence between the theory of lattice-ordered abelian groups and that of cancellative lattice-ordered abelian monoids with bottom element.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Galli, Adriana, Renato A. Lewin et Marta Sagastume. « The logic of equilibrium and abelian lattice ordered groups ». Archive for Mathematical Logic 43, no 2 (1 février 2004) : 141–58. http://dx.doi.org/10.1007/s00153-002-0160-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Pap, Endre. « Intrinsic metrics preserving maps on Abelian lattice-ordered groups ». Algebra Universalis 29, no 3 (septembre 1992) : 338–45. http://dx.doi.org/10.1007/bf01212436.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Scowcroft, Philip. « Algebraically closed and existentially closed Abelian lattice-ordered groups ». Algebra universalis 75, no 3 (15 mars 2016) : 257–300. http://dx.doi.org/10.1007/s00012-016-0375-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Cabrer, Leonardo, et Daniele Mundici. « Finitely presented lattice-ordered abelian groups with order-unit ». Journal of Algebra 343, no 1 (octobre 2011) : 1–10. http://dx.doi.org/10.1016/j.jalgebra.2011.07.007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Manara, Corrado, Vincenzo Marra et Daniele Mundici. « Lattice-ordered Abelian groups and Schauder bases of unimodular fans ». Transactions of the American Mathematical Society 359, no 04 (16 octobre 2006) : 1593–605. http://dx.doi.org/10.1090/s0002-9947-06-03935-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Ball, Richard N. « Truncated abelian lattice-ordered groups I : The pointed (Yosida) representation ». Topology and its Applications 162 (février 2014) : 43–65. http://dx.doi.org/10.1016/j.topol.2013.11.007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Ball, Richard N. « Truncated abelian lattice-ordered groups II : the pointfree (Madden) representation ». Topology and its Applications 178 (décembre 2014) : 56–86. http://dx.doi.org/10.1016/j.topol.2014.08.031.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Gluschankof, Daniel. « The elementary class of products of totally ordered abelian group ». Journal of Symbolic Logic 56, no 1 (mars 1991) : 295–99. http://dx.doi.org/10.2307/2274920.

Texte intégral
Résumé :
A basic goal in model-theoretic algebra is to obtain the classification of the complete extensions of a given (first-order) algebraic theory.Results of this type, for the theory of totally ordered abelian groups, were obtained first by A. Robinson and E. Zakon [5] in 1960, later extended by Yu. Gurevich [4] in 1964, and further clarified by P. Schmitt in [6].Within this circle of ideas, we give in this paper an axiomatization of the first-order theory of the class of all direct products of totally ordered abelian groups, construed as lattice-ordered groups (l-groups)—see the theorem below. We think of this result as constituing a first step—undoubtedly only a small one—towards the more general goal of classifying the first-order theory of abelian l-groups.We write groups for abelian l-groups construed as structures in the language 〈 ∨, ∧, +, −, 0〉 (“−” is an unary operation). For unproved statements and unexplicated definitions, the reader is referred to [1].
Styles APA, Harvard, Vancouver, ISO, etc.
28

Mundici, Daniele. « The Haar theorem for lattice-ordered abelian groups with order-unit ». Discrete & ; Continuous Dynamical Systems - A 21, no 2 (2008) : 537–49. http://dx.doi.org/10.3934/dcds.2008.21.537.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Marra, Vincenzo. « Lattice-ordered Abelian groups and Schauder bases of unimodular fans, II ». Transactions of the American Mathematical Society 365, no 5 (17 janvier 2013) : 2545–68. http://dx.doi.org/10.1090/s0002-9947-2013-05706-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Gurchenkov, S. A., et V. M. Kopytov. « Description of covers of the variety of Abelian lattice-ordered groups ». Siberian Mathematical Journal 28, no 3 (1988) : 406–8. http://dx.doi.org/10.1007/bf00969570.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

CABRER, LEONARDO, et DANIELE MUNDICI. « RATIONAL POLYHEDRA AND PROJECTIVE LATTICE-ORDERED ABELIAN GROUPS WITH ORDER UNIT ». Communications in Contemporary Mathematics 14, no 03 (juin 2012) : 1250017. http://dx.doi.org/10.1142/s0219199712500174.

Texte intégral
Résumé :
An ℓ-groupG is an abelian group equipped with a translation invariant lattice-order. Baker and Beynon proved that G is finitely generated projective if and only if it is finitely presented. A unital ℓ-group is an ℓ-group G with a distinguished order unit, i.e. an element 0 ≤ u ∈ G whose positive integer multiples eventually dominate every element of G. Unital ℓ-homomorphisms between unital ℓ-groups are group homomorphisms that also preserve the order unit and the lattice structure. A unital ℓ-group (G, u) is projective if whenever ψ : (A, a) → (B, b) is a surjective unital ℓ-homomorphism and ϕ : (G, u) → (B, b) is a unital ℓ-homomorphism, there is a unital ℓ-homomorphism θ : (G, u) → (A, a) such that ϕ = ψ ◦ θ. While every finitely generated projective unital ℓ-group is finitely presented, the converse does not hold in general. Classical algebraic topology (à la Whitehead) is combined in this paper with the Włodarczyk–Morelli solution of the weak Oda conjecture for toric varieties, to describe finitely generated projective unital ℓ-groups.
Styles APA, Harvard, Vancouver, ISO, etc.
32

Jakubik, Jan. « Affine Completeness and Lexicographic Product Decompositions of Abelian Lattice Ordered Groups ». Czechoslovak Mathematical Journal 55, no 4 (décembre 2005) : 917–22. http://dx.doi.org/10.1007/s10587-005-0075-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Kopytov, V. M. « A NON-ABELIAN VARIETY OF LATTICE-ORDERED GROUPS IN WHICH EVERY SOLUBLEl-GROUP IS ABELIAN ». Mathematics of the USSR-Sbornik 54, no 1 (28 février 1986) : 239–57. http://dx.doi.org/10.1070/sm1986v054n01abeh002969.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Gluschankof, D. « The Hahn representation theorem for ℓ-groups in ZFA ». Journal of Symbolic Logic 65, no 2 (juin 2000) : 519–24. http://dx.doi.org/10.2307/2586553.

Texte intégral
Résumé :
In [7] the author discussed the relative force —in the set theory ZF— of some representation theorems for ℓ-groups (lattice-ordered groups). One of the theorems not discussed in that paper is the Hahn representation theorem for abelian ℓ-groups. This result, originally proved by Hahn (see [8]) for totally ordered groups and half a century later by Conrad, Harvey and Holland for the general case (see [4]), states that any abelian ℓ-group can be embedded in a Hahn product of copies of R (the real line with its natural totally-ordered group structure). Both proofs rely heavily on Zorn's Lemma which is equivalent to AC (the axiom of choice).The aim of this work is to point out the use of non-constructible axioms (i.e., AC and weaker forms of it) in the proofs. Working in the frame of ZFA, that is, the Zermelo-Fraenkel set theory where a non-empty set of atoms is allowed, we present alternative proofs which, in the totally ordered case, do not require the use of AC. For basic concepts and notation on ℓ-groups the reader can refer to [1] and [2]. For set theory, to [11].
Styles APA, Harvard, Vancouver, ISO, etc.
35

Reilly, Norman R. « Varieties of lattice ordered groups that contain no non-abelian o-groups are solvable ». Order 3, no 3 (1986) : 287–97. http://dx.doi.org/10.1007/bf00400292.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Gehrke, Mai, Samuel J. van Gool et Vincenzo Marra. « Sheaf representations of MV-algebras and lattice-ordered abelian groups via duality ». Journal of Algebra 417 (novembre 2014) : 290–332. http://dx.doi.org/10.1016/j.jalgebra.2014.06.031.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Scowcroft, Philip. « Model-completions for Abelian lattice-ordered groups with finitely many disjoint elements ». Annals of Pure and Applied Logic 170, no 6 (juin 2019) : 673–98. http://dx.doi.org/10.1016/j.apal.2019.01.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

KAKARIADIS, EVGENIOS T. A. « Finite-dimensional approximations for Nica–Pimsner algebras ». Ergodic Theory and Dynamical Systems 40, no 12 (9 août 2019) : 3375–402. http://dx.doi.org/10.1017/etds.2019.44.

Texte intégral
Résumé :
We give necessary and sufficient conditions for nuclearity of Cuntz–Nica–Pimsner algebras for a variety of quasi-lattice ordered groups. First we deal with the free abelian lattice case. We use this as a stepping-stone to tackle product systems over quasi-lattices that are controlled by the free abelian lattice and satisfy a minimality property. Our setting accommodates examples like the Baumslag–Solitar lattice for $n=m>0$ and the right-angled Artin groups. More generally, the class of quasi-lattices for which our results apply is closed under taking semi-direct and graph products. In the process we accomplish more. Our arguments tackle Nica–Pimsner algebras that admit a faithful conditional expectation on a small fixed point algebra and a faithful copy of the coefficient algebra. This is the case for CNP-relative quotients in-between the Toeplitz–Nica–Pimsner algebra and the Cuntz–Nica–Pimsner algebra. We complete this study with the relevant results on exactness.
Styles APA, Harvard, Vancouver, ISO, etc.
39

Belluce, L. P., A. Di Nola et A. Lettieri. « Subalgebras, direct products and associated lattices of MV-algebras ». Glasgow Mathematical Journal 34, no 3 (septembre 1992) : 301–7. http://dx.doi.org/10.1017/s0017089500008855.

Texte intégral
Résumé :
MV-algebras were introduced by C. C. Chang [3] in 1958 in order to provide an algebraic proof for the completeness theorem of the Lukasiewicz infinite valued propositional logic. In recent years the scope of applications of MV-algebras has been extended to lattice-ordered abelian groups, AF C*-algebras [10] and fuzzy set theory [1].
Styles APA, Harvard, Vancouver, ISO, etc.
40

GLASS, A. M. W., et VINCENZO MARRA. « EMBEDDING FINITELY GENERATED ABELIAN LATTICE-ORDERED GROUPS : HIGMAN'S THEOREM AND A REALISATION OF $\pi$ ». Journal of the London Mathematical Society 68, no 03 (17 novembre 2003) : 545–62. http://dx.doi.org/10.1112/s002461070300468x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Jakubík, J. « On the Schröder-Bernstein problem for abelian lattice ordered groups and for MV-algebras ». Soft Computing 8, no 8 (12 septembre 2003) : 581–86. http://dx.doi.org/10.1007/s00500-003-0318-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Anderson, M., M. Darnel et T. Feil. « A variety of lattice-ordered groups containing all representable covers of the abelian variety ». Order 7, no 4 (1991) : 401–5. http://dx.doi.org/10.1007/bf00383204.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Caramello, O., et A. C. Russo. « The Morita-equivalence between MV-algebras and lattice-ordered abelian groups with strong unit ». Journal of Algebra 422 (janvier 2015) : 752–87. http://dx.doi.org/10.1016/j.jalgebra.2014.08.008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Rump, Wolfgang. « Abelian lattice-ordered groups and a characterization of the maximal spectrum of a Prüfer domain ». Journal of Pure and Applied Algebra 218, no 12 (décembre 2014) : 2204–17. http://dx.doi.org/10.1016/j.jpaa.2014.03.011.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Burris, Stanley. « A simple proof of the hereditary undecidability of the theory of lattice-ordered abelian groups ». Algebra Universalis 20, no 3 (octobre 1985) : 400–401. http://dx.doi.org/10.1007/bf01195146.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Glass, A. M. W., Angus Macintyre et Françoise Point. « Erratum to “Free abelian lattice-ordered groups” [Ann. Pure Appl. Logic 134 (2–3) (2005) 265–283] ». Annals of Pure and Applied Logic 167, no 4 (avril 2016) : 431–33. http://dx.doi.org/10.1016/j.apal.2015.11.005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Jakubík, Ján. « On the congruence lattice of an abelian lattice ordered group ». Mathematica Bohemica 126, no 3 (2001) : 653–60. http://dx.doi.org/10.21136/mb.2001.134195.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Scowcroft, Philip. « Corrigendum to “Model-completions for Abelian lattice-ordered groups with finitely many disjoint elements” [Ann. Pure Appl. Logic 170 (2019) 673–698] ». Annals of Pure and Applied Logic 170, no 11 (novembre 2019) : 102720. http://dx.doi.org/10.1016/j.apal.2019.102720.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Harminc, Matúš. « Cardinality of the system of all sequential convergences on an Abelian lattice ordered group ». Czechoslovak Mathematical Journal 37, no 4 (1987) : 533–46. http://dx.doi.org/10.21136/cmj.1987.102181.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

CABRER, LEONARDO MANUEL, et DANIELE MUNDICI. « Classifying orbits of the affine group over the integers ». Ergodic Theory and Dynamical Systems 37, no 2 (22 juillet 2015) : 440–53. http://dx.doi.org/10.1017/etds.2015.45.

Texte intégral
Résumé :
For each $n=1,2,\ldots ,$ let $\text{GL}(n,\mathbb{Z})\ltimes \mathbb{Z}^{n}$ be the affine group over the integers. For every point $x=(x_{1},\ldots ,x_{n})\in \mathbb{R}^{n}$ let $\text{orb}(x)=\{\unicode[STIX]{x1D6FE}(x)\in \mathbb{R}^{n}\mid \unicode[STIX]{x1D6FE}\in \text{GL}(n,\mathbb{Z})\ltimes \mathbb{Z}^{n}\}.$ Let $G_{x}$ be the subgroup of the additive group $\mathbb{R}$ generated by $x_{1},\ldots ,x_{n},1$. If $\text{rank}(G_{x})\neq n$ then $\text{orb}(x)=\{y\in \mathbb{R}^{n}\mid G_{y}=G_{x}\}$. Thus, $G_{x}$ is a complete classifier of $\text{orb}(x)$. By contrast, if $\text{rank}(G_{x})=n$, knowledge of $G_{x}$ alone is not sufficient in general to uniquely recover $\text{orb}(x)$; as a matter of fact, $G_{x}$ determines precisely $\max (1,\unicode[STIX]{x1D719}(d)/2)$ different orbits, where $d$ is the denominator of the smallest positive non-zero rational in $G_{x}$ and $\unicode[STIX]{x1D719}$ is the Euler function. To get a complete classification, rational polyhedral geometry provides an integer $1\leq c_{x}\leq \max (1,d/2)$ such that $\text{orb}(y)=\text{orb}(x)$ if and only if $(G_{x},c_{x})=(G_{y},c_{y})$. Applications are given to lattice-ordered abelian groups with strong unit and to AF $C^{\ast }$-algebras.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie