Littérature scientifique sur le sujet « Lasers interbandes en cascade »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Lasers interbandes en cascade ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Lasers interbandes en cascade"

1

Meyer, Jerry, William Bewley, Chadwick Canedy, Chul Kim, Mijin Kim, Charles Merritt et Igor Vurgaftman. « The Interband Cascade Laser ». Photonics 7, no 3 (15 septembre 2020) : 75. http://dx.doi.org/10.3390/photonics7030075.

Texte intégral
Résumé :
We review the history, development, design principles, experimental operating characteristics, and specialized architectures of interband cascade lasers for the mid-wave infrared spectral region. We discuss the present understanding of the mechanisms limiting the ICL performance and provide a perspective on the potential for future improvements. Such device properties as the threshold current and power densities, continuous-wave output power, and wall-plug efficiency are compared with those of the quantum cascade laser. Newer device classes such as ICL frequency combs, interband cascade vertical-cavity surface-emitting lasers, interband cascade LEDs, interband cascade detectors, and integrated ICLs are reviewed for the first time.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Ning, Chao, Tian Yu, Shuman Liu, Jinchuan Zhang, Lijun Wang, Junqi Liu, Ning Zhuo, Shenqiang Zhai, Yuan Li et Fengqi Liu. « Interband cascade lasers with short electron injector ». Chinese Optics Letters 20, no 2 (2022) : 022501. http://dx.doi.org/10.3788/col202220.022501.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Horiuchi, Noriaki. « Interband cascade lasers ». Nature Photonics 9, no 8 (30 juillet 2015) : 481. http://dx.doi.org/10.1038/nphoton.2015.147.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Vurgaftman, I., R. Weih, M. Kamp, J. R. Meyer, C. L. Canedy, C. S. Kim, M. Kim et al. « Interband cascade lasers ». Journal of Physics D : Applied Physics 48, no 12 (11 mars 2015) : 123001. http://dx.doi.org/10.1088/0022-3727/48/12/123001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Ryczko, Krzysztof, et Grzegorz Sęk. « Towards unstrained interband cascade lasers ». Applied Physics Express 11, no 1 (4 décembre 2017) : 012703. http://dx.doi.org/10.7567/apex.11.012703.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Massengale, J. A., Yixuan Shen, Rui Q. Yang, S. D. Hawkins et J. F. Klem. « Long wavelength interband cascade lasers ». Applied Physics Letters 120, no 9 (28 février 2022) : 091105. http://dx.doi.org/10.1063/5.0084565.

Texte intégral
Résumé :
InAs-based interband cascade lasers (ICLs) can be more easily adapted toward long wavelength operation than their GaSb counterparts. Devices made from two recent ICL wafers with an advanced waveguide structure are reported, which demonstrate improved device performance in terms of reduced threshold current densities for ICLs near 11 μm or extended operating wavelength beyond 13 μm. The ICLs near 11 μm yielded a significantly reduced continuous wave (cw) lasing threshold of 23 A/cm2 at 80 K with substantially increased cw output power, compared with previously reported ICLs at similar wavelengths. ICLs made from the second wafer incorporated an innovative quantum well active region, comprised of InAsP layers, and lased in the pulsed-mode up to 120 K at 13.2 μm, which is the longest wavelength achieved for III–V interband lasers.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Yang, Rui Q., Lu Li, Wenxiang Huang, S. M. Shazzad Rassel, James A. Gupta, Andrew Bezinger, Xiaohua Wu, S. Ghasem Razavipour et Geof C. Aers. « InAs-Based Interband Cascade Lasers ». IEEE Journal of Selected Topics in Quantum Electronics 25, no 6 (novembre 2019) : 1–8. http://dx.doi.org/10.1109/jstqe.2019.2916923.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Kim, M., C. L. Canedy, C. S. Kim, W. W. Bewley, J. R. Lindle, J. Abell, I. Vurgaftman et J. R. Meyer. « Room temperature interband cascade lasers ». Physics Procedia 3, no 2 (janvier 2010) : 1195–200. http://dx.doi.org/10.1016/j.phpro.2010.01.162.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Yu, Tian, Chao Ning, Ruixuan Sun, Shu-Man Liu, Jinchuan Zhang, Junqi Liu, Lijun Wang et al. « Strain mapping in interband cascade lasers ». AIP Advances 12, no 1 (1 janvier 2022) : 015027. http://dx.doi.org/10.1063/5.0079193.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Holzbauer, Martin, Rolf Szedlak, Hermann Detz, Robert Weih, Sven Höfling, Werner Schrenk, Johannes Koeth et Gottfried Strasser. « Substrate-emitting ring interband cascade lasers ». Applied Physics Letters 111, no 17 (23 octobre 2017) : 171101. http://dx.doi.org/10.1063/1.4989514.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Lasers interbandes en cascade"

1

Fordyce, Jordan. « Single-mode interband cascade lasers for petrochemical process monitoring ». Electronic Thesis or Diss., Université de Montpellier (2022-....), 2023. http://www.theses.fr/2023UMONS070.

Texte intégral
Résumé :
Les lasers à cascade interbandes (ICL) fournissent des sources pour la gamme spectrale du moyen infrarouge compris entre 3 et 6 µm particulièrement efficaces en termes de consommation d’énergie. Cette gamme spectrale est particulièrement intéressante pour la détection des gaz impliqués dans l’industrie pétrochimique, car des gaz tels que le méthane, l'éthane et le dioxyde de carbone présentent une forte absorption dans cette gamme de longueur d’onde. L'identification correcte d'un gaz présent dans un échantillon nécessite des lasers avec une émission monomode et une certaine accordabilité en longueur d’onde. L'amélioration de cette plage de réglage possible avec une source laser offre de nouvelles opportunités dans des applications liées à la spectroscopie. Une alternative à ce qui est actuellement disponible dans le commerce peut être réalisée grâce à l'utilisation de guides d'ondes à fente, qui peuvent être fabriqués en utilisant de la photolithographie conventionnelle, réduisant ainsi le coût de fabrication.Deux nouveaux types d'ICL ont été conçus, fabriqués, et étudiés dans le cadre de cette thèse : un ICL à fentes à section unique et un ICL à fentes multiples accordé par Vernier (SVT). Une étude approfondie des étapes de fabrication et en particulier de la gravure sèche a été réalisée pour obtenir une gravure verticale des matériaux constituants les ICLs. Les premiers ICLs à fentes ont été fabriqués démontrant un e une émission monomode en régime continu à température ambiante avec une émission proche de 3.4 µm. Sur cette base, l'ICL SVT a été fabriqué pour étendre la plage d'accord et démontrer que l'accord par effet Vernier pouvait être mis en œuvre sur ce système de matériaux
Interband cascade lasers (ICLs) provide sources for the mid-infrared spectral range between 3 – 6 µm with low power consumption and efficient performance. This spectral range is of particular interest to the detection of gases involved with petrochemical processing, such as methane, ethane, and carbon dioxide due to their strong absorption in this range. Correct identification of a gas present in a sample requires single-mode emission and some tuning to match the absorption line, depending on the environmental conditions. Increasing the tuning range possible with one laser source opens up new possibilities in spectroscopic applications. An economical design alternative to what is currently commercially available can be realized through the use of slotted waveguides, which can be fabricated using photolithography, reducing the cost of fabrication.Two new types of ICLs have been designed, fabricated, and studied in this thesis: a single-section slotted ICL and a multi-section slotted Vernier tuned (SVT) ICL. An extensive study of the fabrication step and in particular dry etching was carried out to achieve vertical etching of the materials constituting the ICLs. First, the slotted ICLs were fabricated demonstrating single-mode emission in continuous wave operation at room temperature with emission close to 3.4 µm. Building from this foundation, the SVT ICL was fabricated to extend the tuning range and demonstrate that Vernier tuning could be implemented on this material system
Styles APA, Harvard, Vancouver, ISO, etc.
2

O'Hagan, Seamus. « Multi-mode absorption spectroscopy for multi-species and multi-parameter sensing ». Thesis, University of Oxford, 2017. https://ora.ox.ac.uk/objects/uuid:6f422683-7c50-47dd-8824-56b4b4ea941d.

Texte intégral
Résumé :
The extension of Multi-mode Absorption Spectroscopy (MUMAS) to the infra-red spectral region for multi-species gas sensing is reported. A computationally efficient, theoretical model for analysis of MUMAS spectra is presented that avoids approximations used in previous work and treats arbitrary and time-dependent spectral intensity envelopes, thus facilitating the use of commercially available Interband Cascade Lasers (ICLs) and Quantum Cascade Lasers (QCLs). The first use of an ICL for MUMAS is reported using a multi-mode device operating at 3.7 μm to detect CH4 transitions over a range of 30 nm. Mode-linewidths are measured using the pressure-dependent widths of an isolated absorption feature in HCl. Multi- species sensing is demonstrated by measurement of partial pressures of CH4, C2H2 and H2CO in a low-pressure mixture with uncertainties of around 10%. Detection of CH4 in N2 at 1 bar is demonstrated using a shorter-cavity ICL to resolve spectral features in pressure-broadened and congested spectra. The first use of a QCL for MUMAS is reported using a commercially available device operating at 5.3 μm to detect multiple absorption transitions of NO at a partial pressure of 2.79 μbar in N2 buffer gas. The revised model is shown to enable good fits to MUMAS data by accounting for the time-variation of the spectral intensity profile during frequency scanning. Individual mode-linewidths are derived from fits to pressure- dependent MUMAS spectra and features from background interferences due to H2O in laboratory air are distinguished from those of the target species, NO. Data obtained at scan rates up to 10 kHz demonstrate the potential for achieving short measurement times. The development of a balanced ratiometric detection scheme for MUMAS with commercially available multi-mode lasers operating at 1.5 μm is reported for simultaneous detection of CO and CO2 showing improved SNR performance over previous direct transmission methods and suitability for a compact field-employable instrument. In addition, MUMAS spectra of CO2 are used to derive gas temperatures with an uncertainty of 3.2% in the range 300 - 700 K.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Ikyo, Achakpa Barnabas. « Physical properties of interband and interband cascade edge- and surface-emitting mid-infrared lasers ». Thesis, University of Surrey, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.549457.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Herdt, Andreas Verfasser], Wolfgang [Akademischer Betreuer] Elsäßer et Thomas [Akademischer Betreuer] [Walther. « The laser-as-detector approach exploiting mid-infrared emitting interband cascade lasers : A potential for spectroscopy and communication applications / Andreas Herdt ; Wolfgang Elsäßer, Thomas Walther ». Darmstadt : Universitäts- und Landesbibliothek, 2020. http://d-nb.info/1224048725/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Herdt, Andreas [Verfasser], Wolfgang [Akademischer Betreuer] Elsäßer et Thomas [Akademischer Betreuer] Walther. « The laser-as-detector approach exploiting mid-infrared emitting interband cascade lasers : A potential for spectroscopy and communication applications / Andreas Herdt ; Wolfgang Elsäßer, Thomas Walther ». Darmstadt : Universitäts- und Landesbibliothek, 2020. http://d-nb.info/1224048725/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Patterson, Steven Gregory. « Bipolar cascade lasers ». Thesis, Massachusetts Institute of Technology, 2000. http://hdl.handle.net/1721.1/8805.

Texte intégral
Résumé :
Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2000.
Includes bibliographical references.
This thesis addresses issues of the design and modeling of the Bipolar Cascade Laser (BCL), a new type of quantum well laser. BCLs consist of multiple single stage lasers electrically coupled via tunnel junctions. The BCL ideally operates by having each injected electron participate in a recombination event in the topmost active region, then tunnel from the valence band of the first active region into the conduction band of the next active region, participate in another recombination event, and so on through each stage of the cascade. As each electron may produce more than one photon the quantum efficiency of the device can, in theory, exceed 100%. This work resulted in the first room temperature, continuous-wave operation of a BCL, with a record 99.3% differential slope efficiency. The device was fully characterized and modeled to include light output and voltage versus current bias, modulation response and thermal properties. A new singlemode bipolar cascade laser, the bipolar cascade antiresonant reflecting optical waveguide laser, was proposed and modeled.
by Steven G. Patterson.
Ph.D.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Williams, Benjamin S. (Benjamin Stanford) 1974. « Terahertz quantum cascade lasers ». Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/17012.

Texte intégral
Résumé :
Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2003.
Includes bibliographical references (p. 297-310).
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
The development of the terahertz frequency range has long been impeded by the relative dearth of compact, coherent radiation sources of reasonable power. This thesis details the development of quantum cascade lasers (QCLs) that operate in the terahertz with photon energies below the semiconductor Reststrahlen band. Photons are emitted via electronic intersubband transitions that take place entirely within the conduction band, where the wavelength is chosen by engineering the well and barrier widths in multiple-quantum-well heterostructures. Fabrication of such long wavelength lasers has traditionally been challenging, since it is difficult to obtain a population inversion between such closely spaced energy levels, and because traditional dielectric waveguides become extremely lossy due to free carrier absorption. This thesis reports the development of terahertz QCLs in which the lower radiative state is depopulated via resonant longitudinal-optical phonon scattering. This mechanism is efficient and temperature insensitive, and provides protection from thermal backfilling due to the large energy separation between the lower radiative state and the injector. Both properties are important in allowing higher temperature operation at longer wavelengths. Lasers using a surface plasmon based waveguide grown on a semi-insulating (SI) GaAs substrate were demonstrated at 3.4 THz in pulsed mode up to 87 K, with peak collected powers of 14 mW at 5 K, and 4 mW at 77 K.
Additionally, the first terahertz QCLs have been demonstrated that use metalmetal waveguides, where the mode is confined between metal layers placed immediately above and below the active region. These devices have confinement factors close to unity, and are expected to be advantageous over SI-surface-plasmon waveguides, especially at long wavelengths. Such a waveguide was used to obtain lasing at 3.8 THz in pulsed mode up to a record high temperature of 137 K, whereas similar devices fabricated in SI-surface-plasmon waveguides had lower maximum lasing temperatures due to the higher losses and lower confinement factors. This thesis describes the theory, design, fabrication, and testing of terahertz quantum cascade laser devices. A summary of theory relevant to design is presented, including intersubband radiative transitions and gain, intersubband scattering, and coherent resonant tunneling transport using a tight-binding density matrix model. Analysis of the effects of the complex heterostructure phonon spectra on terahertz QCL design are considered. Calculations of the properties of various terahertz waveguides are presented and compared with experimental results. Various fabrication methods have been developed, including a robust metallic wafer bonding technique used to fabricate metal-metal waveguides. A wide variety of quantum cascade structures, both lasing and non-lasing, have been experimentally characterized, which yield valuable information about the transport and optical properties of terahertz devices. Finally, prospects for higher temperature operation of terahertz QCLs are considered.
by Benjamin S. Williams.
Ph.D.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Rochat, Michel. « Far-infrared quantum cascade lasers ». Online version, 2002. http://bibpurl.oclc.org/web/24095.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Dhirhe, Devnath. « Monolithic tuneable quantum cascade lasers ». Thesis, University of Glasgow, 2013. http://theses.gla.ac.uk/4604/.

Texte intégral
Résumé :
This thesis is concerned with the design, fabrication and characterisation of monolithic tuneable quantum cascade lasers (QCLs), which are suitable for tuneable diode laser based absorption spectroscopy and polarisation dependent spectroscopy in the mid-infrared wavelength range. All investigations and device development work were carried out using the QCL structure based on strain-compensated Ga0.331In0.669As/Al0.659In0.341As grown on an InP substrate that emits light around 4500 nm wavelength. To make the QCLs electrically tuned, two laser designs were investigated: the double ring quantum cascade laser based on the Vernier-tuning effect, and the integrated tuneable birefringent waveguide utilising current controlled birefringence in quantum-wells. The key advantage of the Vernier tuning effect based the double ring laser design is that it can facilitate both a single mode and wide-tuning range operation. The Vernier tuning enhancement factor associated with the coupled waveguide is responsible for a wide-tuning range observed in double ring configuration. However, the tuning range is limited by the available gain bandwidth (i.e. FWHM of spontaneous spectra) in the material and the maximum obtainable index change of the tuner ring. Theoretically, the tuning range of 155 nm was estimated for the double ring quantum cascade laser (DRQCL) design employed in this thesis. However, experimentally, a single mode (~19 dB single sideband suppression ratio) and tuning range of 59 nm which covers almost half the bandwidth were observed. For the first time in the history of the QCL, a research into the design, fabrication and characterisation of integrated polarisation mode convertors (PMCs) has been carried out. The PMC design is based upon etching trenches, using the RIE lag effect, of sub-wavelength dimensions into one side of a waveguide in order to achieve an asymmetric cross-sectional profile, resulting in a waveplating effect. This thesis presents such PMCs integrated with QCLs that emit 69% TE light with the polarisation angle of 65 degree from one facet and a pure TM light emitted from the other facet using a 256 μm long PMC design (design D2). An integrated tunable birefringent waveguide (ITBW) consisting of two PMCs with a differential phase shift (DPS) section between them. To probe the birefringence operation, a sub-threshold electroluminescence was employed to investigate the single pass operation of the ITBW. A theory based on the electro-optic properties of birefringence in QCL waveguides was used combined with a Jones-matrix based description to gain an understanding of the electroluminescence results. With the QCL operating above threshold, polarisation and wavelength tuning of the signal output was demonstrated. By comparing the sub-threshold electroluminescence and active polarisation angle measurement result with the Jones matrix model, the material birefringence (no DPS current), 4n, was estimated to be around 0.005 for the QCL employed in this work. However, single mode emission was not observed and 24 nm discontinuous tuning was recorded. Despite this, using a QCL incorporating an ITBW device, active polarisation control over 45 degree was demonstrated, and currently, to the best of the authors knowledge there has been no other QCL device that is capable of electronically controlling the output polarisation.
Styles APA, Harvard, Vancouver, ISO, etc.
10

bin, Hashim Hasnul Hidayat. « Travelling-wave series cascade lasers ». Thesis, University of Leeds, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.493548.

Texte intégral
Résumé :
A travelling-wave microwave fibre-optic hnk (TWMFL) is proposed consisting of two transmission line structures that are periodically loaded with laser diodes and photodiodes, connected to one another by a fibre array.
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Lasers interbandes en cascade"

1

Faist, Jérôme. Quantum cascade lasers. Oxford, United Kingdom : Oxford University Press, 2013.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Jumpertz, Louise. Nonlinear Photonics in Mid-infrared Quantum Cascade Lasers. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65879-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Spitz, Olivier. Mid-infrared Quantum Cascade Lasers for Chaos Secure Communications. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-74307-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

United States. National Aeronautics and Space Administration. Scientific and Technical Information Branch., dir. Evaluation of diffuse-illumination holographic cinematography in a flutter cascade. [Washington, D.C.] : National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1987.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Decker, Arthur J. Evaluation of diffuse-illumination holographic cinematography in a flutter cascade. Cleveland, Ohio : Lewis Research Center, 1986.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

United States. National Aeronautics and Space Administration. Scientific and Technical Information Branch., dir. Evaluation of diffuse-illumination holographic cinematography in a flutter cascade. [Washington, D.C.] : National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1987.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

United States. National Aeronautics and Space Administration. Scientific and Technical Information Branch., dir. Evaluation of diffuse-illumination holographic cinematography in a flutter cascade. [Washington, D.C.] : National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1987.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Stavrou, Vasilios N., dir. Quantum Cascade Lasers. InTech, 2017. http://dx.doi.org/10.5772/62674.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Faist, J. Quantum Cascade Lasers. Oxford University Press, Incorporated, 2013.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Faist, Jérôme. Quantum Cascade Lasers. Oxford University Press, 2013.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Lasers interbandes en cascade"

1

Jumpertz, Louise. « Optical Feedback in Interband Lasers ». Dans Nonlinear Photonics in Mid-infrared Quantum Cascade Lasers, 35–61. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65879-7_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Nähle, L., P. Fuchs, M. Fischer, J. Koeth, A. Bauer, M. Dallner, F. Langer, S. Höfling et A. Forchel. « Mid infrared interband cascade lasers for sensing applications ». Dans TDLS 2009, 43–46. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-02292-0_6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Höfling, C., C. Schneider et A. Forchel. « 6.6.4 Growth of quantum wells in GaSb-based interband cascade lasers ». Dans Growth and Structuring, 160–62. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-540-68357-5_30.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Paul, Douglas J. « Quantum Cascade Lasers ». Dans Springer Series in Optical Sciences, 103–21. Dordrecht : Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-94-007-3837-9_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Razeghi, Manijeh. « Quantum Cascade Lasers ». Dans Technology of Quantum Devices, 271–319. Boston, MA : Springer US, 2009. http://dx.doi.org/10.1007/978-1-4419-1056-1_7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Pearsall, Thomas P. « Quantum Cascade Lasers ». Dans Quantum Photonics, 237–65. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-55144-9_8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Rossi, Fausto. « Quantum-Cascade Lasers ». Dans Theory of Semiconductor Quantum Devices, 249–72. Berlin, Heidelberg : Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-10556-2_8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Yang, Q., et O. Ambacher. « 9.4 Quantum cascade lasers ». Dans Laser Systems, 74–86. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14177-5_6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Köhler, Rüdeger, Alessandro Tredicucci, Fabio Beltram, Harvey E. Beere, Edmund H. Linfield, Giles A. Davies et David A. Ritchie. « Terahertz Quantum Cascade Lasers ». Dans Advances in Solid State Physics, 327–40. Berlin, Heidelberg : Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-44838-9_23.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Razeghi, Manijeh, et Neelanjan Bandyopadhyay. « Broadband Heterogeneous Quantum Cascade Lasers ». Dans NATO Science for Peace and Security Series B : Physics and Biophysics, 135–43. Dordrecht : Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1093-8_16.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Lasers interbandes en cascade"

1

Vurgaftman, I., C. L. Canedy, C. S. Kim, M. Kim, C. D. Merritt, W. W. Bewley, S. Tomasulo et J. R. Meyer. « Interband Cascade Lasers ». Dans CLEO : Science and Innovations. Washington, D.C. : OSA, 2020. http://dx.doi.org/10.1364/cleo_si.2020.sth1e.6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Lin, C. H. T., WenYen Hwang, Han Q. Le, Yao-Ming Mu, A. Liu, Jun Zheng, A. M. Delaney, Chau-Hong Kuo et Shin Shem Pei. « Interband cascade lasers ». Dans Symposium on Integrated Optoelectronics, sous la direction de Luke J. Mawst et Ramon U. Martinelli. SPIE, 2000. http://dx.doi.org/10.1117/12.382089.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Schwarz, Benedikt, Maximilian Beiser, Florian Pilat, Sandro Dal Cin, Johannes Hillbrand, Robert Weih, Johannes Koeth et Sven Höfling. « Interband cascade laser frequency combs ». Dans Semiconductor Lasers and Laser Dynamics X, sous la direction de Krassimir Panajotov, Marc Sciamanna et Sven Höfling. SPIE, 2022. http://dx.doi.org/10.1117/12.2624340.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Holzbauer, Martin, Borislav Hinkov, Rolf Szedlak, Hermann Detz, Robert Weih, Sven Höfling, Werner Schrenk, Erich Gornik, Johannes Koeth et Gottfried Strasser. « Ring Interband Cascade Lasers ». Dans CLEO : Science and Innovations. Washington, D.C. : OSA, 2018. http://dx.doi.org/10.1364/cleo_si.2018.sf2g.2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Knotig, Hedwig, Aaron Maxwell Andrews, Borislav Hinkov, Robert Weih, Johannes Koeth, Benedikt Schwarz et Gottfried Strasser. « Interband Cascade and Quantum Cascade Ring Lasers ». Dans CLEO : Science and Innovations. Washington, D.C. : OSA, 2020. http://dx.doi.org/10.1364/cleo_si.2020.sth1e.3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Tian, Zhaobing, Rui Q. Yang, Tetsuya D. Mishima, Michael B. Santos, Robert T. Hinkey, Mark E. Curtis et Matthew B. Johnson. « Plasmon Waveguide Interband Cascade Lasers ». Dans Conference on Lasers and Electro-Optics. Washington, D.C. : OSA, 2009. http://dx.doi.org/10.1364/cleo.2009.cthaa7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Yang, R. Q., B. H. Yang, D. Zhang, S. J. Murry, C. H. Lin et S. S. Pei. « Mid-IR interband cascade lasers ». Dans Conference Proceedings. LEOS '97. 10th Annual Meeting IEEE Lasers and Electro-Optics Society 1997 Annual Meeting. IEEE, 1997. http://dx.doi.org/10.1109/leos.1997.630592.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Meyer, J. R., C. S. Kim, M. Kim, C. L. Canedy, W. W. Bewley, J. R. Lindle et I. Vurgaftman. « Interband cascade distributed-feedback lasers ». Dans Integrated Optoelectronic Devices 2007, sous la direction de Manijeh Razeghi et Gail J. Brown. SPIE, 2007. http://dx.doi.org/10.1117/12.693445.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Höfling, S., R. Weih, A. Bauer, A. Forchel et M. Kamp. « Low threshold interband cascade lasers ». Dans SPIE OPTO, sous la direction de Manijeh Razeghi. SPIE, 2013. http://dx.doi.org/10.1117/12.2004680.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Meyer, J. R., C. L. Canedy, C. S. Kim, M. Kim, W. W. Bewley, C. D. Merritt et I. Vurgaftman. « High-Brightness Interband Cascade Lasers ». Dans CLEO : Science and Innovations. Washington, D.C. : OSA, 2015. http://dx.doi.org/10.1364/cleo_si.2015.stu2g.1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Lasers interbandes en cascade"

1

Folkes, Patrick. Interband Cascade Laser Photon Noise. Fort Belvoir, VA : Defense Technical Information Center, septembre 2009. http://dx.doi.org/10.21236/ada507657.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Tober, Richard L., Carlos Monroy, Kimberly Olver et John D. Bruno. Processing Interband Cascade Laser for High Temperature CW Operation. Fort Belvoir, VA : Defense Technical Information Center, novembre 2004. http://dx.doi.org/10.21236/ada428728.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Gmachl, Claire. Quantum Cascade Lasers. Fort Belvoir, VA : Defense Technical Information Center, janvier 2005. http://dx.doi.org/10.21236/ada429769.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Capasso, Federico, et Franz X. Kaertner. Mode Locking of Quantum Cascade Lasers. Fort Belvoir, VA : Defense Technical Information Center, novembre 2007. http://dx.doi.org/10.21236/ada490860.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Deppe, Dennis G. Mid-Infrared Quantum Dot Cascade Lasers. Fort Belvoir, VA : Defense Technical Information Center, novembre 2005. http://dx.doi.org/10.21236/ada447301.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Mohseni, Hooman. Phonon Avoided and Scalable Cascade Lasers (PASCAL). Fort Belvoir, VA : Defense Technical Information Center, novembre 2008. http://dx.doi.org/10.21236/ada498465.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Harper, Warren W., Jana D. Strasburg, Pam M. Aker et John F. Schultz. Remote Chemical Sensing Using Quantum Cascade Lasers. Office of Scientific and Technical Information (OSTI), janvier 2004. http://dx.doi.org/10.2172/15010485.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Harper, Warren W., et John F. Schultz. Remote Chemical Sensing Using Quantum Cascade Lasers. Office of Scientific and Technical Information (OSTI), janvier 2003. http://dx.doi.org/10.2172/969751.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Chow, Weng Wah, Michael Clement Wanke, Maytee Lerttamrab et Ines Waldmueller. THz quantum cascade lasers for standoff molecule detection. Office of Scientific and Technical Information (OSTI), octobre 2007. http://dx.doi.org/10.2172/921751.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Zaytsev, Sergey, et Dabiran. Development of III-V Terahertz Quantum Cascade Lasers. Fort Belvoir, VA : Defense Technical Information Center, février 2005. http://dx.doi.org/10.21236/ada434866.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie