Littérature scientifique sur le sujet « LASER WAKEFIELD ACCELERATION (LWFA) »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « LASER WAKEFIELD ACCELERATION (LWFA) ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "LASER WAKEFIELD ACCELERATION (LWFA)"

1

Kimura, W. D., N. E. Andreev, M. Babzien, I. Ben-Zvi, D. B. Cline, C. E. Dilley, S. C. Gottschalk et al. « Inverse free electron lasers and laser wakefield acceleration driven by CO 2 lasers ». Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences 364, no 1840 (24 janvier 2006) : 611–22. http://dx.doi.org/10.1098/rsta.2005.1726.

Texte intégral
Résumé :
The staged electron laser acceleration (STELLA) experiment demonstrated staging between two laser-driven devices, high trapping efficiency of microbunches within the accelerating field and narrow energy spread during laser acceleration. These are important for practical laser-driven accelerators. STELLA used inverse free electron lasers, which were chosen primarily for convenience. Nevertheless, the STELLA approach can be applied to other laser acceleration methods, in particular, laser-driven plasma accelerators. STELLA is now conducting experiments on laser wakefield acceleration (LWFA). Two novel LWFA approaches are being investigated. In the first one, called pseudo-resonant LWFA, a laser pulse enters a low-density plasma where nonlinear laser/plasma interactions cause the laser pulse shape to steepen, thereby creating strong wakefields. A witness e -beam pulse probes the wakefields. The second one, called seeded self-modulated LWFA, involves sending a seed e -beam pulse into the plasma to initiate wakefield formation. These wakefields are amplified by a laser pulse following shortly after the seed pulse. A second e -beam pulse (witness) follows the seed pulse to probe the wakefields. These LWFA experiments will also be the first ones driven by a CO 2 laser beam.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kim, Hyung Taek, Vishwa Bandhu Pathak, Calin Ioan Hojbota, Mohammad Mirzaie, Ki Hong Pae, Chul Min Kim, Jin Woo Yoon, Jae Hee Sung et Seong Ku Lee. « Multi-GeV Laser Wakefield Electron Acceleration with PW Lasers ». Applied Sciences 11, no 13 (23 juin 2021) : 5831. http://dx.doi.org/10.3390/app11135831.

Texte intégral
Résumé :
Laser wakefield electron acceleration (LWFA) is an emerging technology for the next generation of electron accelerators. As intense laser technology has rapidly developed, LWFA has overcome its limitations and has proven its possibilities to facilitate compact high-energy electron beams. Since high-power lasers reach peak power beyond petawatts (PW), LWFA has a new chance to explore the multi-GeV energy regime. In this article, we review the recent development of multi-GeV electron acceleration with PW lasers and discuss the limitations and perspectives of the LWFA with high-power lasers.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Hidding, Bernhard, Ralph Assmann, Michael Bussmann, David Campbell, Yen-Yu Chang, Sébastien Corde, Jurjen Couperus Cabadağ et al. « Progress in Hybrid Plasma Wakefield Acceleration ». Photonics 10, no 2 (17 janvier 2023) : 99. http://dx.doi.org/10.3390/photonics10020099.

Texte intégral
Résumé :
Plasma wakefield accelerators can be driven either by intense laser pulses (LWFA) or by intense particle beams (PWFA). A third approach that combines the complementary advantages of both types of plasma wakefield accelerator has been established with increasing success over the last decade and is called hybrid LWFA→PWFA. Essentially, a compact LWFA is exploited to produce an energetic, high-current electron beam as a driver for a subsequent PWFA stage, which, in turn, is exploited for phase-constant, inherently laser-synchronized, quasi-static acceleration over extended acceleration lengths. The sum is greater than its parts: the approach not only provides a compact, cost-effective alternative to linac-driven PWFA for exploitation of PWFA and its advantages for acceleration and high-brightness beam generation, but extends the parameter range accessible for PWFA and, through the added benefit of co-location of inherently synchronized laser pulses, enables high-precision pump/probing, injection, seeding and unique experimental constellations, e.g., for beam coordination and collision experiments. We report on the accelerating progress of the approach achieved in a series of collaborative experiments and discuss future prospects and potential impact.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Bingham, Robert. « Basic concepts in plasma accelerators ». Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences 364, no 1840 (février 2006) : 559–75. http://dx.doi.org/10.1098/rsta.2005.1722.

Texte intégral
Résumé :
In this article, we present the underlying physics and the present status of high gradient and high-energy plasma accelerators. With the development of compact short pulse high-brightness lasers and electron and positron beams, new areas of studies for laser/particle beam–matter interactions is opening up. A number of methods are being pursued vigorously to achieve ultra-high-acceleration gradients. These include the plasma beat wave accelerator (PBWA) mechanism which uses conventional long pulse (∼100 ps) modest intensity lasers ( I ∼10 14 –10 16 W cm −2 ), the laser wakefield accelerator (LWFA) which uses the new breed of compact high-brightness lasers (<1 ps) and intensities >10 18 W cm −2 , self-modulated laser wakefield accelerator (SMLWFA) concept which combines elements of stimulated Raman forward scattering (SRFS) and electron acceleration by nonlinear plasma waves excited by relativistic electron and positron bunches the plasma wakefield accelerator. In the ultra-high intensity regime, laser/particle beam–plasma interactions are highly nonlinear and relativistic, leading to new phenomenon such as the plasma wakefield excitation for particle acceleration, relativistic self-focusing and guiding of laser beams, high-harmonic generation, acceleration of electrons, positrons, protons and photons. Fields greater than 1 GV cm −1 have been generated with monoenergetic particle beams accelerated to about 100 MeV in millimetre distances recorded. Plasma wakefields driven by both electron and positron beams at the Stanford linear accelerator centre (SLAC) facility have accelerated the tail of the beams.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Barraza-Valdez, Ernesto, Toshiki Tajima, Donna Strickland et Dante E. Roa. « Laser Beat-Wave Acceleration near Critical Density ». Photonics 9, no 7 (8 juillet 2022) : 476. http://dx.doi.org/10.3390/photonics9070476.

Texte intégral
Résumé :
We consider high-density laser wakefield acceleration (LWFA) in the nonrelativistic regime of the laser. In place of an ultrashort laser pulse, we can excite wakefields via the Laser Beat Wave (BW) that accesses this near-critical density regime. Here, we use 1D Particle-in-Cell (PIC) simulations to study BW acceleration using two co-propagating lasers in a near-critical density material. We show that BW acceleration near the critical density allows for acceleration of electrons to greater than keV energies at far smaller intensities, such as 1014 W/cm2, through the low phase velocity dynamics of wakefields that are excited in this scheme. Near-critical density laser BW acceleration has many potential applications including high-dose radiation therapy.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Wu, Ying, Changhai Yu, Zhiyong Qin, Wentao Wang, Zhijun Zhang, Rong Qi, Ke Feng et al. « Energy Enhancement and Energy Spread Compression of Electron Beams in a Hybrid Laser-Plasma Wakefield Accelerator ». Applied Sciences 9, no 12 (23 juin 2019) : 2561. http://dx.doi.org/10.3390/app9122561.

Texte intégral
Résumé :
We experimentally demonstrated the generation of narrow energy-spread electron beams with enhanced energy levels using a hybrid laser-plasma wakefield accelerator. An experiment featuring two-color electron beams showed that after the laser pump reached the depletion length, the laser-wakefield acceleration (LWFA) gradually evolved into the plasma-driven wakefield acceleration (PWFA), and thereafter, the PWFA dominated the electron acceleration. The energy spread of the electron beams was further improved by energy chirp compensation. Particle-in-cell simulations were performed to verify the experimental results. The generated monoenergetic high-energy electron beams are promising to upscale future accelerator systems and realize monoenergetic γ -ray sources.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Kumar, Sonu, Dhananjay K. Singh et Hitendra K. Malik. « Comparative study of ultrashort single-pulse and multi-pulse driven laser wakefield acceleration ». Laser Physics Letters 20, no 2 (30 décembre 2022) : 026001. http://dx.doi.org/10.1088/1612-202x/aca978.

Texte intégral
Résumé :
Abstract Laser wakefield acceleration (LWFA) is a promising technique to build compact and powerful particle accelerators. In such accelerators, the electric fields required to accelerate charged particles are sustained by electron density modulations in the plasma. The plasma wave modulating the electron density may be excited by an intense laser pulse. However, propagation of intense laser pulse in plasma is subject to various instabilities which result in significant losses of laser energy, reducing the efficiency of wakefield generation. Using a train of lower intensity pulses instead of a single higher intensity pulse appears to be a more efficient scheme for LWFA. Here we have studied this alternative scheme by applying an ultra-short femtosecond Gaussian laser beam consisting pulse train of a various number of pulses in different cases to underdense plasma. The plasma density modulation and strength of the resulting wakefield have been compared in various cases of multi-pulse and single-pulse lasers, for the same amount of input energies. Here we demonstrate that applying multi-laser pulses of optimally selected lower intensities and proper spacing leads to stronger wakefield generation and more efficient electron acceleration compared to the case of a single pulse of higher energy.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Nicks, B. S., T. Tajima, D. Roa, A. Nečas et G. Mourou. « Laser-wakefield application to oncology ». International Journal of Modern Physics A 34, no 34 (10 décembre 2019) : 1943016. http://dx.doi.org/10.1142/s0217751x19430164.

Texte intégral
Résumé :
Recent developments in fiber lasers and nanomaterials have allowed the possibility of using laser wakefield acceleration (LWFA) as the source of low-energy electron radiation for endoscopic and intraoperative brachytherapy, a technique in which sources of radiation for cancer treatment are brought directly to the affected tissues, avoiding collateral damage to intervening tissues. To this end, the electron dynamics of LWFA is examined in the high-density regime. In the near-critical density regime, electrons are accelerated by the ponderomotive force followed by an electron sheath formation, resulting in a flow of bulk electrons. These low-energy electrons penetrate tissue to depths typically less than 1 mm. First a typical resonant laser pulse is used, followed by lower-intensity, longer-pulse schemes, which are more amenable to a fiber-laser application.
Styles APA, Harvard, Vancouver, ISO, etc.
9

OSTERMAYR, TOBIAS, STEFAN PETROVICS, KHALID IQBAL, CONSTANTIN KLIER, HARTMUT RUHL, KAZUHISA NAKAJIMA, AIHUA DENG et al. « Laser plasma accelerator driven by a super-Gaussian pulse ». Journal of Plasma Physics 78, no 4 (12 avril 2012) : 447–53. http://dx.doi.org/10.1017/s0022377812000311.

Texte intégral
Résumé :
AbstractA laser wakefield accelerator (LWFA) with a weak focusing force is considered to seek improved beam quality in LWFA. We employ super-Gaussian laser pulses to generate the wakefield and study the behavior of the electron beam dynamics and synchrotron radiation arising from the transverse betatron oscillations through analysis and computation. We note that the super-Gaussian wakefields radically reduce the betatron oscillations and make the electron orbits mainly ballistic over a single stage. This feature permits to obtain small emittance and thus high luminosity, while still benefitting from the low-density operation of LWFA (Nakajima et al. 2011 Phys. Rev. ST Accel. Beams14, 091301), such as the reduced radiation loss, less number of stages, less beam instabilities, and less required wall plug power than in higher density regimes.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Martinez de la Ossa, A., R. W. Assmann, M. Bussmann, S. Corde, J. P. Couperus Cabadağ, A. Debus, A. Döpp et al. « Hybrid LWFA–PWFA staging as a beam energy and brightness transformer : conceptual design and simulations ». Philosophical Transactions of the Royal Society A : Mathematical, Physical and Engineering Sciences 377, no 2151 (24 juin 2019) : 20180175. http://dx.doi.org/10.1098/rsta.2018.0175.

Texte intégral
Résumé :
We present a conceptual design for a hybrid laser-driven plasma wakefield accelerator (LWFA) to beam-driven plasma wakefield accelerator (PWFA). In this set-up, the output beams from an LWFA stage are used as input beams of a new PWFA stage. In the PWFA stage, a new witness beam of largely increased quality can be produced and accelerated to higher energies. The feasibility and the potential of this concept is shown through exemplary particle-in-cell simulations. In addition, preliminary simulation results for a proof-of-concept experiment in Helmholtz-Zentrum Dresden-Rossendorf (Germany) are shown. This article is part of the Theo Murphy meeting issue ‘Directions in particle beam-driven plasma wakefield acceleration’.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "LASER WAKEFIELD ACCELERATION (LWFA)"

1

Koschitzki, Christian. « Injection mechanisms in Laser Wakefield Acceleration ». Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2017. http://dx.doi.org/10.18452/17760.

Texte intégral
Résumé :
Die Beschleunigung von Elektronen im Wechselwirkungsbereich hochintensiver Laserfelder mit einem Plasma wird als mögliche Alternative zu konventionellen Radiofrequenz basierten Beschleunigerkonzepten gehandelt. Die gezeigten Experimente sind die ersten Versuche zur Laser getriebenen Elektronenbeschleunigung am Max Born Institut. Im Rahmen dieser Dissertation konzentriere ich mich auf kontrollierte Injektion und es werden zwei verschiedene Methoden gezeigt. Die erste demonstrierte Variante einer stimulierten Injektion ist die Ionisationsinjektion, welche typischerweise zu einem kontinuierlichen Elektroneneinfang über einen ausgedehnten Bereich entlang der Propagation des Lasers führt. Die injizierten Elektronen werden dadurch über unterschiedliche Längen beschleunigt, was zu einem breiten Energiespektrum des beschleunigten Eletronenpaketes führt. Die zweite untersuchte Injektionsmethode basiert auf einem Überschallphänomen, welches eine quasi-instantane Injektion ermöglicht. Wird ein Überschall-Gasfluß durch eine scharfe Kante gestört, bildet sich ein scharfer Dichteübergang, bekannt als Schock Front, durch welchen eine Injektion stimuliert werden kann. Es wurde gezeigt, dass die Machzahl der Düse bzw. die Übergangshöhe der Schock Front dazu benutzt werden können, die injizierte Ladungsmenge zu kontrollieren. Eine Erhöhung der Ladungsmenge ist dabei mit einer Erhöhung der Energiebreite verknüpft. Es wurden Elektronenstrahlen demonstriert mit weniger als 2% Energiebreite bei einer Maximalenergie von 300MeV und 5 pC Ladung. Es zeigte sich, dass sowohl bei Shock-Front Injektion als auch bei Ionisationsinjektion die emittierte Ladung pro Energieintervall und Raumwinkel konstant blieb, bei einem Wert von (0.021+-0.001) pC/MeV/mrad^2. Dass sowohl eine kontinuierliche als auch eine instantane Injektion dieselbe Korrelation zwischen Ladung, Divergenz und Energiebreite aufweisen, lässt darauf schließen, dass es sich um eine Eigenschaft der Plasmawelle selbst handelt.
The acceleration of electrons in intense laser fields interacting with a plasma is widely considered as a possible alternative to conventional RF-based accelerator concepts. The presented measurements are the first demonstration of Laser Wakefield Acceleration at the Max Born Institut and a setup was build to perform the described experiments. This thesis focuses on controlled injection and two different methods will be compared. The first method of stimulated injection, presented in this thesis, is ionization injection, which typically causes electron trapping over an extended laser propagation distance. As electrons become injected at different positions, electrons will be accelerated over different distances, yielding a wide energy spread in the emitted electron beam. The second stimulated injection method utilizes a supersonic phenomenon called shock front to stimulate a quasi-instantaneous injection. When a supersonic gas flow is disturbed by a sharp edge, a shock front is created and injection is stimulated at the crossing of the propagating laser pulse and the shock-front region. It is found that the Mach number of the flow or the density transition in the shock front respectively, can be used to tune the total charge injected. This increase in total charge comes at the expense of an increased energy spread. Electron beams are demonstrated with an energy spread of less than 2% at peak energies of 300MeV with 5 pC of charge. For the ionization injection as well as for the shock-front injection it is found, that the charge per energy interval and solid angle is constant and amounts to (0.021+-0.001) pC/MeV/mrad^2 for all observed electron beams. The continuous injection and the quasi-instantaneous injection yield the same correlation between charge, divergence and energy spread. This implies that this correlation is a property of the wakefield structure itself.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Dann, Stephen John David. « Progress towards a demonstration of multi-pulse laser Wakefield acceleration and implementation of a single-shot Wakefield diagnostic ». Thesis, University of Oxford, 2015. https://ora.ox.ac.uk/objects/uuid:6a7fe676-a9f4-4b50-a04e-9052e08cdd1b.

Texte intégral
Résumé :
An ongoing experiment is described to demonstrate the principle of multi-pulse laser wakefield acceleration, in which a plasma wakefield is resonantly excited by a train of laser pulses, spaced by the plasma wavelength. Particle-in-cell simulations of the initial single-pulse experimental setup are presented, in order to calculate the expected signal. Preliminary results are presented and future plans, based on work done so far, are discussed. Part of this work involves the implementation of a single-shot wakefield diagnostic - frequency-domain holography, which records the phase shift caused by passage of a probe pulse through the plasma. This implementation is described in detail, along with the associated analysis procedure. Practical difficulties encountered while implementing the diagnostic are discussed, along with possible ways of mitigating them in the future. A method is presented by which the noise level in the resulting phase measurements can be predicted, much more accurately than any previously published method for this technique. Methods of generating pulse trains for use in future multi-pulse laser wakefield acceleration experiments are presented. These include techniques proposed for use in this demonstration experiment, as well as one intended for use in a dedicated high-efficiency, high repetition-rate, multi-pulse driver laser. This last method, based on programmable pulse shaping using a spatial light modulator, requires a suitable mask to be computed based on the parameters of the required pulse train; an algorithm is described to perform this computation.
Styles APA, Harvard, Vancouver, ISO, etc.
3

YADAV, MONIKA. « SOME ASPECTS OF LASER-PLASMA INTERACTION FOR ELECTRON ACCELERATION ». Thesis, DELHI TECHNOLOGICAL UNIVERSITY, 2021. http://dspace.dtu.ac.in:8080/jspui/handle/repository/18736.

Texte intégral
Résumé :
This thesis focuses on investigation of laser-plasma interaction relevant to electron acceleration to high energies. This work explores various ideas for producing an energetic and good quality electron beam from laser wakefield acceleration (LWFA) in plasmas. In LWFA, a high-intensity laser pulse excites a plasma wave, which propagates behind the laser pulse with the equal speed of the laser group velocity. For efficient accelerations, electrons should be injected into the wakefield. Thus, the wakefield evolution and electron injection both are quite important aspects in LWFA. In order to draw the maximum output from the wakefield structure, which is called wakefield bubble in case of high-intensity laser, the basic understanding behind the factors controlling electron injection into wake structure must be very clear. This thesis work focus toward controlling the electron beam quality by understanding the factors affecting bubble wake evolution. The dependence of beam energy and the beam quality on the shape of the bubble is the main motivation behind this investigation. Particle-in-cell (PIC) simulations are conducted to study the bubble dynamics for optimum electron accelerations. A good quality electron bunch with pC to nC charge are obtained with current laser-plasma parameters. During LWFA, generation of wakefield results in variation of refractive index that may distort the laser pulse shape. Thus, the laser pulse shape may be a significant factor to control the electron beam parameters in LWFA. Various shapes such as q-Gaussian laser pulse and flattened-Gaussian laser pulse have been taken into account to observe the laser pulse effect on electron beam parameters in LWFA. The implications of laser pulse shape was shown to control and optimize the bunch charge as well as the bunch energy. Our insights into the acceleration process might be quite supportive in the future optimization of electron beam stability and quality. The electron bunch generated by LWFA could be used to obtain femtosecond x-rays and subsequent applications in medical sciences.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Debus, Alexander. « Brilliant radiation sources by laser-plasma accelerators and optical undulators ». Forschungszentrum Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:d120-qucosa-91303.

Texte intégral
Résumé :
This thesis investigates the use of high-power lasers for synchrotron radiation sources with high brilliance, from the EUV to the hard X-ray spectral range. Hereby lasers accelerate electrons by laser-wakefield acceleration (LWFA), act as optical undulators, or both. Experimental evidence shows for the first time that LWFA electron bunches are shorter than the driving laser and have a length scale comparable to the plasma wavelength. Furthermore, a first proof of principle experiment demonstrates that LWFA electrons can be exploited to generate undulator radiation. Building upon these experimental findings, as well as extensive numerical simulations of Thomson scattering, the theoretical foundations of a novel interaction geometry for laser-matter interaction are developed. This new method is very general and when tailored towards relativistically moving targets not being limited by the focusability (Rayleigh length) of the laser, while it does not require a waveguide. In a theoretical investigation of Thomson scattering, the optical analogue of undulator radiation, the limits of Thomson sources in scaling towards higher peak brilliances are highlighted. This leads to a novel method for generating brilliant, highly tunable X-ray sources, which is highly energy efficient by circumventing the laser Rayleigh limit through a novel traveling-wave Thomson scattering (TWTS) geometry. This new method suggests increases in X-ray photon yields of 2-3 orders of magnitudes using existing lasers and a way towards efficient, optical undulators to drive a free-electron laser. The results presented here extend far beyond the scope of this work. The possibility to use lasers as particle accelerators, as well as optical undulators, leads to very compact and energy efficient synchrotron sources. The resulting monoenergetic radiation of high brilliance in a range from extreme ultraviolet (EUV) to hard X-ray radiation is of fundamental importance for basic research, medical applications, material and life sciences and is going to significantly contribute to a new generation of radiation sources and free-electron lasers (FELs).
Styles APA, Harvard, Vancouver, ISO, etc.
5

Aniculaesei, Constantin. « Experimental studies of laser plasma wakefield acceleration ». Thesis, University of Strathclyde, 2015. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=25874.

Texte intégral
Résumé :
This thesis describes experiments thatexplore the possibility of improving the quality of an electron beam obtained from a laser wakefield accelerator (LWFA) by shaping the longitudinal plasma density profile. Different density profiles have been obtained by employing a range of Laval nozzles with different geometries. These are modelled and numerically simulated under different conditions using Fluent 6.3. Density lineouts from simulations for different heights above the nozzle give the plasma density profile for each experimental condition. The plasma density profile is modified by changing the geometry of the nozzle, the interaction point, the laser beam angle relative to the exit plane of the nozzle and pressure of the gas. In this way the leading up-ramp length of the density profile (that interacts first with the laser) has been varied between 0.47 mm to 1.39 mm and the maximum plasma density varied between 1.29 x 1019 cm⁻³ to 2.03 x 1019 cm⁻³. The influence of the density profile parameters on the LWFA process is quantified by monitoring the properties of the generated electron beam. It is shown that the leading ramp of the plasma density profile i.e. the ramp that interacts first with the laser, has a strong influence on the quality of the electron beam. Density profiles with the same peak plasma density but different ramp lengths generate electron beams with a factor of 1.4 difference in charge, 1.1 in electron energy, 2 in pointing and 1.45 in energy spread. Longer ramp lengths enhance the quality of electron beams, which suggest that LWFA injection occurs at the entrance density ramp. Complex density profiles are produced by tilting the nozzle relative to the direction of propagation of the laser. This allows continuous tuning of the peak energy of the electron beam from 135 ± 2MeV up to 171 ± 2MeV. The electron beam energy spread show improvements from 20.7 ± 1.2% to 8.9 ± 0.9%. The charge closely follows the evolution of the energy spread and has a mean value of 0.61 ± 0.16 pC. Experimental results also show that the angular distribution of the electron beam becomes elliptical when the laser focal plane is moved from the edge of the gas jet towards the centre of the density profile. This result is linked to the existence of a distorted LWFA bubble that propagates off-axis therefore affecting the pointing and transverse shape of the electron beam.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Gaul, Erhard Werner. « Fully ionized helium waveguides for laser wakefield acceleration / ». Full text (PDF) from UMI/Dissertation Abstracts International, 2000. http://wwwlib.umi.com/cr/utexas/fullcit?p3004269.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Osterhoff, Jens. « Stable, ultra-relativistic electron beams by laser-wakefield acceleration ». Diss., lmu, 2009. http://nbn-resolving.de/urn:nbn:de:bvb:19-96539.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Doche, Antoine. « Particle acceleration with beam driven wakefield ». Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLX023/document.

Texte intégral
Résumé :
Les accélérateurs par onde de sillage plasma produites par faisceaux de particules (PWFA) ou par faisceaux laser (LWFA) appartiennent à un nouveau type d’accélérateurs de particules particulièrement prometteur. Ils permettent d’exploiter des champs accélérateurs jusqu’à cent Gigaélectronvolt par mètre alors que les dispositifs conventionnels se limitent à cent Megaélectronvolt par mètre. Dans le schéma d’accélération par onde de sillage plasma, ou par onde de sillage laser, un faisceau de particules ou une impulsion laser se propage dans un plasma et créé une structure accélératrice dans son sillage : c’est une onde de densité électronique à laquelle sont associés des champs électromagnétiques dans le plasma. L’un des principaux résultats de cette thèse a été la démonstration de l’accélération par onde de sillage plasma d’un paquet distinct de positrons. Dans le schéma utilisé, un plasma de Lithium était créé dans un four, et une onde plasma était excitée par un premier paquet de positrons (le drive ou faisceau excitateur) et l’énergie était extraite par un second faisceau (le trailing ou faisceau témoin). Un champ accélérateur de 1,36 GeV/m a ainsi été obtenu durant l’expérience, pour une charge accélérée typique de 40 pC. Nous montrons également ici la possibilité d’utiliser différents régimes d’accélération qui semblent très prometteurs. Par ailleurs, l’accélération de particule par sillage laser permet quant à elle, en partant d’une impulsion laser femtoseconde de produire un faisceau d’électron quasi-monoénergétique d’énergie typique de l’ordre de 200 MeV. Nous présentons les résultats d’une campagne expérimentale d’association de ce schéma d’accélération par sillage laser avec un schéma d’accélération par sillage plasma. Au cours de cette expérience un faisceau d’électrons créé par laser est refocalisé lors d’une interaction dans un second plasma. Une étude des phénomènes associés à cette plateforme hybride LWFA-PWFA est également présentée. Enfin, le schéma hybride LWFA-PWFA est prometteur pour optimiser l’émission de rayonnement X par les électrons du faisceau de particule crée dans l’étage LWFA de la plateforme. Nous présentons dans un dernier temps la première réalisation expérimentale d’un tel schéma et ses résultats prometteurs
Plasma wakefield accelerators (PWFA) or laser wakefield accelerators (LWFA) are new technologies of particle accelerators that are particularly promising, as they can provide accelerating fields of hundreds of Gigaelectronvolts per meter while conventional facilities are limited to hundreds of Megaelectronvolts per meter. In the Plasma Wakefield Acceleration scheme (PWFA) and the Laser Wakefield Acceleration scheme (LWFA), a bunch of particles or a laser pulse propagates in a gas, creating an accelerating structure in its wake: an electron density wake associated to electromagnetic fields in the plasma. The main achievement of this thesis is the very first demonstration and experimental study in 2016 of the Plasma Wakefield Acceleration of a distinct positron bunch. In the scheme considered in the experiment, a lithium plasma was created in an oven, and a plasma density wave was excited inside it by a first bunch of positrons (the drive bunch) while the energy deposited in the plasma was extracted by a second bunch (the trailing bunch). An accelerating field of 1.36 GeV/m was reached during the experiment, for a typical accelerated charge of 40 pC. In the present manuscript is also reported the feasibility of several regimes of acceleration, which opens promising prospects for plasma wakefield accelerator staging and future colliders. Furthermore, this thesis also reports the progresses made regarding a new scheme: the use of a LWFA-produced electron beam to drive plasma waves in a gas jet. In this second experimental study, an electron beam created by laser-plasma interaction is refocused by particle bunch-plasma interaction in a second gas jet. A study of the physical phenomena associated to this hybrid LWFA-PWFA platform is reported. Last, the hybrid LWFA-PWFA scheme is also promising in order to enhance the X-ray emission by the LWFA electron beam produced in the first stage of the platform. In the last chapter of this thesis is reported the first experimental realization of this last scheme, and its promising results are discussed
Styles APA, Harvard, Vancouver, ISO, etc.
9

Lu, Wei. « Nonlinear plasma wakefield theory and optimum scaling for laser wakefield acceleration in the blowout regime ». Diss., Restricted to subscribing institutions, 2006. http://proquest.umi.com/pqdweb?did=1260817871&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Rowlands-Rees, Thomas. « Laser Wakefield acceleration in the hydrogen-filled capillary discharge waveguide ». Thesis, University of Oxford, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.504520.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "LASER WAKEFIELD ACCELERATION (LWFA)"

1

Schmid, Karl. Laser Wakefield Electron Acceleration. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19950-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Ebrahim, N. A. A proposed laser wakefield acceleration experiment. Chalk River, Ont : Accelerator Physics Branch, Chalk River Laboratories, 1995.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Laser Wakefield Electron Acceleration A Novel Approach Employing Supersonic Microjets And Fewcycle Laser Pulses. Springer, 2011.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Schmid, Karl. Laser Wakefield Electron Acceleration : A Novel Approach Employing Supersonic Microjets and Few-Cycle Laser Pulses. Springer Berlin / Heidelberg, 2013.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Schmid, Karl. Laser Wakefield Electron Acceleration : A Novel Approach Employing Supersonic Microjets and Few-Cycle Laser Pulses. Springer, 2011.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "LASER WAKEFIELD ACCELERATION (LWFA)"

1

Kotaki, H., K. Nakajima, M. Kando, H. Ahn, T. Watanabe, T. Ueda, M. Uesaka, H. Nakanishi, A. Ogata et K. Tani. « Laser Wakefield Acceleration Experiments ». Dans Applications of High-Field and Short Wavelength Sources, 251–52. Boston, MA : Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-9241-6_39.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Schmid, Karl. « Introduction ». Dans Laser Wakefield Electron Acceleration, 1–17. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19950-9_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Schmid, Karl. « Theory of Compressible Fluid Flow ». Dans Laser Wakefield Electron Acceleration, 21–39. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19950-9_2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Schmid, Karl. « Numeric Flow Simulation ». Dans Laser Wakefield Electron Acceleration, 41–70. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19950-9_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Schmid, Karl. « Experimental Characterization of Gas Jets ». Dans Laser Wakefield Electron Acceleration, 71–79. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19950-9_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Schmid, Karl. « Electron Acceleration by Few-Cycle Laser Pulses : Theory and Simulation ». Dans Laser Wakefield Electron Acceleration, 83–107. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19950-9_5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Schmid, Karl. « Experimental SetUp ». Dans Laser Wakefield Electron Acceleration, 109–17. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19950-9_6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Schmid, Karl. « Experimental Results on Electron Acceleration ». Dans Laser Wakefield Electron Acceleration, 119–30. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19950-9_7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Schmid, Karl. « Next Steps for Optimizing the Accelerator ». Dans Laser Wakefield Electron Acceleration, 131–39. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19950-9_8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Schmid, Karl. « Conclusion ». Dans Laser Wakefield Electron Acceleration, 141–43. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19950-9_9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "LASER WAKEFIELD ACCELERATION (LWFA)"

1

Le Blanc, S. P., M. C. Downer, T. Tajima, C. W. Siders, R. Wagner, S. Y. Chen, A. Maksimchuk, G. Mourou et D. Umstadter. « Temporal characterization of plasma wakefields driven by intense femtosecond laser pulses ». Dans Applications of High Field and Short Wavelength Sources. Washington, D.C. : Optica Publishing Group, 1997. http://dx.doi.org/10.1364/hfsw.1997.saa3.

Texte intégral
Résumé :
Because electrostatic fields in a plasma wave (E ≥ 100 GV/m) can exceed by three orders of magnitude those in conventional RF linacs, plasma based accelerators can potentially offer a compact method for accelerating high energy electrons. Of the several methods for driving large amplitude plasma waves, the laser wakefield accelerator (LWFA) and its variant, the self-modulated LWFA, have recently received considerable attention because of the reduction in size of the terawatt class laser systems needed to drive the wakefield [1]. In this paper, we demonstrate all optical techniques based on frequency domain interferometry [2] and forward, collective Thomson scattering [3] for temporal characterization of the plasma wakefield. The ability to measure the plasma wake temporal structure is of fundamental importance for a number of issues, including: wakefield generation by optimized pulse trains, the design of particle injectors synchronized to the wakefield on a femtosecond time scale, and the growth dynamics of plasma wave instabilities.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Joshi, C., C. Clayton, D. Froula, K. Marsh, A. Pak et J. Ralph. « Acceleration of Electrons by A Laser Wakefield Accelerator (LWFA) Operating in the Self-Guided Regime ». Dans Frontiers in Optics. Washington, D.C. : OSA, 2010. http://dx.doi.org/10.1364/fio.2010.fwl2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Weichman, Kathleen, Adam Higuera, Daniel Abell, Benjamin Cowan, Neil Fazel, John Cary et Michael Downer. « Interaction between laser pulses and trailing wakefields intersecting at small angle for LWFA charge yield enhancement ». Dans ADVANCED ACCELERATOR CONCEPTS : 17th Advanced Accelerator Concepts Workshop. Author(s), 2017. http://dx.doi.org/10.1063/1.4975849.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Kotaki, H., K. Nakajima, M. Kando, H. Ahn, T. Watanabe, T. Ueda, M. Uesaka et al. « Laser Wakefield Acceleration Experiments ». Dans Applications of High Field and Short Wavelength Sources. Washington, D.C. : Optica Publishing Group, 1997. http://dx.doi.org/10.1364/hfsw.1997.the24.

Texte intégral
Résumé :
Laser-driven particle accelerators have been conceived over the past decade to be the next-generation particle accelerators, promising super-high field particle acceleration and a compact size compared with conventional accelerators 1). Among a number of laser accelerator concepts, laser wakefield accelerators have great potential to produce ultra-high-field gradients of plasma waves excited by intense ultrashort laser pulses 2). Recently wakefield excitation of the order of ~10GeV/m in a plasma has been directly confirmed by the use of a table-top-terawatt (T3) laser 3).
Styles APA, Harvard, Vancouver, ISO, etc.
5

Rundquist, A. R. « Optimization of laser wakefield acceleration ». Dans The ninth workshop on advanced accelerator concepts. AIP, 2001. http://dx.doi.org/10.1063/1.1384348.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Hidding, B., T. Königstein, S. Karsch, O. Willi, G. Pretzler, J. B. Rosenzweig, Steven H. Gold et Gregory S. Nusinovich. « Hybrid Laser-Plasma Wakefield Acceleration ». Dans ADVANCED ACCELERATOR CONCEPTS : 14th Advanced Accelerator Concepts Workshop. AIP, 2010. http://dx.doi.org/10.1063/1.3520370.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Grittani, Gabriele M. « Status of the LWFA at ELI-Beamlines ». Dans Laser Acceleration of Electrons, Protons, and Ions VI, sous la direction de Stepan S. Bulanov, Carl B. Schroeder et Jörg Schreiber. SPIE, 2021. http://dx.doi.org/10.1117/12.2589662.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Matsuoka, T., C. McGuffey, Y. Horovitz, F. Dollar, S. S. Bulanov, V. Chvykov, G. Kalintchenko et al. « Laser Wakefield Acceleration Experiments Using HERCULES Laser ». Dans LASER-DRIVEN RELATIVISTIC PLASMAS APPLIED TO SCIENCE, INDUSTRY AND MEDICINE : 2nd International Symposium. AIP, 2009. http://dx.doi.org/10.1063/1.3204524.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Mourou, Gerard, John Nees et Subrat Biswal. « Ultrahigh intensity laser for laser wakefield acceleration ». Dans ADVANCED ACCELERATOR CONCEPTS. ASCE, 1997. http://dx.doi.org/10.1063/1.53040.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Veisz, Laszlo, Alexander Buck, Maria Nicolai, Karl Schmid, Chris M. S. Sears, Alexander Sävert, Julia M. Mikhailova, Ferenc Krausz et Malte C. Kaluza. « Complete characterization of laser wakefield acceleration ». Dans SPIE Optics + Optoelectronics, sous la direction de Kenneth W. D. Ledingham, Wim P. Leemans, Eric Esarey, Simon M. Hooker, Klaus Spohr et Paul McKenna. SPIE, 2011. http://dx.doi.org/10.1117/12.890952.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "LASER WAKEFIELD ACCELERATION (LWFA)"

1

Esarey, Eric, Phillip Sprangle, Jonathan Krall, Antonio Ting et Glenn Joyce. Optically Guided Laser Wakefield Acceleration. Fort Belvoir, VA : Defense Technical Information Center, avril 1993. http://dx.doi.org/10.21236/ada265441.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Nakajima, K., T. Kawakubo et H. Nakanishi. Proof-of-principle experiments of laser Wakefield acceleration. Office of Scientific and Technical Information (OSTI), avril 1994. http://dx.doi.org/10.2172/10158563.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Krishnan, Mahadevan. A Novel Gas Jet for Laser Wakefield Acceleration. Office of Scientific and Technical Information (OSTI), août 2012. http://dx.doi.org/10.2172/1059441.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Kesler, L. Laser wakefield acceleration self-guiding in noble gas mixes. Office of Scientific and Technical Information (OSTI), août 2012. http://dx.doi.org/10.2172/1056621.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Kimura, Wayne D. Laser Wakefield Acceleration Driven by a CO2 Laser (STELLA-LW) - Final Report. Office of Scientific and Technical Information (OSTI), juin 2008. http://dx.doi.org/10.2172/932997.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Downer, Michael C. Laser Wakefield Acceleration : Structural and Dynamic Studies. Final Technical Report ER40954. Office of Scientific and Technical Information (OSTI), avril 2014. http://dx.doi.org/10.2172/1165841.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Umstadter, Donald. Controlled Injection of Electrons for Improved Performance of Laser-Wakefield Acceleration. Office of Scientific and Technical Information (OSTI), janvier 2022. http://dx.doi.org/10.2172/1838680.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie