Littérature scientifique sur le sujet « Laser for atomic physics »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Laser for atomic physics ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Laser for atomic physics"

1

Wang, Wu, Hanxu Zhang et Xu Wang. « Strong-field atomic physics meets 229Th nuclear physics ». Journal of Physics B : Atomic, Molecular and Optical Physics 54, no 24 (22 décembre 2021) : 244001. http://dx.doi.org/10.1088/1361-6455/ac45ce.

Texte intégral
Résumé :
Abstract We show how two apparently unrelated research areas, namely, strong-field atomic physics and 229Th nuclear physics, are connected. The connection is possible due to the existence of a very low-lying excited state of the 229Th nucleus, which is only about 8 eV above the nuclear ground state. The connection is physically achieved through an electron recollision process, which is the core process of strong-field atomic physics. The laser-driven recolliding electron is able to excite the nucleus, and a simple model is presented to explain this recollision-induced nuclear excitation process. The connection of these two research areas provides novel opportunities for each area and intriguing possibilities from the direct three-partite interplay between atomic physics, nuclear physics, and laser physics.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Camparo, J. C. « The diode laser in atomic physics ». Contemporary Physics 26, no 5 (septembre 1985) : 443–77. http://dx.doi.org/10.1080/00107518508210984.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Eidmann, K. « Radiation transport and atomic physics modeling in high-energy-density laser-produced plasmas ». Laser and Particle Beams 12, no 2 (juin 1994) : 223–44. http://dx.doi.org/10.1017/s0263034600007709.

Texte intégral
Résumé :
The radiation hydrodynamics in laser-produced high-energy-density plasmas has been successfully simulated by means of the MULTI hydrocode. It is used in combination with the SNOP atomic physics code, which uses a steady-state screened hydrogenic explicit ion model and which generates non-LTE opacity tables for MULTI. After a brief general review of the modeling of the radiation hydrodynamics in laser-produced plasmas, the underlying physical models of MULTI and SNOP are described in detail, with particular emphasis on atomic physics. Examples of simulations of the radiation transport in laser plasmas are presented. They include a laser-irradiated gold foil and a radiatively heated carbon foil.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Hoogerland, MD, D. Milic, W. Lu, H.-A. Bachor, KGH Baldwin et SJ Buckman. « Production of Ultrabright Slow Atomic Beams Using Laser Cooling ». Australian Journal of Physics 49, no 2 (1996) : 567. http://dx.doi.org/10.1071/ph960567.

Texte intégral
Résumé :
We propose to use a three-step transverse and longitudinal cooling scheme, to compress and collimate a strongly diverging flow of metastable rare gas atoms. Simulations show that an atom beam flux of 1010 8−1 in a small diameter (−1 ) atomic beam could be achieved. This technique can be extremely valuable in many areas of atomic physics, e.g. in (electron) spectroscopy and atomic collision physics where high beam densities are desirable.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Minitti, Michael P., Joseph S. Robinson, Ryan N. Coffee, Steve Edstrom, Sasha Gilevich, James M. Glownia, Eduardo Granados et al. « Optical laser systems at the Linac Coherent Light Source ». Journal of Synchrotron Radiation 22, no 3 (22 avril 2015) : 526–31. http://dx.doi.org/10.1107/s1600577515006244.

Texte intégral
Résumé :
Ultrafast optical lasers play an essential role in exploiting the unique capabilities of recently commissioned X-ray free-electron laser facilities such as the Linac Coherent Light Source (LCLS). Pump–probe experimental techniques reveal ultrafast dynamics in atomic and molecular processes and reveal new insights in chemistry, biology, material science and high-energy-density physics. This manuscript describes the laser systems and experimental methods that enable cutting-edge optical laser/X-ray pump–probe experiments to be performed at LCLS.
Styles APA, Harvard, Vancouver, ISO, etc.
6

New, G. H. C. « Laser Physics and Laser Instabilities ». Journal of Modern Optics 36, no 9 (septembre 1989) : 1274–75. http://dx.doi.org/10.1080/09500348914551301.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Letokhov, Vladilen. « Atomic Physics at Accelerators : Laser Spectroscopy and Applications ». Physica Scripta 68, no 1 (1 janvier 2003) : C3—C9. http://dx.doi.org/10.1238/physica.regular.068ac0003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Dzelzainis, T., G. Nersisyan, D. Riley, L. Romagnani, H. Ahmed, A. Bigongiari, M. Borghesi et al. « The TARANIS laser : A multi-Terawatt system for laser-plasma investigations ». Laser and Particle Beams 28, no 3 (30 juillet 2010) : 451–61. http://dx.doi.org/10.1017/s0263034610000467.

Texte intégral
Résumé :
AbstractThe multi-Terawatt laser system, terawatt apparatus for relativistic and nonlinear interdisciplinary science, has been recently installed in the Centre for Plasma Physics at the Queen's University of Belfast. The system will support a wide ranging science program, which will include laser-driven particle acceleration, X-ray lasers, and high energy density physics experiments. Here we present an overview of the laser system as well as the results of preliminary investigations on ion acceleration and X-ray lasers, mainly carried out as performance tests for the new apparatus. We also discuss some possible experiments that exploit the flexibility of the system in delivering pump-probe capability.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Liu, Chang, Ziqian Yue, Zitong Xu, Ming Ding et Yueyang Zhai. « Far Off-Resonance Laser Frequency Stabilization Technology ». Applied Sciences 10, no 9 (7 mai 2020) : 3255. http://dx.doi.org/10.3390/app10093255.

Texte intégral
Résumé :
In atomic physics experiments, a frequency-stabilized or ‘locked’ laser source is commonly required. Many established techniques are available for locking close to an atomic resonance. However, in many instances, such as atomic magnetometer and magic wavelength optical lattices in ultra-cold atoms, it is desirable to lock the frequency of the laser far away from the resonance. This review presents several far off-resonance laser frequency stabilization methods, by which the frequency of the probe beam can be locked on the detuning as far as several tens of gigahertz (GHz) away from atomic resonance line, and discusses existing challenges and possible future directions in this field.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Sasaki, A., H. Yoneda, K. Ueda et H. Takuma. « Calculation of atomic excitation processes of X-ray laser plasmas irradiated by short-pulse intense KrF laser pulses ». Laser and Particle Beams 11, no 1 (mars 1993) : 25–30. http://dx.doi.org/10.1017/s0263034600006881.

Texte intégral
Résumé :
An atomic model of the laser-produced Al plasma has been developed and used to analyze excitation processes of recombination pumping soft X-ray lasers. A soft X-ray gain for H-like Balmer-α line and He-like 3d-2p transition in short-pulse intense KrF laser (IL = 1014–1015 W/cm2, T = 10–100 ps)-produced Al plasmas are calculated for various laser temporal pulse shapes to find the condition for efficient production of population inversion. Results from different models are compared and requirements for the atomic model for X-ray laser design are discussed.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Laser for atomic physics"

1

Plimmer, Mark David. « Laser spectroscopy of atomic systems ». Thesis, University of Oxford, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.329991.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Tolchard, J. M. « Doppler free laser spectroscopy of atomic hydrogen using pulsed lasers ». Thesis, University of Southampton, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.383868.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Woodman, George Henry. « Precise laser spectroscopy of atomic hydrogen ». Thesis, University of Oxford, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.316894.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Powis, Richard Alexander. « Crossed-beam laser spectroscopy of atomic ruthenium ». Thesis, University of Birmingham, 2013. http://etheses.bham.ac.uk//id/eprint/3959/.

Texte intégral
Résumé :
High resolution crossed-beam laser spectroscopy has been used to measure the isotope shifts and hyperfine parameters of nineteen transitions in atomic ruthenium. These results have been used in conjunction with four other existing transition measurements to determine accurate values for the change in mean-square charge radius between the isotopes of ruthenium. The new charge radii measurements exhibit up to an order of magnitude improvement in accuracy compared to the previously published results. These accurate charge radii systematics in ruthenium provide additional data for the interesting N=60 region of the nuclear chart. The transitions measured have been assessed in terms of their suitability for use in future collinear laser spectroscopy measurements of radioactive ruthenium isotopes. One transition in particular, the 349.8942nm Ocm-1 to 28571.890cm-1 transition, has the potential to be highly efficient.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Sandberg, Jon Carl. « Research toward laser spectroscopy of trapped atomic hydrogen ». Thesis, Massachusetts Institute of Technology, 1993. http://hdl.handle.net/1721.1/12659.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Avila, Carlos A. « Laser cooling of a metastable argon atomic beam ». FIU Digital Commons, 1996. http://digitalcommons.fiu.edu/etd/1342.

Texte intégral
Résumé :
A production of low velocity and monoenergetic atomic beams would increase the resolution in spectroscopic studies and many other experiments in atomic physics. Laser Cooling uses the radiation pressure to decelerate and cool atoms. The effusing from a glow discharge metastable argon atomic beam is affected by a counterpropagating laser light tuned to the cycling transition in argon. The Zeeman shift caused by a spatially varying magnetic field compensates for the changing Doppler shift that takes the atoms out of resonance as they decelerated. Deceleration and velocity bunching of atoms to a final velocity that depends on the detuning of the laser relative to a frequency of the transition have been observed. Time-of-Flight (TOF) spectroscopy is used to examine the velocity distribution of the cooled atomic beam. These TOF studies of the laser cooled atomic beam demonstrate the utility of laser deceleration for atomic-beam "velocity selection".
Styles APA, Harvard, Vancouver, ISO, etc.
7

Gagnon, Justin. « Laser Coulomb explosion imaging of polyatomic molecules ». Thesis, University of Ottawa (Canada), 2006. http://hdl.handle.net/10393/27362.

Texte intégral
Résumé :
Laser technology has steadily evolved over the last 50 years since its invention, and has generated a series of ramifications in experimental science. Particularly, lasers have enabled the creation of the shortest man-made event: a femtosecond pulse of electromagnetic radiation. Due to their unmatched spatial and temporal resolutions, femtosecond pulses have been used in a number of techniques to measure properties of individual molecules. One of these techniques is Coulomb Explosion Imaging (CEI), whose purpose is to retrieve the structure of individual molecules. Unlike frequency domain spectroscopy (which is ill-suited to characterize the structure of large molecules due to their complex spectra) and diffraction techniques (which only work if molecules can be locked into a crystallization pattern), CEI provides a direct measurement of the properties of individual molecules, instead of measuring a sample as a whole. This novel technique was first introduced to study molecular structure by colliding a beam of highly energetic ions onto a thin foil. The version of CEI used in this work uses a beam of neutral molecules and replaces the thin foil with femtosecond optical pulses. The introduction of the laser has brought with it the ability to conduct time-resolved measurements of molecular processes (breaking of molecular bonds, internuclear motion, for example) on a femtosecond time scale using pump-probe techniques in conjunction with CEI. Furthermore, CEI is presently the only technique that can discriminate single molecules based on their handedness. I have conducted a Laser Coulomb Explosion Imaging (LCEI) experiment using dicloromethane as a model polyatomic molecule. In order to perform LCEI, an intense femtosecond laser pulse is used to strip away electrons from a molecule and cause it to explode into smaller fragments. Imaging the molecule is done using data collected from its fragments. Thus, in practice LCEI can be seen as a technique comprising an experimental phase (Coulomb explosion) and an analytical phase (imaging). Dichloromethane was chosen for this study to prepare the techniques that are necessary for future experiments on chiral molecules. The experimental setup used for this instance of LCEI is the PATRICK instrument, a combination of high-end vacuum, electronics and laser equipment, which will also be described herein. The rest of this thesis will focus on the results obtained from the computational tools I developed for imaging the CEI data and obtaining physical properties about the exploded molecules. In doing so I have also obtained the first geometrical reconstructions of five atom molecules from CEI data, which will also be given in this study. Though LCEI is a general technique that can be exploited in a variety of different experiments, this particular project was built around the interest of imaging chiral molecules. Unlike mass, multipole moments, polarizabilities and other "conventional" physical properties of molecules, chirality arises solely from spatial symmetry considerations, making it more elusive. For example, in order to experimentally determine the properties of a molecule in the traditional manner, one proceeds by inferring molecular characteristics from general spectroscopic data pertaining to a sample of molecules. In this manner, molecules are ascribed properties based on statistical measurements done on a population. Although statistical methods are also used to measure the handedness of a sample of molecules, it is understood that these measurements yield information only about the sample, but not the individual molecules themselves. Indeed, chirality is not a property of a type of molecule, but of individual molecules, rendering LCEI very suitable to measure chirality. Accordingly, it is the ultimate goal of this thesis to set the stage for future experiments involving the measurement of the handedness of individual chiral molecules.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Cocolios, Thomas Elias. « Collinear fast-beam laser spectroscopy at ISAC ». Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=97933.

Texte intégral
Résumé :
Collinear fast-beam laser spectroscopy is a method of studying atomic and ionic hyperfine structure where a particle beam and a laser beam are superposed along the same line. Such a facility exists at ISAC, TRIUMF, Vancouver, BC, and was designed especially for polarising radioactive beams of alkali metals.
In order to produce polarised fluorine for the use in NMR, the hyperfine structure of the 3s 4P 5/2 and 3p 4D 7/2 states has to be known. The hyperfine coefficients for those two levels are measured for the first time to be A = 2645.6(6) MHz and A = 1565.6(4)MHz respectively. The 3p 4D5/2 state is also studied to measure the metastable atom fraction and its hyperfine constant is measured to be A = 1148(5)MHz.
A study of lanthanum ions is also carried out. Spectra for the 6 s2 1S0 to 5 d6p Do13 transition are measured with stable 139La to evaluate the sensitivity of the equipment and with radioactive 139La for preliminary commissioning of the isotope shift study.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Deeny, J. A. « Tunable diode laser spectroscopy ». Thesis, University of Oxford, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.253325.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Hillenbrand, Gerd. « Laser cooling of atoms ». Thesis, University of Oxford, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259952.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Laser for atomic physics"

1

Atomic physics of lasers. London : Taylor & Francis, 1986.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

1939-, Figger Hartmut, Meschede Dieter 1954-, Zimmermann Claus 1958- et Hänsch T. W. 1941-, dir. Laser physics at the limits. Berlin : Springer, 2002.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Quantum electronics for atomic physics. Oxford : Oxford University Press, 2010.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

A, Bokhan P., dir. Laser isotope separation in atomic vapor. Weinheim : Wiley-VCH, 2006.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Bandrauk, Andre D. Atomic and Molecular Processes with Short Intense Laser Pulses. Boston, MA : Springer US, 1988.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

S, Letokhov V., dir. Lasers in atomic, molecular, and nuclear physics. Singapore : World Scientific, 1989.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Atomic and molecular manipulation. Amsterdam : Elsevier, 2011.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Atomic and free electrons in a strong light field. Singapore : World Scientific, 1997.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

(Gustav), Gerber G., Bandrauk André D et SpringerLink (Online service), dir. Progress in Ultrafast Intense Laser Science VI. Berlin, Heidelberg : Springer-Verlag Berlin Heidelberg, 2010.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

NATO, Advanced Research Workshop on Atomic and Molecular Processes with Short Intense Laser Pulses (1987 Lennoxville Québec). Atomic and molecular processes with short intense laser pulses. New York : Plenum Press, 1988.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Laser for atomic physics"

1

Haken, Hermann, et Hans Christoph Wolf. « The Laser ». Dans Atomic and Quantum Physics, 361–71. Berlin, Heidelberg : Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-97014-6_21.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kühl, Thomas. « Laser Spectroscopy ». Dans Atomic Physics with Heavy Ions, 181–96. Berlin, Heidelberg : Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-642-58580-7_8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Reichel, Jakob, et Wolfgang Hänsel. « Atomic Looping ». Dans Laser Physics at the Limits, 471–75. Berlin, Heidelberg : Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04897-9_43.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Charalambidis, D., N. E. Karapanagioti, O. Faucher et Y. L. Shao. « Laser-Induced Atomic Structure ». Dans Super-Intense Laser-Atom Physics IV, 557–67. Dordrecht : Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0261-9_52.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Zhao, P., W. Lichten, H. P. Layer et J. C. Bergquist. « Absolute Wavelength Measurements and Fundamental Atomic Physics ». Dans Laser Spectroscopy VIII, 12–17. Berlin, Heidelberg : Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-540-47973-4_3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Ramsey, Norman F. « Application of Atomic Clocks ». Dans Laser Physics at the Limits, 3–8. Berlin, Heidelberg : Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04897-9_1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Reiss, H. R., et N. Hatzilambrou. « Atomic State Effects in Stabilization ». Dans Super-Intense Laser-Atom Physics, 213–24. Boston, MA : Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-7963-2_18.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Milonni, Peter. « Laser Principles ». Dans Springer Handbook of Atomic, Molecular, and Optical Physics, 1023–34. New York, NY : Springer New York, 2006. http://dx.doi.org/10.1007/978-0-387-26308-3_70.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Menzel, Ralf, et Peter W. Milonni. « Laser Principles ». Dans Springer Handbook of Atomic, Molecular, and Optical Physics, 1069–80. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-030-73893-8_74.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Dimauro, L. F., K. C. Kulander, P. Agostini, K. J. Schafer, B. Walker et B. Sheehy. « Strong Field Atomic Dynamics ». Dans Super-Intense Laser-Atom Physics IV, 97–108. Dordrecht : Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0261-9_10.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Laser for atomic physics"

1

Corkum, P. B., N. H. Burnett, P. Dietrich, M. Y. Ivanov, D. J. Wineland, C. E. Wieman et S. J. Smith. « Atoms in Intense Laser Fields ». Dans ATOMIC PHYSICS 14 : Fourteenth International Conference on Atomic Physics. AIP, 1994. http://dx.doi.org/10.1063/1.2946020.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kasevich, Mark, Kathryn Moler, Erling Riis, Elizabeth Sunderman, David Weiss et Steven Chu. « Applications of laser cooling and trapping ». Dans Atomic physics 12. AIP, 1991. http://dx.doi.org/10.1063/1.40985.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Lawall, John, François Bardou, Jean-Philippe Bouchaud, Bruno Saubamea, Nick Bigelow, Michèle Leduc, Alain Aspect et al. « Recent Advances in Subrecoil Laser Cooling ». Dans ATOMIC PHYSICS 14 : Fourteenth International Conference on Atomic Physics. AIP, 1994. http://dx.doi.org/10.1063/1.2946006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

DiMauro, L. F., B. Sheehy, B. Walker, P. A. Agostini et K. C. Kulander. « Atomic electron correlations in intense laser fields ». Dans ATOMIC PHYSICS 16. ASCE, 1999. http://dx.doi.org/10.1063/1.59366.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Inguscio, M., F. S. Cataliotti, P. De Natale, G. Giusfredi, F. Marin, F. S. Pavone, D. J. Wineland, C. E. Wieman et S. J. Smith. « Recent Developments in Laser Spectroscopy of Helium ». Dans ATOMIC PHYSICS 14 : Fourteenth International Conference on Atomic Physics. AIP, 1994. http://dx.doi.org/10.1063/1.2946027.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Walther, H. « Laser manipulation and cavity QED with trapped ions ». Dans ATOMIC PHYSICS 16. ASCE, 1999. http://dx.doi.org/10.1063/1.59356.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Shang, S. Q., B. Sheehy, P. van der Straten et H. Metcalf. « Sub-Doppler laser cooling in a magnetic field ». Dans Atomic physics 12. AIP, 1991. http://dx.doi.org/10.1063/1.40969.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Huber, G., S. Schröder, R. Klein, N. Boos, R. Grieser, I. Hoog, M. Krieg et al. « Laser and electron cooling of relativistic stored beams ». Dans Atomic physics 12. AIP, 1991. http://dx.doi.org/10.1063/1.40972.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Salomon, Christophe, Jean Dalibard, William D. Phillips, André Clairon et Saida Guellati. « Laser cooling of cesium atoms below 3 microkelvins ». Dans Atomic physics 12. AIP, 1991. http://dx.doi.org/10.1063/1.41003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Müller, J. H., D. Bettermann, V. Rieger, F. Ruschewitz, K. Sengstock, U. Sterr, M. Christ et al. « Atom Optics and Interferometry with Laser Cooled Atoms ». Dans ATOMIC PHYSICS 14 : Fourteenth International Conference on Atomic Physics. AIP, 1994. http://dx.doi.org/10.1063/1.2946009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Laser for atomic physics"

1

Todd Ditmire. Request for Support for the Conference on Super Intense Laser Atom Physics. Office of Scientific and Technical Information (OSTI), octobre 2004. http://dx.doi.org/10.2172/833712.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kulander, Kenneth C. Big Sky Workshop on Super-Intense Laser-Atom Physics Held in Biy Sky, Montana on 22-25 1991. Fort Belvoir, VA : Defense Technical Information Center, août 1992. http://dx.doi.org/10.21236/ada254833.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Eberly, J. H. Big Sky Workshop on Super-Intense Laser-Atom Physics Held in Big Sky, Montana on 22-25 June 1991. Fort Belvoir, VA : Defense Technical Information Center, mars 1992. http://dx.doi.org/10.21236/ada248225.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Livingston, A. E., K. Kukla et S. Cheng. Atomic physics. Office of Scientific and Technical Information (OSTI), août 1995. http://dx.doi.org/10.2172/166387.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Lane, N. F. Theoretical atomic collision physics. Office of Scientific and Technical Information (OSTI), janvier 1990. http://dx.doi.org/10.2172/6313184.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Lane, N. F. Theoretical atomic collision physics. Office of Scientific and Technical Information (OSTI), mars 1992. http://dx.doi.org/10.2172/5296083.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Siegman, A. E. Laser Physics and Laser Techniques. Fort Belvoir, VA : Defense Technical Information Center, novembre 1991. http://dx.doi.org/10.21236/ada247326.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Hall, John L. Precision Atomic Beam Laser Spectroscopy. Fort Belvoir, VA : Defense Technical Information Center, février 1999. http://dx.doi.org/10.21236/ada360672.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Chu, Shih-I. Atomic physics in strong fields. Office of Scientific and Technical Information (OSTI), avril 1992. http://dx.doi.org/10.2172/5068947.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Pindzola, M. S. Theoretical atomic physics for fusion. Office of Scientific and Technical Information (OSTI), janvier 1992. http://dx.doi.org/10.2172/6560312.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie