Littérature scientifique sur le sujet « Lai gang yi yuan »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Lai gang yi yuan ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Lai gang yi yuan"

1

Du, Kun, Rong-yi Ding, Zhi-hao Wang, Zhi-gang Song, Bing-feng Xu, Ming Zhou, Yun Bai et Jin Zhang. « Erratum for “Direct Inversion Algorithm for Pipe Resistance Coefficient Calibration of Water Distribution Systems” by Kun Du, Rong-yi Ding, Zhi-hao Wang, Zhi-gang Song, Bing-feng Xu, Ming Zhou, Yun Bai, and Jin Zhang ». Journal of Water Resources Planning and Management 144, no 10 (octobre 2018) : 08218001. http://dx.doi.org/10.1061/(asce)wr.1943-5452.0000989.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Liao, Nai-Shun, Yuan-Mao Hung, Yi-Jian Tsai, Nam Nhut Phan, Pei-Chun Chen, Liang-Chuan Lai, Mong-Hsun Tsai, Tzu-Pin Lu et Eric Y. Chuang. « Abstract 3032 : A novel deep learning pipeline for early detection of colorectal cancer and colorectal adenoma using gut microbiome data ». Cancer Research 83, no 7_Supplement (4 avril 2023) : 3032. http://dx.doi.org/10.1158/1538-7445.am2023-3032.

Texte intégral
Résumé :
Abstract Many studies have shown the associations between colorectal cancer (CRC) and gut microbiome. The deep learning models have the potential to detect CRC earlier than the conventional stool screening test. However, the results are very inconsistent, which impedes the application of prediction using gut microbiomes as biomarkers. Therefore, this study aims to construct a novel deep learning (DL) pipeline to better classify CRC, colorectal adenoma, and healthy groups using microbiome data. Tissue or stool samples with sequence data and/or taxonomy profiles from 16 studies were collected from the NCBI SRA database or supplementary data provided in studies. Tumor-adjacent samples were excluded because of highly related to tumor samples. Sequence data were quality controlled and taxonomy assigned by EasyMAP based on the QIIME2 pipeline. All taxonomy profiles were merged and normalized to relative abundance. In total, 136 CRC-associated genera were collected from 38 different region studies. Among the CRC-associated genera, 98 ones with high prevalence were selected as CRC biomarkers. Taxonomy profiles were feature-selected by the CRC biomarkers. A phylogenetic tree of 98 CRC biomarkers was constructed by ete3 package and NCBI taxonomy database. Features in taxonomy profiles were sorted and converted into a 10x10 array by phylogenetic-based order. Samples labeled as healthy, adenoma, or CRC were randomly split into train, validation, and test datasets by 8:1:1. The 2D convolutional neural network DL model was trained with a feature array of the samples in the training dataset. Model performance was evaluated by the test dataset. Moreover, Saliency map was calculated to identify highly contributed features. Our results showed that, by combining the tissue and stool data, the DL model illustrated excellent performance with 81% AUC and 60% accuracy for the test dataset in classifying health, adenoma, and CRC groups. Two-class DL model performed even higher with 85% AUC and 78% accuracy in classifying health and CRC groups. For a model with only stool samples, the model in classifying health and CRC groups achieved comparable results with 84% AUC and 76% accuracy. Finally, CRC biomarkers that highly contributed to the DL model were identified by saliency map. In summary, we developed a new pipeline for CRC classification using 16s rRNA gut microbiome data and identified CRC-specific gut microbiome genera. The pipeline and biomarkers could be used as a non-invasive tool for the early detection of CRC. Citation Format: Nai-Shun Liao, Yuan-Mao Hung, Yi-Jian Tsai, Nam Nhut Phan, Pei-Chun Chen, Liang-Chuan Lai, Mong-Hsun Tsai, Tzu-Pin Lu, Eric Y. Chuang. A novel deep learning pipeline for early detection of colorectal cancer and colorectal adenoma using gut microbiome data [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2023; Part 1 (Regular and Invited Abstracts); 2023 Apr 14-19; Orlando, FL. Philadelphia (PA): AACR; Cancer Res 2023;83(7_Suppl):Abstract nr 3032.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Hsu, B. C., H. H. Chen, C. H. Lin, Y. M. Chen, K. L. Lai, D. Y. Chen, W. N. Huang et Y. H. Chen. « OP0069 FACTORS ASSOCIATED WITH THE RISK OF SEPSIS IN PATIENTS WITH IMMUNE-MEDIATED INFLAMMATORY DISEASES TREATED WITH ANTI-TUMOR NECROSIS FACTOR-ALPHA : A NATIONWIDE, POPULATION-BASED COHORT STUDY ». Annals of the Rheumatic Diseases 79, Suppl 1 (juin 2020) : 46.1–47. http://dx.doi.org/10.1136/annrheumdis-2020-eular.1601.

Texte intégral
Résumé :
Background:Anti-TNF-α agents have been proven to be effective for patients with immune-medicated inflammatory diseases (IMIDs) including rheumatoid arthritis (RA), ankylosing spondylitis (AS), psoriasis (PsO), psoriatic arthritis (PsA), Crohn’s disease (CD) and ulcerative colitis (UC). Prior studies have shown an increased risk of infection in IMID patients treated with anti-TNF-α but limited studies investigated factors associated with the development of sepsis in patients with IMIDs.Objectives:To investigate factors associated with the development of sepsis in patients with IMIDs using the Taiwanese National Health Insurance Research Database (NHIRD).Methods:We identified all biologic-naïve patients with RA, AS, PsO, PsA, or CD/UC from the claim data via the NHIRD who started their first anti-TNF-α agent (etanercept (ETN), adalimumab (ADA) or golimumab (GOL)) between 2003 and 2017 as study subjects. The index date was the first date of anti-TNF-α prescription. Sepsis was defined based on the sepsis-3 definition. We identified sepsis patients using a validated ICD-9-CM coding system proposed by Angus et al, in which a diagnosis of bacterial/fungal infection with one or more acute organ dysfunction is required to define an episode of sepsis. All study subjects were followed up till the date of first hospitalization due to sepsis, 90 days after the last date of anti-TNF-α prescription, withdrawal from NHIRD or death, whichever came first. We used a Cox regression analysis to assess the associations of covariates with the risk of sepsis shown as hazard ratios (HRs) with 95% confidence interval (CIs). Covariates included anti-TNF-α agent, IMID, age, sex, insured amount, level of urbanization, disease duration, Charlson comorbidity index (CCI), a history of prior hospitalization due to sepsis within 3 months before the index date and medication use within 12 months before the index date and during the follow-up period.Results:We identified 18105 biologic-naïve patients with IMIDs, including 8123 ETN users, 7623 ADA users and 2359 GOL users. The incidence rates (IRs) of sepsis in patients treated with ETN, ADA and GOL were 1080, 1181, and 617 per 105years respectively. Multivariable regression analyses showed that factors associated with an increased risk of sepsis were use of ADA (ETN as reference: HR, 1.21; 95% CI, 1.02–1.42), male (HR, 1.24; 95% CI, 1.04–1.48), age (HR, 1.06; 95% CI, 1.05–1.07), CD/UC (HR, 2.35; 95% CI, 1.57–3.53), CCI (HR, 1.30; 95% CI, 1.23–1.38), prior sepsis (HR, 2.42; 95% CI, 1.78–3.29), prior use of sulfasalazine (HR, 1.25, 95% CI, 1.00-1.55), lower levels of urbanization (level III: HR, 1.37; 95% CI, 1.06–1.77; level IV: HR, 1.68, 95% CI, 1.35–2.10). Factors associated with a decreased risk of sepsis were use of GOL (ETN as reference: HR, 0.59; 95% CI, 0.39–0.84), use of methotrexate (HR, 0.78; 95% CI, 0.65–1.00), and higher insured amount (reference: ≤ 15480 NTD; 15480–28800 NTD: HR, 0.83; 95% CI, 0.68–0.99; 28800–45800 NTD: HR, 0.58; 95% CI, 0.45–0.74; >45800 NTD: HR, 0.33; 95% CI, 0.21–0.54).Conclusion:Our study revealed that among biologic-naïve IMID patients initiating anti-TNF-α treatment, use of ADA, age, sex, CD/UC, CCI, prior sepsis, prior use of sulfasalazine and lower levels of urbanization were associated with an increased risk of sepsis, while use of GOL, use of methotrexate, and higher insured amount were associated with a decreased risk of sepsis.Disclosure of Interests:BO-CHUEN HSU: None declared, Hsin-Hua Chen: None declared, Ching-Heng Lin: None declared, Yi-Ming Chen: None declared, Kuo-Lung Lai: None declared, Der-Yuan Chen: None declared, Wen-Nan Huang: None declared, Yi-Hsing Chen Grant/research support from: Taiwan Ministry of Science and Technology, Taiwan Department of Health, Taichung Veterans General Hospital, National Yang-Ming University, GSK, Pfizer, BMS., Consultant of: Pfizer, Novartis, Abbvie, Johnson & Johnson, BMS, Roche, Lilly, GSK, Astra& Zeneca, Sanofi, MSD, Guigai, Astellas, Inova Diagnostics, UCB, Agnitio Science Technology, United Biopharma, Thermo Fisher, Gilead., Paid instructor for: Pfizer, Novartis, Johnson & Johnson, Roche, Lilly, Astra& Zeneca, Sanofi, Astellas, Agnitio Science Technology, United Biopharma., Speakers bureau: Pfizer, Novartis, Abbvie, Johnson & Johnson, BMS, Roche, Lilly, GSK, Astra& Zeneca, Sanofi, MSD, Guigai, Astellas, Inova Diagnostics, UCB, Agnitio Science Technology, United Biopharma, Thermo Fisher, Gilead.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Stires, Hillary, Lisa M. McShane, Rebecca C. Arend, Alyssa K. Chapman, Li Chen, Tommaso Coletta, Yuan Ding et al. « Abstract A017 : An analysis of 13 independently performed assays to measure homologous recombination deficiency using 90 freshly extracted high grade serous ovarian tumors : findings from the friends of cancer research hrd harmonization project ». Cancer Research 84, no 5_Supplement_2 (4 mars 2024) : A017. http://dx.doi.org/10.1158/1538-7445.ovarian23-a017.

Texte intégral
Résumé :
Abstract Homologous recombination deficiency (HRD) assays determine patient eligibility for treatment with PARP inhibitors and other DNA repair targeting drugs; therefore, understanding variability in how these assays measure and report HRD is critical for patients and providers. HRD assays measure various factors to determine HRD status including causes (i.e., inactivation in HR pathway genes) and consequences (i.e., genomic scarring). Methodological variability across HRD assays has led to a suggestion that the assays may not agree on a per patient basis. An empirical assessment of assay variability may guide our understanding of how to implement “HRD status” as a biomarker. Friends of Cancer Research (Friends) initiated a unique research partnership to assess levels of agreement and variability across HRD assays. We previously presented an analysis of the HRD status of 348 TCGA ovarian cancer samples across 11 assays. Concordance across assays was analyzed by measuring all possible pairings of samples and assays leading to a median (and IQR) positive percent agreement (PPA) of 74% (51-89%) and negative percent agreement (NPA) of 81% (64-92%). The median percent positivity (percent of patients with HRD) was 49% (range 9-67%). However, some groups modified their HRD pipelines to analyze the in-silico data and we were unable to interrogate the influence of patient and sample characteristics on HRD calls. To establish a more comprehensive dataset, we identified 142 archival specimens from the University of Alabama at Birmingham from patients with stage III-IV high grade serous ovarian cancer diagnosed between 2011 and 2022. Full clinical information is available including response to platinum therapy. FFPE tumor from debulking surgery was sectioned for the 99 samples with adequate tissue and underwent DNA and RNA extraction by the Molecular Characterization Laboratory (MoCha) at the NCI Frederick National Laboratory. MoCha shipped identical aliquots of DNA and/or RNA from the 90 samples that passed QC for independent sequencing and HRD measurement by the 13 different assays. Statisticians from the NCI performed statistical analyses to assess concordance across assays. Three of the 13 assays considered mutations in non-BRCA1/2 HR pathway genes and 7 measured gLOH as determinants for HRD status among other factors. HRD calls resulted in a median pairwise PPA of 81% (69-91%) and a median pairwise NPA of 74% (61-89%). The median percent positivity was 53% (range 23-74%). Ongoing analyses will consider how each of the HRD assays predict responsiveness to platinum-based chemotherapy. Additional analyses will consider assay, patient, and sample characteristics that may drive variation in HRD calls. Preliminary findings demonstrate variability in HRD calls across HRD assays, similar to the in-silico analysis. These findings will help characterize the variability of HRD assays and inform best practices for measuring and reporting HRD. Citation Format: Hillary Stires, Lisa M. McShane, Rebecca C. Arend, Alyssa K. Chapman, Li Chen, Tommaso Coletta, Yuan Ding, Mohit Gupta, Nikita Kotlov, Alexander J. Lazar, Ming-Chung Li, Yi-Hsuan Lucy Lai, Wenjie Li, Brittany A. McKelvey, Jerod R. Parsons, Ethan S. Sokol, Elizabeth R. Starks, Mark D. Stewart, Peihua Wang, Zhiwei Zhang, Yingdong Zhao, ShiPing Zou, Jeff Allen. An analysis of 13 independently performed assays to measure homologous recombination deficiency using 90 freshly extracted high grade serous ovarian tumors: findings from the friends of cancer research hrd harmonization project [abstract]. In: Proceedings of the AACR Special Conference on Ovarian Cancer; 2023 Oct 5-7; Boston, Massachusetts. Philadelphia (PA): AACR; Cancer Res 2024;84(5 Suppl_2):Abstract nr A017.
Styles APA, Harvard, Vancouver, ISO, etc.
5

« MSOM Society Student Paper Competition : Abstracts of 2023 Winners ». Manufacturing & ; Service Operations Management 26, no 3 (mai 2024) : 1184–87. http://dx.doi.org/10.1287/msom.2024.studentabs.v26.n3.

Texte intégral
Résumé :
The journal is pleased to publish the abstracts of the six finalists of the 2023 Manufacturing and Service Operations Management Society’s student paper competition. The 2023 prize committee was chaired by Ersin Korpeoglu (UCL), Simone Marinesi (Wharton), and Nur Sunar (UNC). The judges were Adam Elmachtoub, Adem Orsdemir, Agni Orfanoudaki, Alper Nakkas, Amrita Kundu, Antoine Desir, Antoine Feylessoufi, Anton Ovchinnikov, Anyan Qi, Arian Aflaki, Arzum Akkas, Ashish Kabra, Auyon Siddiq, Bilal Gokpinar, Bin Hu, Bob Batt, Bora Keskin, Brent Moritz, Can Zhang, Chloe Glaeser, Cuihong Li, Daniel Freund, Daniel Lin, David Drake, Divya Singhvi, Dongyuan Zhan, Ekaterina Astashkina, Elena Belavina, Elodie Adida, Emre Nadar, Enis Kayis, Fabian Sting, Fanyin Zheng, Fei Gao, Florin Ciocan, Francisco Castro, George Chen, Georgina Hall, Gloria Urrea, Gonzalo Romero, Guihua Wang, Guoming Lai, Heikki Peura, Hessam Bavafa, Hummy Song, Huseyin Gurkan, Ioannis Stamatopoulos, Iris Wang, Jiankun Sun, Jiayi Joey Yu, Jing Wu, Joel Wooten, John Silberholz, Jonas Oddur Jonasson, Jonathan Helm, Jose Guajardo, Junyu Cao, Kaitlin Daniels, Karen Zheng, Ken Moon, Kostas Bimpikis, Lennart Baardman, Lesley Meng, Lina Song, Luyi Yang, Mazhar Arikan, Mehmet Ayvaci, Meng Li, Mengzhenyu Zhang, Miao Bai, Michael Freeman, Mika Sumida, Ming Hu, Morvarid Rahmani, Mostafa Rezaei, Mumin Kurtulus, Nan Yang, Nazli Sonmez, Negin Golrezaei, Nektarios Oraiopoulos, Nikhil Garg, Nikos Trichakis, Nil Karacaoglu, Olga Perdikaki, Onesun Steve Yoo, Ovunc Yilmaz, Ozan Candogan, Panos Markou, Pengyi Shi, Philipp Cornelius, Qiuping Yu, Renyu Zhang, Robert Bray, Ruth Beer, Ruxian Wang, Saed Alizamir, Safak Yucel, Sanjith Gopalakrishnan, Santiago Gallino, Sarah Yini Gao, Scott Rodilitz, Sebastien Martin, Seyed Emadi, Sheng Liu, Shouqiang Wang, Siddharth Singh, Sidika Candogan, Sina Khorasani, So Yeon Chun, Somya Singhvi, Soo-Haeng Cho, Sriram Dasu, Stefanus Jasin, Stephen Leider, Suresh Muthulingam, Sytske Wijnsma, Taghi Khaniyev, Tian Chan, Tim Kraft, Tom Tan, Tugce Martagan, Vasiliki Kostamj, Velibor Misic, Vishal Agrawal, Xiaojia Guo, Xiaoshuai Fan, Xiaoyang Long, Yannis Bellos, Yao Cui, Yehua Wei, Yiangos Papanastasiou, Yi-Chun Chen, Yinghao Zhang, Ying-Ju Chen, Yinghao Zhang, Yuan-Mao Kao, Yuexing Li, Zhaohui (Zoey) Jiang, Zhaowei She, and Zumbul Atan.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Huu Tho, Nguyen, Trang Thanh Tu, Trac Minh Nhan, Pham Hong Cam et Pham Thi Thi. « The Geometries and Stabilities of Neutral and Anionic Vanadium Doped Germanium Clusters VGen0/-( n = 9 - 13) : Density Functional Theory Investigations ». VNU Journal of Science : Natural Sciences and Technology 35, no 1 (26 mars 2019). http://dx.doi.org/10.25073/2588-1140/vnunst.4827.

Texte intégral
Résumé :
The geometries, stabilities of VGen0/- (n = 9 - 13) clusters were systematically studied by the density functional theory (DFT) using the BP86 functional and LANL2DZ basis set. Several possible multiplicities of each cluster were tested to determine the most stable structure among the isomers. The average binding energy per atom, fragmentation energy, second order energy difference and HOMO-LUMO gaps were evaluated. The results indicated that the neutral and anionic clusters possess higher stability when n = 10 and 12. The vertical detachment energy (VDE) and adiabatic detachment energy (ADE) were also calculated for anionic cluster to investigate their stabilities. Among neutral clusters, VGe10 had both the highest vertical ionization potential (VIP) and chemical hardness. Keywords BP86/LANL2DZ, binding energy, VGen0/- clusters, structure of clusters References [1] Shunping Shi, Yiliang Liu, Chuanyu Zhang, Banglin Deng, Gang Jiang (2015). A Computational Investigation of Aluminum-doped Germanium Clusters by Density Functional Theory Study. Computational and Theoretical Chemistry, 1054, pp. 8-15[2] Wen-Jie Zhao, Yuan-Xu Wang (2009). Geometries, stabilities, and Magnetic Properties of MnGen (n = 2 – 16) Clusters: Density-functional Theory Investigations. Journal of Molecular Structure: THEOCHEM, 901 (1–3), pp. 18-23.[3] Shi Shun-Ping, Liu Yi-Liang, Deng Bang-Lin, Zhang Chuan-Yu, and Jiang Gang (2016). Density Functional Theory Study of The Geometrical and Electronic Structures of (n = 1 - 9) clusters. World Scientific Publishing Company, 30, pp. 1750022-1750039.[4] J.Stato, H.Kobayashi, K. Ikarashi, N.Saito, H.Nishiyama, and Y. Inoue (2004). Photocatalitic Activity for Water Decomposition of RuO2-Dispersed Zn2GeO4 with d10 Configuration. The Journal of Physical Chemistry B, 108 (14), pp. 4369-4375.[5] Daoxin Dai, Molly Piels, and John E. Bowers (2014). Monolithic Germanium/Silicon Photodetectors With Decoupled Structures: Resonant APDs and UTC Photodiodes. IEEE Journal of Selected Topics in Quantum Electronics, 20 (6), pp. 3802214-3802227.[6] Chia-Yun Chou, Gyeong S. Hwang (2014). On The Origin of The Significant Difference in Lithiation Behavior Between Silicon and Germanium. Journal of Power Sources, 263, pp. 252-258.[7] Siwen Zhang, Bosi Yin, Yang Jiao, Yang Liu, Xu Zhang, Fengyu Qu, Ahmad Umar, Xiang Wu (2014). Ultra-long Germanium Oxide Nanowires: Structures and Optical Properties. Journal of Alloys and Compounds, 606, pp. 149-153.[8] T. Herrmannsdörfer, V. Heera, O. Ignatchik, M. Uhlarz, A. Mücklich, M. Posselt, H. Reuther, B. Schmidt, K.-H. Heinig, W. Skorupa, M. Voelskow, C. Wündisch, R. Skrotzki, M. Helm, and J. Wosnitza (2009).Superconducting State in a Gallium-Doped Germanium Layer at Low Temperatures. Physical Review Letters, 102, pp. 217003-217006.[9] Vijay Kumar, and Yoshiyuki Kawazoe (2002). Metal-Encapsulated Caged Clusters of Germanium with Large Gaps and Different Growth Behavior than Silicon. Physical Review Letters, 88, pp. 235504-235507.[10] Xiao-Jiao Deng, Xiang-Yu Kong, Hong-Guang Xu, Xi-Ling Xu, Gang Feng, and Wei-Jun Zheng (2015). Photoelectron Spectroscopy and Density Functional Calculations of VGen- (n = 3 − 12) Clusters. The Journal of Physical Chemistry C, 119 (20), pp. 11048-11055.[11] John P. Perdew, Kieron Burke, and Matthias Ernzerhof (1996).Generalized Gradient Approximation Made Simple. Physical Review Letters, 77, pp. 3865-3868.[12] Chaouki Siouani, Sofiane Mahtout, Sofiane Safer, and Franck Rabilloud (2017).Structure, Stability and Electronic and Magnetic Properties of VGen (n = 1 - 19) Clusters. The Journal of Physical Chemistry A, 121 (18), pp. 3540-3554.[13] Jin Wang, and Ju-Guang Han (2006).A Theoretical Study on Growth Patterns of Ni-Doped Germanium Clusters.The Journal of Physical Chemistry B, 110 (15), pp. 7820-7827.[14] Debashis Bandyopadhyay and Prasenjit Sen (2010). Density Functional Investigation of Structure and Stability of Gen and GenNi (n = 1 − 20) Clusters: Validity of the Electron Counting Rule. The Journal of Physical Chemistry A, 114 (4), pp. 1835-1842[15] Soumaia Djaadi, Kamal Eddine Aiadi, and Sofiane Mahtout (2018). Frist Principles Study of Structural, electronic and magnetic properties of (n = 1 - 17) clusters. Journal of Semiconductors, 39 (4), pp. 42001-420013.[16] İskender Muz,Mustafa Kurban,Kazım Şanlıc (2018). Analysis of the Geometrical Properties and Electronic Structure of Arsenide Doped Boron Cluster: Ab-initio approach. Inorganica Chimica Acta, 474, pp. 66-72.[17] Axel D. Becke (1988). Density-functional exchange - energy approximation with correct asymptotic behavior.Physical Review A, 38, pp. 3098-3100.[18] Willard R. Wadt, P. Jeffrey Hay (1985). Ab initio effective core potentials for molecular calculations.Potentials for main group elements Na to Bi.The Journal of Chemical Physics, 82 (1), pp. 284-298.[19] Willard R. Wadt, P. Jeffrey Hay (1985). Ab initio effective core potentials for molecular calculations.Potentials for K to Au including the outermost core orbitals.The Journal of Chemical Physics, 82 (1), pp. 299-310.[20] Willard R. Wadt, P. Jeffrey Hay (1985). Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. The Journal of Chemical Physics, 82 (1), pp. 270-283.[21] Gabriele Manca, Samia Kahla, Jean-Yves Saillard, Rémi Marchal, Jean-François Halet (2017). Small Ligated Organometallic Pdn Clusters (n = 4 - 12): A DFT Investigation. Journal of Cluster Science, 28 (2), pp. 853-868.[22] Tran Dieu Hang, Huynh Minh Hung, Lam Ngoc Thiem. Hue M. T. Nguyen (2015). Electronic structure and thermochemical properties of neutral and anionic rhodium clusters Rhn, n = 2 – 13. Evolution of structures and stabilities of binary clusters RhmM (M = Fe, Co, Ni; m = 1 – 6). Computational and Theoretical Chemistry, 1068, pp. 30–41.[23] Michael J. Frisch, et al. (2010). Gaussian 09, Revision C.01.Gaussian, Inc., Wallingford CT.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Thanh Huyen, Le, Dao Sy Duc, Nguyen Xuan Hoan, Nguyen Huu Tho et Nguyen Xuan Viet. « Synthesis of Fe3O4-Reduced Graphene Oxide Modified Tissue-Paper and Application in the Treatment of Methylene Blue ». VNU Journal of Science : Natural Sciences and Technology 35, no 3 (20 septembre 2019). http://dx.doi.org/10.25073/2588-1140/vnunst.4883.

Texte intégral
Résumé :
Graphene-based composites have received a great deal of attention in recent year because the presence of graphene can enhance the conductivity, strength of bulk materials and help create composites with superior qualities. Moreover, the incorporation of metal oxide nanoparticles such as Fe3O4 can improve the catalytic efficiency of composite material. In this work, we have synthesized a composite material with the combination of reduced graphene oxide (rGO), and Fe3O4 modified tissue-paper (mGO-PP) via a simple hydrothermal method, which improved the removal efficiency of the of methylene blue (MB) in water. MB blue is used as the model of contaminant to evaluate the catalytic efficiency of synthesized material by using a Fenton-like reaction. The obtained materials were characterized by SEM, XRD. The removal of materials with methylene blue is investigated by UV-VIS spectroscopy, and the result shows that mGO-PP composite is the potential composite for the color removed which has the removal efficiency reaching 65% in acetate buffer pH = 3 with the optimal time is 7 h. Keywords Graphene-based composite, methylene blue, Fenton-like reaction. References [1] Ma Joshi, Rue Bansal, Reng Purwar, Colour removal from textile effluents, Indian Journal of Fibre & Textile Research, 29 (2004) 239-259 http://nopr.niscair.res.in/handle/123456789/24631.[2] Kannan Nagar, Sundaram Mariappan, Kinetics and mechanism of removal of methylene blue by adsorption on various carbons-a comparative study, Dyes and pigments, 51 (2001) 25-40 https://doi.org/10.1016/S0143-7208(01)00056-0.[3] K Rastogi, J. N Sahu, B. C Meikap, M. N Biswas, Removal of methylene blue from wastewater using fly ash as an adsorbent by hydrocyclone, Journal of hazardous materials, 158 (2008) 531-540.https://doi.org/10.1016/j.jhazmat.2008.01. 105.[4] Qin Qingdong, Ma Jun, Liu Ke, Adsorption of anionic dyes on ammonium-functionalized MCM-41, Journal of Hazardous Materials, 162 (2009) 133-139 https://doi.org/10.1016/j.jhazmat. 2008.05.016.[5] Mui Muruganandham, Rps Suri, Sh Jafari, Mao Sillanpää, Lee Gang-Juan, Jaj Wu, Muo Swaminathan, Recent developments in homogeneous advanced oxidation processes for water and wastewater treatment, International Journal of Photoenergy, 2014 (2014). http://dx. doi.org/10.1155/2014/821674.[6] Herney Ramirez, Vicente Miguel , Madeira Luis Heterogeneous photo-Fenton oxidation with pillared clay-based catalysts for wastewater treatment: a review, Applied Catalysis B: Environmental, 98 (2010) 10-26 https://doi.org/ 10.1016/j.apcatb.2010.05.004.[7] Guo Rong, Jiao Tifeng, Li Ruifei, Chen Yan, Guo Wanchun, Zhang Lexin, Zhou Jingxin, Zhang Qingrui, Peng Qiuming, Sandwiched Fe3O4/carboxylate graphene oxide nanostructures constructed by layer-by-layer assembly for highly efficient and magnetically recyclable dye removal, ACS Sustainable Chemistry & Engineering, 6 (2017) 1279-1288 https://doi.org/10.1021/acssuschemeng.7b03635.[8] Sun Chao, Yang Sheng-Tao, Gao Zhenjie, Yang Shengnan, Yilihamu Ailimire, Ma Qiang, Zhao Ru-Song, Xue Fumin, Fe3O4/TiO2/reduced graphene oxide composites as highly efficient Fenton-like catalyst for the decoloration of methylene blue, Materials Chemistry and Physics, 223 (2019) 751-757 https://doi.org/ 10.1016/j.matchemphys.2018.11.056.[9] Guo Hui, Ma Xinfeng, Wang Chubei, Zhou Jianwei, Huang Jianxin, Wang Zijin, Sulfhydryl-Functionalized Reduced Graphene Oxide and Adsorption of Methylene Blue, Environmental Engineering Science, 36 (2019) 81-89 https://doi. org/10.1089/ees.2018.0157.[10] Zhao Lianqin, Yang Sheng-Tao, Feng Shicheng, Ma Qiang, Peng Xiaoling, Wu Deyi, Preparation and application of carboxylated graphene oxide sponge in dye removal, International journal of environmental research and public health, 14 (2017) 1301 https://doi.org/10.3390/ijerph14111301.[11] Yu Dandan, Wang Hua, Yang Jie, Niu Zhiqiang, Lu Huiting, Yang Yun, Cheng Liwei, Guo Lin, Dye wastewater cleanup by graphene composite paper for tailorable supercapacitors, ACS applied materials & interfaces, 9 (2017) 21298-21306 https://doi.org/10.1021/acsami.7b05318.[12] Wang Hou, Yuan Xingzhong, Wu Yan, Huang Huajun, Peng Xin, Zeng Guangming, Zhong Hua, Liang Jie, Ren MiaoMiao, Graphene-based materials: fabrication, characterization and application for the decontamination of wastewater and wastegas and hydrogen storage/generation, Advances in Colloid and Interface Science, 195 (2013) 19-40 https://doi. org/10.1016/j.cis.2013.03.009.[13] Marcano Daniela C, Kosynkin Dmitry V, Berlin Jacob M, Sinitskii Alexander, Sun Zhengzong, Slesarev Alexander, Alemany Lawrence B, Lu Wei, Tour James M, Improved synthesis of graphene oxide, ACS nano, 4 (2010) 4806-4814 https://doi.org/10.1021/nn1006368.[14] Zhang Jiali, Yang Haijun, Shen Guangxia, Cheng Ping, Zhang Jingyan, Guo Shouwu, Reduction of graphene oxide via L-ascorbic acid, Chemical Communications, 46 (2010) 1112-1114 http://doi. org/10.1039/B917705A [15] Gong Ming, Zhou Wu, Tsai Mon-Che, Zhou Jigang, Guan Mingyun, Lin Meng-Chang, Zhang Bo, Hu Yongfeng, Wang Di-Yan, Yang Jiang, Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis, Nature communications, 5 (2014) 4695 https:// doi.org/10.1038/ncomms5695.[16] Wu Zhong-Shuai, Yang Shubin, Sun Yi, Parvez Khaled, Feng Xinliang, Müllen Klaus, 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction, Journal of the American Chemical Society, 134 (2012) 9082-9085 https://doi.org/10.1021/ja3030565.[17] Nguyen Son Truong, Nguyen Hoa Tien, Rinaldi Ali, Nguyen Nam Van, Fan Zeng, Duong Hai Minh, Morphology control and thermal stability of binderless-graphene aerogels from graphite for energy storage applications, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 414 (2012) 352-358 https://doi.org/ 10.1016/j.colsurfa.2012.08.048.[18] Deng Yang, Englehardt James D, Treatment of landfill leachate by the Fenton process, Water research, 40 (2006) 3683-3694 https://doi.org/ 10.1016/j.watres.2006.08.009.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Lai gang yi yuan"

1

Li, Liming. « Cong gong jiang dao yi shu jia : Qing mo yi lai Guangdong Shiwan tao ci cong ye yuan de shen fen di wei jian gou / ». View abstract or full-text, 2005. http://library.ust.hk/cgi/db/thesis.pl?HUMA%202005%20LI.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Lai gang yi yuan"

1

Dong li bu zhi bian zuan wei yuan hui. 莱钢誌 : Dong li bu, 2001-2005. Jinan Shi : Shandong Sheng di tu chu ban she, 2008.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Zhan, Qing. Yuan lai zai yi qi. Hong Kong : Xing He, 2003.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

"Nei Menggu yi xue yuan di san fu shu yi yuan Bao gang yi yuan yuan shi" bian ji wei yuan hui. Nei Menggu yi xue yuan di san fu shu yi yuan Bao gang yi yuan yuan shi : 1958-2008. [Baotou Shi ? : Bao gang yi yuan?, 2008.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Makesi zhu yi di san ge lai yuan. [Peking] : Ren min chu ban she, 1985.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Gu, Yujie. Yuan lai he chun tian yi yang mei hao. Jinan : Jinan chu ban she, 2022.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Yuan lai shi jing ke yi zhe yang du. [Shijiazhuang Shi] : Hebei jiao yu chu ban she, 2004.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

guang, Jin xiao. Gao kao yuan lai ke yi zhe yang mei. Bei jing : Qing hua ta xue chu ban she, 2011.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Ai yuan lai ke yi ru ci huo da. Taibei Shi : Shui yun zhai wen hua shi ye you xian gong si, 2003.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Zhou, Mingtai. Dao Xian yi lai li yuan xi nian xiao lu. Beijing : [Zhongguo xi qu yi shu zhong xin], 1985.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Zhiqin, Xiong, dir. Jie yuan liang di : Tai Gang wen tan suo yi. Taibei Shi : Hong fan shu dian, 2013.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie