Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Lagrangian surfaces.

Articles de revues sur le sujet « Lagrangian surfaces »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Lagrangian surfaces ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Zhao, Yaomin, Yue Yang et Shiyi Chen. « Evolution of material surfaces in the temporal transition in channel flow ». Journal of Fluid Mechanics 793 (23 mars 2016) : 840–76. http://dx.doi.org/10.1017/jfm.2016.152.

Texte intégral
Résumé :
We report a Lagrangian study on the evolution of material surfaces in the Klebanoff-type temporal transitional channel flow. Based on the Eulerian velocity field from the direct numerical simulation, a backward-particle-tracking method is applied to solve the transport equation of the Lagrangian scalar field, and then the isosurfaces of the Lagrangian field can be extracted as material surfaces in the evolution. Three critical issues for Lagrangian investigations on the evolution of coherent structures using material surfaces are addressed. First, the initial scalar field is uniquely determined based on the proposed criteria, so that the initial material surfaces can be approximated as vortex surfaces, and remain invariant in the initial laminar state. Second, the evolution of typical material surfaces initially from different wall distances is presented, and then the influential material surface with the maximum deformation is identified. Large vorticity variations with the maximum curvature growth of vortex lines are also observed on this surface. Moreover, crucial events in the transition can be characterized in a Lagrangian approach by conditional statistics on the material surfaces. Finally, the influential material surface, which is initially a vortex surface, is demonstrated as a surrogate of the vortex surface before significant topological changes of vortical structures. Therefore, this material surface can be used to elucidate the continuous temporal evolution of vortical structures in transitional wall-bounded flows in a Lagrangian perspective. The evolution of the influential material surface is divided into three stages: the formation of a triangular bulge from an initially disturbed streamwise–spanwise sheet, rolling up of the vortex sheet near the bulge ridges with the vorticity intensification and the generation and evolution of signature hairpin-like structures with self-induced dynamics of vortex filaments.
Styles APA, Harvard, Vancouver, ISO, etc.
2

PAVLOTSKY, I. P., et M. STRIANESE. « SOME PECULIAR PROPERTIES OF THE DARWIN’S LAGRANGIAN ». International Journal of Modern Physics B 09, no 23 (20 octobre 1995) : 3069–83. http://dx.doi.org/10.1142/s0217979295001166.

Texte intégral
Résumé :
In the post-Galilean approximation the Lagrangians are singular on a submanifold of the phase space. It is a local singularity, which differs from the ones considered by Dirac. The dynamical properties are essentially peculiar on the studied singular surfaces. In the preceding publications,1,2,3 two models of singular relativistic Lagrangians and the rectilinear motion of two electrons, determined by Darwin’s Lagrangian, were examined. In the present paper we study the peculiar dynamical properties of the two-dimensional Darwin’s Lagrangian. In particular, it is shown that the minimal distance between two electrons (the so called “radius of electron”) appears in the two-dimensional motion as well as in one-dimensional case. Some new peculiar properties are discovered.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Carriazo, Alfonso, Verónica Martín-Molina et Luc Vrancken. « Null pseudo-isotropic Lagrangian surfaces ». Colloquium Mathematicum 150, no 1 (2017) : 87–101. http://dx.doi.org/10.4064/cm7107s-12-2016.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Kossowski, Marek. « Prescribing invariants of Lagrangian surfaces ». Topology 31, no 2 (avril 1992) : 337–47. http://dx.doi.org/10.1016/0040-9383(92)90026-e.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Kawasaki, Morimichi. « Superheavy Lagrangian immersions in surfaces ». Journal of Symplectic Geometry 17, no 1 (2019) : 239–49. http://dx.doi.org/10.4310/jsg.2019.v17.n1.a5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Hind, Richard. « Lagrangian unknottedness in Stein surfaces ». Asian Journal of Mathematics 16, no 1 (2012) : 1–36. http://dx.doi.org/10.4310/ajm.2012.v16.n1.a1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

YANG, YUE, et D. I. PULLIN. « On Lagrangian and vortex-surface fields for flows with Taylor–Green and Kida–Pelz initial conditions ». Journal of Fluid Mechanics 661 (1 octobre 2010) : 446–81. http://dx.doi.org/10.1017/s0022112010003125.

Texte intégral
Résumé :
For a strictly inviscid barotropic flow with conservative body forces, the Helmholtz vorticity theorem shows that material or Lagrangian surfaces which are vortex surfaces at time t = 0 remain so for t > 0. In this study, a systematic methodology is developed for constructing smooth scalar fields φ(x, y, z, t = 0) for Taylor–Green and Kida–Pelz velocity fields, which, at t = 0, satisfy ω·∇φ = 0. We refer to such fields as vortex-surface fields. Then, for some constant C, iso-surfaces φ = C define vortex surfaces. It is shown that, given the vorticity, our definition of a vortex-surface field admits non-uniqueness, and this is presently resolved numerically using an optimization approach. Additionally, relations between vortex-surface fields and the classical Clebsch representation are discussed for flows with zero helicity. Equations describing the evolution of vortex-surface fields are then obtained for both inviscid and viscous incompressible flows. Both uniqueness and the distinction separating the evolution of vortex-surface fields and Lagrangian fields are discussed. By tracking φ as a Lagrangian field in slightly viscous flows, we show that the well-defined evolution of Lagrangian surfaces that are initially vortex surfaces can be a good approximation to vortex surfaces at later times prior to vortex reconnection. In the evolution of such Lagrangian fields, we observe that initially blob-like vortex surfaces are progressively stretched to sheet-like shapes so that neighbouring portions approach each other, with subsequent rolling up of structures near the interface, which reveals more information on dynamics than the iso-surfaces of vorticity magnitude. The non-local geometry in the evolution is quantified by two differential geometry properties. Rolled-up local shapes are found in the Lagrangian structures that were initially vortex surfaces close to the time of vortex reconnection. It is hypothesized that this is related to the formation of the very high vorticity regions.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Bektaş, Burcu, Marilena Moruz, Joeri Van der Veken et Luc Vrancken. « Lagrangian submanifolds of the nearly Kähler 𝕊3 × 𝕊3 from minimal surfaces in 𝕊3 ». Proceedings of the Royal Society of Edinburgh : Section A Mathematics 149, no 03 (27 décembre 2018) : 655–89. http://dx.doi.org/10.1017/prm.2018.43.

Texte intégral
Résumé :
AbstractWe study non-totally geodesic Lagrangian submanifolds of the nearly Kähler 𝕊3 × 𝕊3 for which the projection on the first component is nowhere of maximal rank. We show that this property can be expressed in terms of the so-called angle functions and that such Lagrangian submanifolds are closely related to minimal surfaces in 𝕊3. Indeed, starting from an arbitrary minimal surface, we can construct locally a large family of such Lagrangian immersions, including one exceptional example. We also show that locally all such Lagrangian submanifolds can be obtained in this way.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Craizer, Marcos. « Equiaffine characterization of Lagrangian surfaces in ℝ4 ». International Journal of Mathematics 26, no 09 (août 2015) : 1550074. http://dx.doi.org/10.1142/s0129167x15500743.

Texte intégral
Résumé :
For non-degenerate surfaces in ℝ4, a distinguished transversal bundle called affine normal plane bundle was proposed in [K. Nomizu and L. Vrancken, A new equiaffine theory for surfaces in ℝ4, Internat. J. Math. 4(1) (1993) 127–165]. Lagrangian surfaces have remarkable properties with respect to this normal bundle, like for example, the normal bundle being Lagrangian. In this paper, we characterize those surfaces which are Lagrangian with respect to some parallel symplectic form in ℝ4.
Styles APA, Harvard, Vancouver, ISO, etc.
10

HASHIMOTO, YOSHITAKE, et KIYOSHI OHBA. « CUTTING AND PASTING OF RIEMANN SURFACES WITH ABELIAN DIFFERENTIALS I ». International Journal of Mathematics 10, no 05 (août 1999) : 587–617. http://dx.doi.org/10.1142/s0129167x99000239.

Texte intégral
Résumé :
We introduce a method of constructing once punctured Riemann surfaces by cutting the complex plane along "line segments" and pasting by "parallel transformations". The advantage of this construction is to give a good visualization of the deformation of complex structures of Riemann surfaces. In fact, given a positive integer g, there appears a family of once punctured Riemann surfaces of genus g which is complete and effectively parametrized at any point. Our construction naturally gives each of the resulting surfaces what we call a Lagrangian lattice Λ, a certain subgroup of the first homology. Furthermore Λ and the puncture determine an Abelian differential ωΛ of the second kind on the Riemann surface. Using Λ and ωΛ we consider the Kodaira–Spencer maps and some extension of the family to obtain any once punctured Riemann surface with a Lagrangian lattice. In particular we describe the moduli space of once punctured elliptic curves with Lagrangian lattices.
Styles APA, Harvard, Vancouver, ISO, etc.
11

SATO, Noriaki. « On Lagrangian surfaces in CP2(c̃) ». Hokkaido Mathematical Journal 31, no 2 (février 2002) : 441–51. http://dx.doi.org/10.14492/hokmj/1350911873.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Evans, J. D. « Lagrangian spheres in Del Pezzo surfaces ». Journal of Topology 3, no 1 (2010) : 181–227. http://dx.doi.org/10.1112/jtopol/jtq004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Etgü, Tolga, David McKinnon et B. Doug Park. « Lagrangian tori in homotopy elliptic surfaces ». Transactions of the American Mathematical Society 357, no 9 (31 mars 2005) : 3757–74. http://dx.doi.org/10.1090/s0002-9947-05-03757-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Mettler, Thomas. « Minimal Lagrangian connections on compact surfaces ». Advances in Mathematics 354 (octobre 2019) : 106747. http://dx.doi.org/10.1016/j.aim.2019.106747.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Han, Qing, et Guofang Wang. « Hessian surfaces and local Lagrangian embeddings ». Annales de l'Institut Henri Poincaré C, Analyse non linéaire 35, no 3 (mai 2018) : 675–85. http://dx.doi.org/10.1016/j.anihpc.2017.07.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Ma, Hui. « Hamiltonian Stationary Lagrangian Surfaces in ℂP2 ». Annals of Global Analysis and Geometry 27, no 1 (mars 2005) : 1–16. http://dx.doi.org/10.1007/s10455-005-5214-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Opozda, Barbara. « Flat affine Lagrangian surfaces in C2 ». Differential Geometry and its Applications 27, no 3 (juin 2009) : 430–41. http://dx.doi.org/10.1016/j.difgeo.2009.01.004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Dorfmeister, Josef F., Walter Freyn, Shimpei Kobayashi et Erxiao Wang. « Survey on real forms of the complex A2(2)-Toda equation and surface theory ». Complex Manifolds 6, no 1 (1 janvier 2019) : 194–227. http://dx.doi.org/10.1515/coma-2019-0011.

Texte intégral
Résumé :
AbstractThe classical result of describing harmonic maps from surfaces into symmetric spaces of reductive Lie groups [9] states that the Maurer-Cartan form with an additional parameter, the so-called loop parameter, is integrable for all values of the loop parameter. As a matter of fact, the same result holds for k-symmetric spaces over reductive Lie groups, [8].In this survey we will show that to each of the five different types of real forms for a loop group of A2(2) there exists a surface class, for which some frame is integrable for all values of the loop parameter if and only if it belongs to one of the surface classes, that is, minimal Lagrangian surfaces in ℂℙ2, minimal Lagrangian surfaces in ℂℍ2, timelike minimal Lagrangian surfaces in ℂℍ12, proper definite affine spheres in ℝ3 and proper indefinite affine spheres in ℝ3, respectively.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Vidussi, Stefano. « Lagrangian surfaces in a fixed homology class : existence of knotted Lagrangian tori ». Journal of Differential Geometry 74, no 3 (novembre 2006) : 507–22. http://dx.doi.org/10.4310/jdg/1175266235.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Chen, Bang-Yen. « CLASSIFICATION OF LAGRANGIAN SURFACES OF CONSTANT CURVATURE IN THE COMPLEX EUCLIDEAN PLANE ». Proceedings of the Edinburgh Mathematical Society 48, no 2 (23 mai 2005) : 337–64. http://dx.doi.org/10.1017/s0013091504000203.

Texte intégral
Résumé :
AbstractOne of the most fundamental problems in the study of Lagrangian submanifolds from a Riemannian geometric point of view is the classification of Lagrangian immersions of real-space forms into complex-space forms. In this article, we solve this problem for the most basic case; namely, we classify Lagrangian surfaces of constant curvature in the complex Euclidean plane $\mathbb{C}^2$. Our main result states that there exist 19 families of Lagrangian surfaces of constant curvature in $\mathbb{C}^2$. Twelve of the 19 families are obtained via Legendre curves. Conversely, Lagrangian surfaces of constant curvature in $\mathbb{C}^2$ can be obtained locally from the 19 families.
Styles APA, Harvard, Vancouver, ISO, etc.
21

SPELIOTOPOULOS, ACHILLES D., et HARRY L. MORRISON. « ON THE KOSTERLITZ–THOULESS TRANSITION ON COMPACT RIEMANN SURFACES ». Modern Physics Letters B 07, no 03 (10 février 1993) : 171–82. http://dx.doi.org/10.1142/s0217984993000199.

Texte intégral
Résumé :
A Lagrangian for the two-dimensional vortex gas is derived from a general microscopic Lagrangian for 4 He atoms on an arbitrary compact Riemann Surface without boundary. In the constant density limit the vortex Hamiltonian obtained from this Lagrangian is found to be the same as the Kosterlitz and Thouless Coulombic interaction Hamiltonian. The partition function for the Kosterlitz–Thouless ensemble on the general compact is formulated and mapped into the sine–Gordon field theory.
Styles APA, Harvard, Vancouver, ISO, etc.
22

CASTRO, ILDEFONSO, et FRANCISCO URBANO. « On twistor harmonic surfaces in the complex projective plane ». Mathematical Proceedings of the Cambridge Philosophical Society 122, no 1 (juillet 1997) : 115–29. http://dx.doi.org/10.1017/s030500419600117x.

Texte intégral
Résumé :
We completely classify all the twistor harmonic (non-minimal) Lagrangian immersions of compact surfaces in the complex projective plane [Copf ]ℙ2, i.e. those Lagrangian immersions such that their twistor lifts to the twistor space over [Copf ]ℙ2 are harmonic maps.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Dai, Bo, Chung-I. Ho et Tian-Jun Li. « Nonorientable Lagrangian surfaces in rational 4–manifolds ». Algebraic & ; Geometric Topology 19, no 6 (20 octobre 2019) : 2837–54. http://dx.doi.org/10.2140/agt.2019.19.2837.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Lai, Kuan-Wen, Yu-Shen Lin et Luca Schaffler. « Decomposition of Lagrangian classes on K3 surfaces ». Mathematical Research Letters 28, no 6 (2021) : 1739–63. http://dx.doi.org/10.4310/mrl.2021.v28.n6.a5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Chantraine, Baptiste. « Some non-collarable slices of Lagrangian surfaces ». Bulletin of the London Mathematical Society 44, no 5 (3 avril 2012) : 981–87. http://dx.doi.org/10.1112/blms/bds026.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Etgü, Tolga. « Symplectic and Lagrangian Surfaces in 4-Manifolds ». Rocky Mountain Journal of Mathematics 38, no 6 (décembre 2008) : 1975–89. http://dx.doi.org/10.1216/rmj-2008-38-6-1975.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Wang, Jun, et Xiaowei Xu. « Lagrangian surfaces in the complex hyperquadric Q2 ». Journal of Geometry and Physics 97 (novembre 2015) : 61–68. http://dx.doi.org/10.1016/j.geomphys.2015.07.009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Qiu, Weiyang. « Non-orientable Lagrangian Surfaces with Controlled Area ». Mathematical Research Letters 8, no 6 (2001) : 693–701. http://dx.doi.org/10.4310/mrl.2001.v8.n6.a1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Hofherr, Florian, et Daniel Karrasch. « Lagrangian Transport through Surfaces in Compressible Flows ». SIAM Journal on Applied Dynamical Systems 17, no 1 (janvier 2018) : 526–46. http://dx.doi.org/10.1137/17m1132938.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Chen, Bang-Yen. « Lagrangian minimal surfaces in Lorentzian complex plane ». Archiv der Mathematik 91, no 4 (29 septembre 2008) : 366–71. http://dx.doi.org/10.1007/s00013-008-2733-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Mishachev, K. N. « The classification of lagrangian bundles over surfaces ». Differential Geometry and its Applications 6, no 4 (décembre 1996) : 301–20. http://dx.doi.org/10.1016/s0926-2245(96)00024-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Georgiou, Nikos. « On area stationary surfaces in the space of oriented geodesics of hyperbolic 3-space ». MATHEMATICA SCANDINAVICA 111, no 2 (1 décembre 2012) : 187. http://dx.doi.org/10.7146/math.scand.a-15224.

Texte intégral
Résumé :
We study area-stationary surfaces in the space $\mathbf{L}(\mathbf{H}^3)$ of oriented geodesics of hyperbolic 3-space, endowed with the canonical neutral Kähler structure. We prove that every holomorphic curve in $\mathbf{L}(\mathbf{H}^3)$ is an area-stationary surface. We then classify Lagrangian area-stationary surfaces $\Sigma$ in $\mathbf{L}(\mathbf{H}^3)$ and prove that the family of parallel surfaces in $\mathbf{H}^3$ orthogonal to the geodesics $\gamma\in \Sigma$ form a family of equidistant tubes around a geodesic. Finally we find an example of a two parameter family of rotationally symmetric area-stationary surfaces that are neither Lagrangian nor holomorphic.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Lee, Yng-Ing. « The deformation of Lagrangian minimal surfaces in Kähler-Einstein surfaces ». Journal of Differential Geometry 50, no 2 (1998) : 299–330. http://dx.doi.org/10.4310/jdg/1214461172.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Anciaux, Henri, Brendan Guilfoyle et Pascal Romon. « Minimal Lagrangian surfaces in the tangent bundle of a Riemannian surface ». Journal of Geometry and Physics 61, no 1 (janvier 2011) : 237–47. http://dx.doi.org/10.1016/j.geomphys.2010.09.017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

KOCHAN, DENIS. « QUANTIZATION OF NON-LAGRANGIAN SYSTEMS ». International Journal of Modern Physics A 24, no 28n29 (20 novembre 2009) : 5319–40. http://dx.doi.org/10.1142/s0217751x0904748x.

Texte intégral
Résumé :
A novel method for quantization of non-Lagrangian (open) systems is proposed. It is argued that the essential object, which provides both classical and quantum evolution, is a certain canonical two-form defined in extended velocity space. In this setting classical dynamics is recovered from the stringy-type variational principle, which employs umbilical surfaces instead of histories of the system. Quantization is then accomplished in accordance with the introduced variational principle. The path integral for the transition probability amplitude (propagator) is rearranged to a surface functional integral. In the standard case of closed (Lagrangian) systems the presented method reduces to the standard Feynman's approach. The inverse problem of the calculus of variation, the problem of quantization ambiguity and the quantum mechanics in the presence of friction are analyzed in detail.
Styles APA, Harvard, Vancouver, ISO, etc.
36

SASAHARA, TORU. « BIHARMONIC LAGRANGIAN SURFACES OF CONSTANT MEAN CURVATURE IN COMPLEX SPACE FORMS ». Glasgow Mathematical Journal 49, no 3 (septembre 2007) : 497–507. http://dx.doi.org/10.1017/s0017089507003886.

Texte intégral
Résumé :
AbstractBiharmonic Lagrangian surfaces of constant mean curvature in complex space forms are classified. A further important point is that new examples of marginally trapped biharmonic Lagrangian surfaces in an indefinite complex Euclidean plane are obtained. This fact suggests that Chen and Ishikawa's classification of marginally trapped biharmonic surfaces [6] is not complete.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Lee, Yng-Ing. « Lagrangian minimal surfaces in Kähler–Einstein surfaces of negative scalar curvature ». Communications in Analysis and Geometry 2, no 4 (1994) : 579–92. http://dx.doi.org/10.4310/cag.1994.v2.n4.a4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

MAETA, SHUN, et HAJIME URAKAWA. « BIHARMONIC LAGRANGIAN SUBMANIFOLDS IN KÄHLER MANIFOLDS ». Glasgow Mathematical Journal 55, no 2 (25 février 2013) : 465–80. http://dx.doi.org/10.1017/s0017089512000730.

Texte intégral
Résumé :
AbstractWe give the necessary and sufficient conditions for Lagrangian submanifolds in Kähler manifolds to be biharmonic. We classify biharmonic PNMC Lagrangian H-umbilical submanifolds in the complex space forms. Furthermore, we classify biharmonic PNMC Lagrangian surfaces in the two-dimensional complex space forms.
Styles APA, Harvard, Vancouver, ISO, etc.
39

DEGANI, A. T., J. D. A. WALKER et F. T. SMITH. « Unsteady separation past moving surfaces ». Journal of Fluid Mechanics 375 (25 novembre 1998) : 1–38. http://dx.doi.org/10.1017/s0022112098001839.

Texte intégral
Résumé :
Unsteady boundary-layer development over moving walls in the limit of infinite Reynolds number is investigated using both the Eulerian and Lagrangian formulations. To illustrate general trends, two model problems are considered, namely the translating and rotating circular cylinder and a vortex convected in a uniform flow above an infinite flat plate. To enhance computational speed and accuracy for the Lagrangian formulation, a remeshing algorithm is developed. The calculated results show that unsteady separation is delayed with increasing wall speed and is eventually suppressed when the speed of the separation singularity approaches that of the local mainstream velocity. This suppression is also described analytically. Only ‘upstream-slipping’ separation is found to occur in the model problems. The changes in the topological features of the flow just prior to the separation that occur with increasing wall speed are discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
40

Sheridan, Nick, et Ivan Smith. « Rational equivalence and Lagrangian tori on K3 surfaces ». Commentarii Mathematici Helvetici 95, no 2 (16 juin 2020) : 301–37. http://dx.doi.org/10.4171/cmh/489.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Charette, François. « Gromov width and uniruling for orientable Lagrangian surfaces ». Algebraic & ; Geometric Topology 15, no 3 (19 juin 2015) : 1439–51. http://dx.doi.org/10.2140/agt.2015.15.1439.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

DENG, Shangrong. « Lagrangian H-Umbilical Surfaces in Complex Lorentzian Plane ». International Electronic Journal of Geometry 9, no 2 (30 octobre 2016) : 87–93. http://dx.doi.org/10.36890/iejg.584604.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Karrasch, Daniel. « Lagrangian Transport Through Surfaces in Volume-Preserving Flows ». SIAM Journal on Applied Mathematics 76, no 3 (janvier 2016) : 1178–90. http://dx.doi.org/10.1137/15m1051348.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Lee, Yng-Ing. « The limit of Lagrangian surfaces in $R^4$ ». Duke Mathematical Journal 71, no 2 (août 1993) : 629–31. http://dx.doi.org/10.1215/s0012-7094-93-07124-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Iriyeh, Hiroshi, et Takashi Sakai. « Tight Lagrangian surfaces in S 2 × S 2 ». Geometriae Dedicata 145, no 1 (27 juin 2009) : 1–17. http://dx.doi.org/10.1007/s10711-009-9398-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Chang, Shaoping. « On Hamiltonian stable minimal Lagrangian surfaces in CP2 ». Journal of Geometric Analysis 10, no 2 (juin 2000) : 243–55. http://dx.doi.org/10.1007/bf02921823.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Mese, Chikako. « The Bernstein problem for complete Lagrangian stationary surfaces ». Proceedings of the American Mathematical Society 129, no 2 (27 juillet 2000) : 573–80. http://dx.doi.org/10.1090/s0002-9939-00-05603-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Opozda, Barbara. « Locally symmetric minimal affine Lagrangian surfaces in C2 ». Monatshefte für Mathematik 156, no 4 (7 août 2008) : 357–70. http://dx.doi.org/10.1007/s00605-008-0023-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Hélein, Frédéric, et Pascal Romon. « Hamiltonian stationary Lagrangian surfaces in $\mathbb{C}^2$ ». Communications in Analysis and Geometry 10, no 1 (2002) : 79–126. http://dx.doi.org/10.4310/cag.2002.v10.n1.a5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Van, Le Khong. « MINIMAL Φ-LAGRANGIAN SURFACES IN ALMOST HERMITIAN MANIFOLDS ». Mathematics of the USSR-Sbornik 67, no 2 (28 février 1990) : 379–91. http://dx.doi.org/10.1070/sm1990v067n02abeh001368.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie