Littérature scientifique sur le sujet « Lagrangian surfaces »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Lagrangian surfaces ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Lagrangian surfaces"
Zhao, Yaomin, Yue Yang et Shiyi Chen. « Evolution of material surfaces in the temporal transition in channel flow ». Journal of Fluid Mechanics 793 (23 mars 2016) : 840–76. http://dx.doi.org/10.1017/jfm.2016.152.
Texte intégralPAVLOTSKY, I. P., et M. STRIANESE. « SOME PECULIAR PROPERTIES OF THE DARWIN’S LAGRANGIAN ». International Journal of Modern Physics B 09, no 23 (20 octobre 1995) : 3069–83. http://dx.doi.org/10.1142/s0217979295001166.
Texte intégralCarriazo, Alfonso, Verónica Martín-Molina et Luc Vrancken. « Null pseudo-isotropic Lagrangian surfaces ». Colloquium Mathematicum 150, no 1 (2017) : 87–101. http://dx.doi.org/10.4064/cm7107s-12-2016.
Texte intégralKossowski, Marek. « Prescribing invariants of Lagrangian surfaces ». Topology 31, no 2 (avril 1992) : 337–47. http://dx.doi.org/10.1016/0040-9383(92)90026-e.
Texte intégralKawasaki, Morimichi. « Superheavy Lagrangian immersions in surfaces ». Journal of Symplectic Geometry 17, no 1 (2019) : 239–49. http://dx.doi.org/10.4310/jsg.2019.v17.n1.a5.
Texte intégralHind, Richard. « Lagrangian unknottedness in Stein surfaces ». Asian Journal of Mathematics 16, no 1 (2012) : 1–36. http://dx.doi.org/10.4310/ajm.2012.v16.n1.a1.
Texte intégralYANG, YUE, et D. I. PULLIN. « On Lagrangian and vortex-surface fields for flows with Taylor–Green and Kida–Pelz initial conditions ». Journal of Fluid Mechanics 661 (1 octobre 2010) : 446–81. http://dx.doi.org/10.1017/s0022112010003125.
Texte intégralBektaş, Burcu, Marilena Moruz, Joeri Van der Veken et Luc Vrancken. « Lagrangian submanifolds of the nearly Kähler 𝕊3 × 𝕊3 from minimal surfaces in 𝕊3 ». Proceedings of the Royal Society of Edinburgh : Section A Mathematics 149, no 03 (27 décembre 2018) : 655–89. http://dx.doi.org/10.1017/prm.2018.43.
Texte intégralCraizer, Marcos. « Equiaffine characterization of Lagrangian surfaces in ℝ4 ». International Journal of Mathematics 26, no 09 (août 2015) : 1550074. http://dx.doi.org/10.1142/s0129167x15500743.
Texte intégralHASHIMOTO, YOSHITAKE, et KIYOSHI OHBA. « CUTTING AND PASTING OF RIEMANN SURFACES WITH ABELIAN DIFFERENTIALS I ». International Journal of Mathematics 10, no 05 (août 1999) : 587–617. http://dx.doi.org/10.1142/s0129167x99000239.
Texte intégralThèses sur le sujet "Lagrangian surfaces"
Zhang, Liuyang [Verfasser], Wolfgang [Akademischer Betreuer] Soergel, Ernst [Akademischer Betreuer] Kuwert et Guofang [Akademischer Betreuer] Wang. « On the gap phenomena of the Willmore and Lagrangian surfaces ». Freiburg : Universität, 2021. http://d-nb.info/1233966200/34.
Texte intégralBASTIANELLI, FRANCESCO. « The geometry of second symmetric product of curves ». Doctoral thesis, Università degli Studi di Pavia, 2009. http://hdl.handle.net/10281/21080.
Texte intégralMoruz, Marilena. « Étude des sous-variétés dans les variétés kählériennes, presque kählériennes et les variétés produit ». Thesis, Valenciennes, 2017. http://www.theses.fr/2017VALE0003/document.
Texte intégralAbstract in English not available
Malic, Goran. « Grothendieck's dessins d'enfants and the combinatorics of Coxeter groups ». Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/grothendiecks-dessins-denfants-and-the-combinatorics-of-coxeter-groups(dd51878a-7b63-4bd2-9d27-74f10350d44e).html.
Texte intégralFerraz, Marcus Vinicíus de Souza. « Interação fluido-estrutura no contato lubrificado entre asperezas e plano rígido via elementos finitos ». Universidade Federal de Juiz de Fora (UFJF), 2018. https://repositorio.ufjf.br/jspui/handle/ufjf/6693.
Texte intégralApproved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2018-04-19T17:48:41Z (GMT) No. of bitstreams: 1 marcusviniciusdesouzaferraz.pdf: 4103901 bytes, checksum: e4adcd64380c6ba8941b29bcc9d0abfd (MD5)
Made available in DSpace on 2018-04-19T17:48:41Z (GMT). No. of bitstreams: 1 marcusviniciusdesouzaferraz.pdf: 4103901 bytes, checksum: e4adcd64380c6ba8941b29bcc9d0abfd (MD5) Previous issue date: 2018-02-27
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
O conhecimento da topografia das superfícies e uma compreensão da interação entre elas é essencial para qualquer estudo que envolva os fenômenos de atrito, desgaste e lubrificação. O estudo da relação entre o atrito e os parâmetros de rugosidade é um problema difícil e de interesse tanto industrial como acadêmico e trabalhos experimentais e teóricos têm mostrado que uma película de fluido entre duas superfícies rugosas em movimento relativo impede o contato sólido - sólido e pode proporcionar atrito muito baixo e desgaste desprezível. A modelagem matemática utilizada neste trabalho é baseada em modelos clássicos, tais como a equação de Reynolds para a descrição dos fenômenos hidrodinâmicos e as formulações de Hertz (1896) e Greenwood e Williamson (1966) para a modelagem do contato das asperezas entre as superfícies rugosas. Para tratar a complexidade das interações entre o fluido e os pares sólidos contactados, a descrição Lagrangiana-Euleriana Arbitrária é apresentada nesta pesquisa. Através do Método dos Elementos Finitos um modelo tridimensional é gerado no Abaqus ®, a fim de identificar as pressões de contato, as tensões tangenciais e normais resultantes e os coeficientes de atrito decorrrentes do deslizamento entre uma superfície texturizada e lubrificada e um plano rígido (em analogia aos modelos de contato clássicos), cujos perfis de rugosidade são construídos a partir de informações da rugosidade média quadrática de superfícies dentárias. São avaliados também a sensibilidade de alguns parâmetros do lubrificante na determinação do coeficiente de atrito e são propostos modelos com condições de contorno distintas. Entretanto, para a verificação destes últimos busca-se reproduzir qualitativamente o resultado encontrado por Lorentz (2013) na investigação numérica de sistemas tribológicos no regime misto de lubrificação. A metodologia aqui proposta emerge como uma alternativa eficaz no campo da Tribologia, na predição do coeficiente de atrito e outras variáveis pertinentes a um fenômeno ainda pouco compreendido. Realiza-se uma análise de sensibilidade dos parâmetros de modelagem, a fim de identificar como os mesmos afetam consideravelmente o comportamento mecânico na interface de contato.
The knowledge of the topography of surfaces and an understanding of the interaction between them is essential for any study involving the phenomena of friction, wear and lubrication. The study of the relationship between friction and roughness parameters is a difficult problem of both industrial and academic interest and experimental and theoretical works have shown that a fluid film between two rough surfaces in relative motion prevents solid - solid contact and can provide very low friction and negligible wear. The mathematical modeling used in this paper is based on classical models, such as the Reynolds equation for the description of the hydrodynamic phenomena and the formulations of Hertz (1896) and Greenwood e Williamson (1966) of the contact between the asperities of rough surfaces. To address the complexity of the interactions between the fluid and the contacted solid pairs, the Lagrangian-Eulerian Arbitrary description is presented in this research. Through the Finite Element Method, a three-dimensional model is generated in Abaqus ®R to identify contact pressures, resulting tangential and normal stresses, and friction coefficients resulting from sliding between a textured and lubricated surface and a rigid plane (in analogy to classic contact models), whose roughness profiles are constructed from information on the quadratic roughness of dental surfaces. The sensitivity of some lubricant parameters in the determination of the coefficient of friction is also evaluated and models with different boundary conditions are proposed. However, for the vefrification of the latter, it is sought to qualitatively reproduce the result found by Lorentz (2013) in the numerical investigation of tribological systems without mixed lubrication regime. A methodology proposed here emerges as an effective alternative in the field of Tribology, in the prediction of the coefficient of friction and other relevant variables to a phenomenon still little understood. A sensitivity analysis of the modeling parameters is performed, in order to identify how they considerably affect the mechanical behavior at the contact interface.
Silverberg, Jon P. « On Lagrangian meshless methods in free-surface flows ». Thesis, (1.7 MB), 2005. http://edocs.nps.edu/AR/topic/theses/2005/Jan/05Jan_Silverberg.pdf.
Texte intégral"January 2005." Description based on title screen as viewed on May 25, 2010. DTIC Descriptor(s): Fluid Dynamics, Lagrangian Functions, Equations Of Motion, Acceleration, Formulations, Grids, Continuum Mechanics, Gaussian Quadrature, Derivatives (Mathematics), Compact Disks, Boundary Value Problems, Polynomials, Interpolation, Pressure, Operators (Mathematics). DTIC Identifier(s): Multimedia (CD-Rom), Moving Grids, Meshless Discretization, Lifs (Lagrange Implicit Fraction Step), Lagrangian Dynamics, Meshless Operators, Mlip (Multidimensional Lagrange Interpolating Polynomials), Flux Boundary Conditions, Radial Basis Functions Includes bibliographical references (58-59).
Battista, Thomas Andrew. « Lagrangian Mechanics Modeling of Free Surface-Affected Marine Craft ». Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/82928.
Texte intégralPh. D.
Lê, Thanh-Tâm. « Surfaces lagrangiennes dans les surfaces projectives complexes ». Paris 7, 2002. http://www.theses.fr/2002PA077104.
Texte intégralMazzini, Ana Paula. « Um método de Lagrangianos aumentados e sua aplicação em otimização de malhas ». Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-29032012-141547/.
Texte intégralAugmented Lagrangian methods are frequently used to solve minimization problems subject to general constraints. In particular, we study an augmented Lagrangian method that uses the PHR function, implemented in ALGENCAN, and observe its behavior when applied to solve a problem found in the field of Computer Graphics. The problem we will study and solve is found in the post-processing stage of the surface mesh generation, for which we propose an optimization technique to improve the mesh elements. When it comes to meshing surfaces in \'R POT..3\', triangular meshes parametrizations are widely used in applications of mesh processing. It is often necessary to preserve the surface metric and, thus, minimize the angle and area deformation. The optimization technique we propose aims to improve the distortions imposed by a parametrization onto angles and areas. To assert the efectiveness of the proposed technique, we implemented it in C++ language and used some classic mesh models from the literature to performe numerical experiments. The results were promising
Doukouré, Moussa. « Variabilité des flux turbulents de surface au sein du bassin versant d'Ara au Bénin ». Thesis, Grenoble, 2011. http://www.theses.fr/2011GRENU014/document.
Texte intégralWest Africa atmosphere circulation is characterized by south-westerly wind (monsoon regime) during the wet season and north-easterly wind (harmattan regime) during the dry season. This alternation of wind regime is due to surface pressure variability linked to surface heterogeneities. Surface heterogeneities generate surface flux variability, secondary circulation and make complex analysis when trying to document surface-atmosphere feedbacks. LES modelling usually used for boundary-layer studies due to its potential to take into account 3D turbulence over complex topography, is used here to overcome these difficulties. Our site of interest is located in north of Benin characterized by Soudanian climate and heterogeneous surface properties. Climate analysis are first performed with radiosoundings, UHF radar, and EC station data in order to extract composite profile representing dry and wet season.. These composite profiles are then used to force atmosphere part of the Méso-NH LES model. To characterize turbulent fluxes length scales relative to dry and wet season, standard surface forcing data with Méso-NH like GTOPO30 orography (1km ) and ECOCLIMAP vegetation (1km) are respectively replaced by SRTM (90m) and SPOT/HRV vegetation data (20m) resampled to 90m. Along with statistical tools like 2D variography and Lagrangian, we notice that during dry season on heterogeneous vegetation, sensible heat flux H is more driven by wind and orography while we not able to discuss the latent heat flux E case. During wet season with the same surface forcing, it appears that H is driven by wind while E is more dependent to vegetation variability. Our study concludes in all case that H and E are not characterized by the same length scale
Livres sur le sujet "Lagrangian surfaces"
Canada. Dept. of Fisheries and Oceans. Surface Circulation in Dixon Entrance Results From Lagrangian and Eulerian Measurements. S.l : s.n, 1986.
Trouver le texte intégralIbragimov, Zair. Topics in several complex variables : First USA-Uzbekistan Conference on Analysis and Mathematical Physics, May 20-23, 2014, California State University, Fullerton, California. Providence, Rhode Island : American Mathematical Society, 2016.
Trouver le texte intégralMann, Peter. Constrained Lagrangian Mechanics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0008.
Texte intégralMann, Peter. Symmetries & ; Lagrangian-Hamilton-Jacobi Theory. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0011.
Texte intégralMann, Peter. Liouville’s Theorem & ; Classical Statistical Mechanics. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0020.
Texte intégralZeitlin, Vladimir. Rotating Shallow-Water Models with Moist Convection. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198804338.003.0015.
Texte intégralChapitres de livres sur le sujet "Lagrangian surfaces"
Matsushita, Daisuke. « On Deformations of Lagrangian Fibrations ». Dans K3 Surfaces and Their Moduli, 237–43. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-29959-4_9.
Texte intégralDaniel, Patrik, Matej Medl’a, Karol Mikula et Mariana Remešíková. « Reconstruction of Surfaces from Point Clouds Using a Lagrangian Surface Evolution Model ». Dans Lecture Notes in Computer Science, 589–600. Cham : Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18461-6_47.
Texte intégralDorfmeister, Josef F., et Hui Ma. « A New Look at Equivariant Minimal Lagrangian Surfaces in $${\mathbb {C}} P^2$$ C P 2 ». Dans Springer Proceedings in Mathematics & ; Statistics, 97–125. Tokyo : Springer Japan, 2016. http://dx.doi.org/10.1007/978-4-431-56021-0_5.
Texte intégralMielke, Alexander. « Capillarity surface waves ». Dans Hamiltonian and Lagrangian Flows on Center Manifolds, 103–8. Berlin, Heidelberg : Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/bfb0097553.
Texte intégralWilson, J. D., T. K. Flesch et B. P. Crenna. « Estimating Surface-Air Gas Fluxes by Inverse Dispersion Using a Backward Lagrangian Stochastic Trajectory Model ». Dans Lagrangian Modeling of the Atmosphere, 149–62. Washington, D. C. : American Geophysical Union, 2013. http://dx.doi.org/10.1029/2012gm001269.
Texte intégralZirwes, Thorsten, Feichi Zhang, Jordan A. Denev, Peter Habisreuther, Henning Bockhorn et Dimosthenis Trimis. « Implementation of Lagrangian Surface Tracking for High Performance Computing ». Dans High Performance Computing in Science and Engineering '20, 223–36. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80602-6_15.
Texte intégralGuerrini, Federica. « Data-Informed Models for the Coupled Dispersal of Microplastics and Related Pollutants Applied to the Mediterranean Sea ». Dans Special Topics in Information Technology, 3–14. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15374-7_1.
Texte intégralTosaka, N., R. Sugino et H. Kawabata. « Boundary Element-Lagrangian Solution Method for Nonlinear Free Surface Problems ». Dans Boundary Element Methods in Engineering, 131–39. Berlin, Heidelberg : Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84238-2_18.
Texte intégralHuntley, Helga S., B. L. Lipphardt et A. D. Kirwan. « Surface Drift Predictions of the Deepwater Horizon Spill : The Lagrangian Perspective ». Dans Monitoring and Modeling the Deepwater Horizon Oil Spill : A Record-Breaking Enterprise, 179–95. Washington, D. C. : American Geophysical Union, 2011. http://dx.doi.org/10.1029/2011gm001097.
Texte intégralKoschdon, Karl, et Michael Schäfer. « A Lagrangian-Eulerian Finite-Volume Method for Simulating Free Surface Flows of Granular Avalanches ». Dans Dynamic Response of Granular and Porous Materials under Large and Catastrophic Deformations, 83–108. Berlin, Heidelberg : Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-36565-5_3.
Texte intégralActes de conférences sur le sujet "Lagrangian surfaces"
EJIRI, N. « COMPLEX SUBMANIFOLDS AND LAGRANGIAN SUBMANIFOLDS ASSOCIATE WITH MINIMAL SURFACES IN TORI ». Dans Proceedings of the 8th International Workshop on Complex Structures and Vector Fields. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812709806_0009.
Texte intégralKasper, Robert, Johann Turnow et Nikolai Kornev. « Multiphase Eulerian-Lagrangian LES of particulate fouling on structured heat transfer surfaces ». Dans THMT-18. Turbulence Heat and Mass Transfer 9 Proceedings of the Ninth International Symposium On Turbulence Heat and Mass Transfer. Connecticut : Begellhouse, 2018. http://dx.doi.org/10.1615/thmt-18.780.
Texte intégralPearson, Stewart, et Sean V. Hum. « Using Augmented Lagrangian Methods to Design Electromagnetic Surfaces with Far Field Constraints ». Dans 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting. IEEE, 2020. http://dx.doi.org/10.1109/ieeeconf35879.2020.9329978.
Texte intégralTriphahn, Christopher W., et Eric Loth. « Impact Efficiency Preditions On Icing Surfaces Using the Lagrangian Parcel Volume Method ». Dans 5th AIAA Atmospheric and Space Environments Conference. Reston, Virginia : American Institute of Aeronautics and Astronautics, 2013. http://dx.doi.org/10.2514/6.2013-2545.
Texte intégralBou-Zeid, Elie, Charles Meneveau et Marc B. Parlange. « Applications of the Lagrangian Dynamic Model in LES of Turbulent Flow Over Surfaces With Heterogeneous Roughness Distributions ». Dans ASME 2004 Heat Transfer/Fluids Engineering Summer Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/ht-fed2004-56127.
Texte intégralYang, Pinghai, Kang Li et Xiaoping Qian. « Topologically Enhanced Slicing of MLS Surfaces ». Dans ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/detc2010-29125.
Texte intégralFedele, R. « An effective strategy to transform second-gradient equilibrium equations from the Eulerian to the Lagrangian configuration ». Dans AIMETA 2022. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902431-101.
Texte intégralBenson, David J., et Shigenobu Okazawa. « Eulerian-Lagrangian Coupling in Finite Element Calculations With Applications to Machining ». Dans ASME/JSME 2004 Pressure Vessels and Piping Conference. ASMEDC, 2004. http://dx.doi.org/10.1115/pvp2004-2860.
Texte intégralCherubini, S., M. D. de Tullio, P. De Palma et G. Pascazio. « Optimal Perturbations in Boundary Layer Flows Over Rough Surfaces ». Dans ASME 2012 Fluids Engineering Division Summer Meeting collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/fedsm2012-72219.
Texte intégralWalls, Kenneth C., et David L. Littlefield. « Validation of an Improved Contact Method for Multi-Material Eulerian Hydrocodes in Three-Dimensions ». Dans 2019 15th Hypervelocity Impact Symposium. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/hvis2019-060.
Texte intégralRapports d'organisations sur le sujet "Lagrangian surfaces"
Shen, Lian, et Robert A. Dalrymple. Hybrid Eulerian and Lagrangian Simulation of Steep and Breaking Waves and Surface Fluxes in High Winds. Fort Belvoir, VA : Defense Technical Information Center, septembre 2010. http://dx.doi.org/10.21236/ada542504.
Texte intégralKokjohn, Sage. Development and Validation of a Lagrangian Soot Model Considering Detailed Gas Phase Kinetics and Surface Chemistry. Office of Scientific and Technical Information (OSTI), décembre 2019. http://dx.doi.org/10.2172/1580657.
Texte intégralShen, Lian, et Robert A. Dalrymple. Hybrid Eulerian and Lagrangian Simulation of Steep and Breaking Waves and Surface Fluxes in High Winds. Fort Belvoir, VA : Defense Technical Information Center, septembre 2012. http://dx.doi.org/10.21236/ada590591.
Texte intégralShen, Lian, et Robert A. Dalrymple. Hybrid Eulerian and Lagrangian Simulation of Steep and Breaking Waves and Surface Fluxes in High Winds. Fort Belvoir, VA : Defense Technical Information Center, septembre 2011. http://dx.doi.org/10.21236/ada557102.
Texte intégralMusculus, Mark P. July 2018 Progress Report for Sandia National Laboratories on DE-EE0007300 Development and Validation of a Lagrangian Soot Model Considering Detailed Gas Phase Kinetics and Surface Chemistry. Office of Scientific and Technical Information (OSTI), juillet 2018. http://dx.doi.org/10.2172/1463071.
Texte intégral