Sommaire
Littérature scientifique sur le sujet « L. starkeyi »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « L. starkeyi ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "L. starkeyi"
Lau, Zoe, David Stuart et Bonnie Mcneil. « Establishing CRISPR/Cas9 in Lipomyces starkeyi ». Alberta Academic Review 2, no 2 (16 septembre 2019) : 51–52. http://dx.doi.org/10.29173/aar61.
Texte intégralTang, Wei, Sufang Zhang, Qian Wang, Haidong Tan et Zongbao Kent Zhao. « The isocitrate dehydrogenase gene of oleaginous yeast Lipomyces starkeyi is linked to lipid accumulation ». Canadian Journal of Microbiology 55, no 9 (septembre 2009) : 1062–69. http://dx.doi.org/10.1139/w09-063.
Texte intégralXenopoulos, Evangelos, Ioannis Giannikakis, Afroditi Chatzifragkou, Apostolis Koutinas et Seraphim Papanikolaou. « Lipid Production by Yeasts Growing on Commercial Xylose in Submerged Cultures with Process Water Being Partially Replaced by Olive Mill Wastewaters ». Processes 8, no 7 (11 juillet 2020) : 819. http://dx.doi.org/10.3390/pr8070819.
Texte intégralTakayama, Yuko. « Identification of Genes Encoding CENP-A and Heterochromatin Protein 1 of Lipomyces starkeyi and Functional Analysis Using Schizosaccharomyces pombe ». Genes 11, no 7 (8 juillet 2020) : 769. http://dx.doi.org/10.3390/genes11070769.
Texte intégralViigand, Katrin, Kristina Põšnograjeva, Triinu Visnapuu et Tiina Alamäe. « Genome Mining of Non-Conventional Yeasts : Search and Analysis of MAL Clusters and Proteins ». Genes 9, no 7 (16 juillet 2018) : 354. http://dx.doi.org/10.3390/genes9070354.
Texte intégralLiu, Jun-Xian, Qin-Yan Yue, Bao-Yu Gao, Yan Wang, Qian Li et Pei-Dong Zhang. « Research on microbial lipid production from potato starch wastewater as culture medium by Lipomyces starkeyi ». Water Science and Technology 67, no 8 (1 avril 2013) : 1802–8. http://dx.doi.org/10.2166/wst.2013.059.
Texte intégralGuo, Yilin, Wentian Li, Haiming Chen, Weijun Chen, Ming Zhang, Qiuping Zhong et Wenxue Chen. « Optimization and Rheological Study of an Exopolysaccharide Obtained from Fermented Mature Coconut Water with Lipomyces starkeyi ». Foods 11, no 7 (29 mars 2022) : 999. http://dx.doi.org/10.3390/foods11070999.
Texte intégralFakankun, Irene, Brian Fristensky et David B. Levin. « Genome Sequence Analysis of the Oleaginous Yeast, Rhodotorula diobovata, and Comparison of the Carotenogenic and Oleaginous Pathway Genes and Gene Products with Other Oleaginous Yeasts ». Journal of Fungi 7, no 4 (20 avril 2021) : 320. http://dx.doi.org/10.3390/jof7040320.
Texte intégralSato, Rikako, Satoshi Ara, Harutake Yamazaki, Koji Ishiya, Sachiyo Aburatani et Hiroaki Takaku. « Citrate-Mediated Acyl-CoA Synthesis Is Required for the Promotion of Growth and Triacylglycerol Production in Oleaginous Yeast Lipomyces starkeyi ». Microorganisms 9, no 8 (9 août 2021) : 1693. http://dx.doi.org/10.3390/microorganisms9081693.
Texte intégralIasimone, F., G. Zuccaro, V. D'Oriano, G. Franci, M. Galdiero, D. Pirozzi, V. De Felice et F. Pirozzi. « Combined yeast and microalgal cultivation in a pilot-scale raceway pond for urban wastewater treatment and potential biodiesel production ». Water Science and Technology 77, no 4 (14 décembre 2017) : 1062–71. http://dx.doi.org/10.2166/wst.2017.620.
Texte intégralThèses sur le sujet "L. starkeyi"
Browne, H. M. « Protoplasts and their application to the study of genetics in Lipomyces starkeyi ». Thesis, University of Nottingham, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235343.
Texte intégralMAESTRONI, LETIZIA. « TACKLING THE CHALLENGE OF BIO-BASED PRODUCTIONS BY LEVERAGING THE POTENTIAL OF YEAST BIODIVERSITY AND SYNTHETIC BIOLOGY ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2023. https://hdl.handle.net/10281/402374.
Texte intégralThe role of industrial biotechnology is to provide game-changing solutions for some of the world’s greatest challenges. From climate change to alternative energy sources and to sustainable productions, industrial biotechnology is fighting to find new sustainable solutions. Despite the promising potential and the innovative techniques applied, bio-based biological processes still need further studies for becoming pervasive and therefore substituting the traditional processes of production. To make microbial processes economically feasible and environmentally friendly, one of the key factors resides in the choice of the starting biomass. In a logic of circular bioeconomy, by-products and residual biomasses have to be considered as starting feedstocks of the process. The use of these biomasses does not raise ethical issues and at the same time is economically advantageous and environment oriented. Indeed, they do not compete with the food industry, as they are usually production waste. Most of these residual biomasses are agricultural and forest residues, a family of biomasses characterised by a lignocellulosic structure. The problem related to their use in microbial-based biorefineries is to find an efficient pretreatment to convert them into fermentable sugars and other nutrients, while reducing to a minimum the release of inhibitors of microbial growth. Talking about microbial-based biorefinery as a substitute to petrol-based refinery, there are two main topics to keep in mind during the process design: the starting biomass and the microbial host. The chassis which will be involved in the final production process can be chosen following two complementary approaches: i) exploiting microbial biodiversity already present in nature by picking the final host depending on its innate characteristics, particularly advantageous in a specific production process; ii) working on a well-known cell factory by customising it as needed. In this thesis both principles were followed. In Chapter 2 a specific class of non-conventional yeasts, named oleaginous yeasts, was evaluated to obtain single cell oils (SCOs) for biodiesel production starting from wastes of the sugar beet industry. Lipomyces starkeyi was selected as cell factory for the conversion of sugar beet pulp and sugar beet molasses to maximise SCOs accumulation. With this applicative example we showed the possibility to take advantage of non-conventional microorganisms to achieve a more sustainable way to produce fuels. On the other hand, choosing Saccharomyces cerevisiae as final host has the major advantage of exploiting the wide knowledge around it, starting from its genome and physiology, and arriving at the tremendous number of synthetic biology approaches to engineer it and manipulate it in the desired final form. In Chapter 3 I introduce a novel toolkit: a new combination of synthetic biology approaches to accelerate the engineering procedures allowing the overexpression and the study of more and more complex biosynthetic heterologous pathways. Moreover, I show the application of this novel toolkit to the production of a selected plant secondary metabolite. In Chapter 4 I describe the design of a new vector to improve genome editing procedures in S. cerevisiae. Even in this second project the final goal was to speed up the design and build stages and laboratory procedures, standardising them as much as possible to simplify one part of scientists' work, to leave more space to the subsequent phases of testing and learning. In Chapter 5 I propose the concept of enzyme spatial co-localisation as a forefront field in synthetic biology to maximise the carbon flux toward the product of interest, exploiting the use of protein synthetic scaffolds and synthetic interaction domains. The presented thesis wants to pose itself as a practical example on how industrial biotechnology can be used as a powerful tool in the difficult transition to a more sustainable society.
Starke, Mathias [Verfasser], Heiko C. [Akademischer Betreuer] Becker, Gunter [Gutachter] Backes et Stefan [Gutachter] Siebert. « Selektion von Stangenbohnensorten (Phaseolus vulgaris L.) für den Mischanbau mit Mais / Mathias Starke ; Gutachter : Gunter Backes, Stefan Siebert ; Betreuer : Heiko C. Becker ». Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2018. http://d-nb.info/1164764926/34.
Texte intégral