Littérature scientifique sur le sujet « Known and Zero-Day Attacks Detection »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Known and Zero-Day Attacks Detection ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Known and Zero-Day Attacks Detection"
Nerella Sameera, M.Siva Jyothi, K.Lakshmaji et V.S.R.Pavan Kumar. Neeli. « Clustering based Intrusion Detection System for effective Detection of known and Zero-day Attacks ». Journal of Advanced Zoology 44, no 4 (2 décembre 2023) : 969–75. http://dx.doi.org/10.17762/jaz.v44i4.2423.
Texte intégralHindy, Hanan, Robert Atkinson, Christos Tachtatzis, Jean-Noël Colin, Ethan Bayne et Xavier Bellekens. « Utilising Deep Learning Techniques for Effective Zero-Day Attack Detection ». Electronics 9, no 10 (14 octobre 2020) : 1684. http://dx.doi.org/10.3390/electronics9101684.
Texte intégralOhtani, Takahiro, Ryo Yamamoto et Satoshi Ohzahata. « IDAC : Federated Learning-Based Intrusion Detection Using Autonomously Extracted Anomalies in IoT ». Sensors 24, no 10 (18 mai 2024) : 3218. http://dx.doi.org/10.3390/s24103218.
Texte intégralHairab, Belal Ibrahim, Heba K. Aslan, Mahmoud Said Elsayed, Anca D. Jurcut et Marianne A. Azer. « Anomaly Detection of Zero-Day Attacks Based on CNN and Regularization Techniques ». Electronics 12, no 3 (23 janvier 2023) : 573. http://dx.doi.org/10.3390/electronics12030573.
Texte intégralAl-Rushdan, Huthifh, Mohammad Shurman et Sharhabeel Alnabelsi. « On Detection and Prevention of Zero-Day Attack Using Cuckoo Sandbox in Software-Defined Networks ». International Arab Journal of Information Technology 17, no 4A (31 juillet 2020) : 662–70. http://dx.doi.org/10.34028/iajit/17/4a/11.
Texte intégralAlam, Naushad, et Muqeem Ahmed. « Zero-day Network Intrusion Detection using Machine Learning Approach ». International Journal on Recent and Innovation Trends in Computing and Communication 11, no 8s (18 août 2023) : 194–201. http://dx.doi.org/10.17762/ijritcc.v11i8s.7190.
Texte intégralBu, Seok-Jun, et Sung-Bae Cho. « Deep Character-Level Anomaly Detection Based on a Convolutional Autoencoder for Zero-Day Phishing URL Detection ». Electronics 10, no 12 (21 juin 2021) : 1492. http://dx.doi.org/10.3390/electronics10121492.
Texte intégralAli, Shamshair, Saif Ur Rehman, Azhar Imran, Ghazif Adeem, Zafar Iqbal et Ki-Il Kim. « Comparative Evaluation of AI-Based Techniques for Zero-Day Attacks Detection ». Electronics 11, no 23 (28 novembre 2022) : 3934. http://dx.doi.org/10.3390/electronics11233934.
Texte intégralRodríguez, Eva, Pol Valls, Beatriz Otero, Juan José Costa, Javier Verdú, Manuel Alejandro Pajuelo et Ramon Canal. « Transfer-Learning-Based Intrusion Detection Framework in IoT Networks ». Sensors 22, no 15 (27 juillet 2022) : 5621. http://dx.doi.org/10.3390/s22155621.
Texte intégralSheikh, Zakir Ahmad, Yashwant Singh, Pradeep Kumar Singh et Paulo J. Sequeira Gonçalves. « Defending the Defender : Adversarial Learning Based Defending Strategy for Learning Based Security Methods in Cyber-Physical Systems (CPS) ». Sensors 23, no 12 (9 juin 2023) : 5459. http://dx.doi.org/10.3390/s23125459.
Texte intégralThèses sur le sujet "Known and Zero-Day Attacks Detection"
Toure, Almamy. « Collection, analysis and harnessing of communication flows for cyber-attack detection ». Electronic Thesis or Diss., Valenciennes, Université Polytechnique Hauts-de-France, 2024. http://www.theses.fr/2024UPHF0023.
Texte intégralThe increasing complexity of cyberattacks, characterized by a diversification of attack techniques, an expansion of attack surfaces, and growing interconnectivity of applications with the Internet, makes network traffic management in a professional environment imperative. Companies of all types collect and analyze network flows and logs to ensure the security of exchanged data and prevent the compromise of information systems. However, techniques for collecting and processing network traffic data vary from one dataset to another, and static attack detection approaches have limitations in terms of efficiency and precision, execution time, and scalability. This thesis proposes dynamic approaches for detecting cyberattacks related to network traffic, using feature engineering based on the different communication phases of a network flow, coupled with convolutional neural networks (1D-CNN) and their feature detector. This double extraction allows for better classification of network flows, a reduction in the number of attributes and model execution times, and thus effective attack detection. Companies also face constantly evolving cyber threats, and "zero-day" attacks that exploit previously unknown vulnerabilities are becoming increasingly frequent. Detecting these zero-day attacks requires constant technological monitoring and thorough but time-consuming analysis of the exploitation of these vulnerabilities. The proposed solutions guarantee the detection of certain attack techniques. Therefore, we propose a detection framework for these attacks that covers the entire attack chain, from the data collection phase to the identification of any type of zero-day, even in a constantly evolving environment. Finally, given the obsolescence of existing datasets and data generation techniques for intrusion detection, and the fixed, non-evolving, and non-exhaustive nature of recent attack scenarios, the study of an adapted synthetic data generator while ensuring data confidentiality is addressed. The solutions proposed in this thesis optimize the detection of known and zero-day attack techniques on network flows, improve the accuracy of models, while ensuring the confidentiality and high availability of data and models, with particular attention to the applicability of the solutions in a company network
Khraisat, Ansam. « Intelligent zero-day intrusion detection framework for internet of things ». Thesis, Federation University Australia, 2020. http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/179729.
Texte intégralDoctor of Philosophy
Peddisetty, Naga Raju. « State-of-the-art Intrusion Detection : Technology, Challenges, and Evaluation ». Thesis, Linköping University, Department of Electrical Engineering, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-2792.
Texte intégralDue to the invention of automated hacking tools, Hacking is not a black art anymore. Even script kiddies can launch attacks in few seconds. Therefore, there is a great emphasize on the Security to protect the resources from camouflage. Intrusion Detection System is also one weapon in the security arsenal. It is the process of monitoring and analyzing information sources in order to detect vicious traffic. With its unique capabilities like monitoring, analyzing, detecting and archiving, IDS assists the organizations to combat against threats, to have a snap-shot of the networks, and to conduct Forensic Analysis. Unfortunately there are myriad products inthe market. Selecting a right product at time is difficult. Due to the wide spread rumors and paranoia, in this work I have presented the state-of-the-art IDS technologies, assessed the products, and evaluated. I have also presented some of the novel challenges that IDS products are suffering. This work will be a great help for pursuing IDS technology and to deploy Intrusion Detection Systems in an organization. It also gives in-depth knowledge of the present IDS challenges.
Chapitres de livres sur le sujet "Known and Zero-Day Attacks Detection"
Wang, Lingyu, Mengyuan Zhang et Anoop Singhal. « Network Security Metrics : From Known Vulnerabilities to Zero Day Attacks ». Dans Lecture Notes in Computer Science, 450–69. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-04834-1_22.
Texte intégralHamid, Khalid, Muhammad Waseem Iqbal, Muhammad Aqeel, Xiangyong Liu et Muhammad Arif. « Analysis of Techniques for Detection and Removal of Zero-Day Attacks (ZDA) ». Dans Communications in Computer and Information Science, 248–62. Singapore : Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-0272-9_17.
Texte intégralNgo, Quoc-Dung, et Quoc-Huu Nguyen. « A Reinforcement Learning-Based Approach for Detection Zero-Day Malware Attacks on IoT System ». Dans Artificial Intelligence Trends in Systems, 381–94. Cham : Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-09076-9_34.
Texte intégralSingh, Mahendra Pratap, Virendra Pratap Singh et Maanak Gupta. « Early Detection and Classification of Zero-Day Attacks in Network Traffic Using Convolutional Neural Network ». Dans Lecture Notes in Networks and Systems, 812–22. Cham : Springer Nature Switzerland, 2024. http://dx.doi.org/10.1007/978-3-031-60935-0_70.
Texte intégralJorquera Valero, José María, Manuel Gil Pérez, Alberto Huertas Celdrán et Gregorio Martínez Pérez. « Identification and Classification of Cyber Threats Through SSH Honeypot Systems ». Dans Handbook of Research on Intrusion Detection Systems, 105–29. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-2242-4.ch006.
Texte intégralRoseline, S. Abijah, et S. Geetha. « Intelligent Malware Detection Using Deep Dilated Residual Networks for Cyber Security ». Dans Countering Cyber Attacks and Preserving the Integrity and Availability of Critical Systems, 211–29. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-8241-0.ch011.
Texte intégralThapa, Vidhanth Maan, Sudhanshu Srivastava et Shelly Garg. « Zero Day Vulnerabilities Assessments, Exploits Detection, and Various Design Patterns in Cyber Software ». Dans AI Tools for Protecting and Preventing Sophisticated Cyber Attacks, 132–47. IGI Global, 2023. http://dx.doi.org/10.4018/978-1-6684-7110-4.ch006.
Texte intégralSethuraman, Murugan Sethuraman. « Survey of Unknown Malware Attack Finding ». Dans Advances in Systems Analysis, Software Engineering, and High Performance Computing, 260–76. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-3129-6.ch011.
Texte intégralSethuraman, Murugan Sethuraman. « Survey of Unknown Malware Attack Finding ». Dans Intelligent Systems, 2227–43. IGI Global, 2018. http://dx.doi.org/10.4018/978-1-5225-5643-5.ch099.
Texte intégralStewart, Andrew J. « Vulnerability Disclosure, Bounties, and Markets ». Dans A Vulnerable System, 127–51. Cornell University Press, 2021. http://dx.doi.org/10.7591/cornell/9781501758942.003.0008.
Texte intégralActes de conférences sur le sujet "Known and Zero-Day Attacks Detection"
Wang, Shen, Zhengzhang Chen, Xiao Yu, Ding Li, Jingchao Ni, Lu-An Tang, Jiaping Gui, Zhichun Li, Haifeng Chen et Philip S. Yu. « Heterogeneous Graph Matching Networks for Unknown Malware Detection ». Dans Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California : International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/522.
Texte intégralSejr, Jonas Herskind, Arthur Zimek et Peter Schneider-Kamp. « Explainable Detection of Zero Day Web Attacks ». Dans 2020 3rd International Conference on Data Intelligence and Security (ICDIS). IEEE, 2020. http://dx.doi.org/10.1109/icdis50059.2020.00016.
Texte intégralReardon, Shay, Murtadha D. Hssayeni et Imadeldin Mahgoub. « Detection of Zero-Day Attacks on IoT ». Dans 2024 International Conference on Smart Applications, Communications and Networking (SmartNets). IEEE, 2024. http://dx.doi.org/10.1109/smartnets61466.2024.10577735.
Texte intégralAlEroud, Ahmed, et George Karabatis. « A Contextual Anomaly Detection Approach to Discover Zero-Day Attacks ». Dans 2012 International Conference on Cyber Security (CyberSecurity). IEEE, 2012. http://dx.doi.org/10.1109/cybersecurity.2012.12.
Texte intégralGao, Xueqin, Kai Chen, Yufei Zhao, Peng Zhang, Longxi Han et Daojuan Zhang. « A Zero-Shot Learning-Based Detection Model Against Zero-Day Attacks in IoT ». Dans 2024 9th International Conference on Electronic Technology and Information Science (ICETIS). IEEE, 2024. http://dx.doi.org/10.1109/icetis61828.2024.10593684.
Texte intégralSandescu, Cristian, Razvan Rughinis et Octavian Grigorescu. « HUNT : USING HONEYTOKENS TO UNDERSTAND AND INFLUENCE THE EXECUTION OF AN ATTACK ». Dans eLSE 2017. Carol I National Defence University Publishing House, 2017. http://dx.doi.org/10.12753/2066-026x-17-075.
Texte intégralRadhakrishnan, Kiran, Rajeev R. Menon et Hiran V. Nath. « A survey of zero-day malware attacks and its detection methodology ». Dans TENCON 2019 - 2019 IEEE Region 10 Conference (TENCON). IEEE, 2019. http://dx.doi.org/10.1109/tencon.2019.8929620.
Texte intégralRegi, Suraj, Ginni Arora, Raga Gangadharan, Ruchika Bathla et Nitin Pandey. « Case Study on Detection and Prevention Methods in Zero Day Attacks ». Dans 2022 10th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). IEEE, 2022. http://dx.doi.org/10.1109/icrito56286.2022.9964873.
Texte intégralMarbukh, Vladimir. « Towards Security Metrics Combining Risks of Known and Zero-day Attacks : Work in Progress ». Dans NOMS 2023-2023 IEEE/IFIP Network Operations and Management Symposium. IEEE, 2023. http://dx.doi.org/10.1109/noms56928.2023.10154439.
Texte intégralHolm, Hannes. « Signature Based Intrusion Detection for Zero-Day Attacks : (Not) A Closed Chapter ? » Dans 2014 47th Hawaii International Conference on System Sciences (HICSS). IEEE, 2014. http://dx.doi.org/10.1109/hicss.2014.600.
Texte intégral