Littérature scientifique sur le sujet « Keypoint-based »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Keypoint-based ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Keypoint-based"
Guan, Genliang, Zhiyong Wang, Shiyang Lu, Jeremiah Da Deng et David Dagan Feng. « Keypoint-Based Keyframe Selection ». IEEE Transactions on Circuits and Systems for Video Technology 23, no 4 (avril 2013) : 729–34. http://dx.doi.org/10.1109/tcsvt.2012.2214871.
Texte intégralTavakol, Ali, et Mohammad Soltanian. « Fast Feature-Based Template Matching, Based on Efficient Keypoint Extraction ». Advanced Materials Research 341-342 (septembre 2011) : 798–802. http://dx.doi.org/10.4028/www.scientific.net/amr.341-342.798.
Texte intégralGu, Mingfei, Yinghua Wang, Hongwei Liu et Penghui Wang. « PolSAR Ship Detection Based on a SIFT-like PolSAR Keypoint Detector ». Remote Sensing 14, no 12 (17 juin 2022) : 2900. http://dx.doi.org/10.3390/rs14122900.
Texte intégralBoonsivanon, Krittachai, et Worawat Sa-Ngiamvibool. « A SIFT Description Approach for Non-Uniform Illumination and Other Invariants ». Ingénierie des systèmes d information 26, no 6 (27 décembre 2021) : 533–39. http://dx.doi.org/10.18280/isi.260603.
Texte intégralWu, Zhonghua, Guosheng Lin et Jianfei Cai. « Keypoint based weakly supervised human parsing ». Image and Vision Computing 91 (novembre 2019) : 103801. http://dx.doi.org/10.1016/j.imavis.2019.08.005.
Texte intégralDing, Xintao, Qingde Li, Yongqiang Cheng, Jinbao Wang, Weixin Bian et Biao Jie. « Local keypoint-based Faster R-CNN ». Applied Intelligence 50, no 10 (28 avril 2020) : 3007–22. http://dx.doi.org/10.1007/s10489-020-01665-9.
Texte intégralCevahir, Ali, et Junji Torii. « High Performance Online Image Search with GPUs on Large Image Databases ». International Journal of Multimedia Data Engineering and Management 4, no 3 (juillet 2013) : 24–41. http://dx.doi.org/10.4018/jmdem.2013070102.
Texte intégralFeng, Lu, Quan Fu, Xiang Long et Zhuang Zhi Wu. « Keypoint Recognition for 3D Head Model Using Geometry Image ». Applied Mechanics and Materials 654 (octobre 2014) : 287–90. http://dx.doi.org/10.4028/www.scientific.net/amm.654.287.
Texte intégralPaek, Kangho, Min Yao, Zhongwei Liu et Hun Kim. « Log-Spiral Keypoint : A Robust Approach toward Image Patch Matching ». Computational Intelligence and Neuroscience 2015 (2015) : 1–12. http://dx.doi.org/10.1155/2015/457495.
Texte intégralMorgacheva, A. I., V. A. Kulikov et V. P. Kosykh. « DYNAMIC KEYPOINT-BASED ALGORITHM OF OBJECT TRACKING ». ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2/W4 (10 mai 2017) : 79–82. http://dx.doi.org/10.5194/isprs-archives-xlii-2-w4-79-2017.
Texte intégralThèses sur le sujet "Keypoint-based"
Dragon, Ralf [Verfasser]. « Keypoint-Based Object Segmentation / Ralf Dragon ». Aachen : Shaker, 2013. http://d-nb.info/1051573521/34.
Texte intégralZhao, Mingchang. « Keypoint-Based Binocular Distance Measurement for Pedestrian Detection System on Vehicle ». Thesis, Université d'Ottawa / University of Ottawa, 2014. http://hdl.handle.net/10393/31693.
Texte intégralМарченко, Ігор Олександрович, Игорь Александрович Марченко, Ihor Oleksandrovych Marchenko, Сергій Олександрович Петров, Сергей Александрович Петров, Serhii Oleksandrovych Petrov et A. A. Pidkuiko. « Usage of keypoint descriptors based algorithms for real-time objects localization ». Thesis, Центральноукраїнський національний технічний університет, 2018. http://essuir.sumdu.edu.ua/handle/123456789/68603.
Texte intégralMAZZINI, DAVIDE. « Local Detectors and Descriptors for Object and Scene Recognition ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2018. http://hdl.handle.net/10281/199003.
Texte intégralThe aim of this thesis is to study two main categories of algorithms for object detection and their use in particular applications. The first category that is investigated concerns Keypoint-based approaches. Several comparative experiments are performed within the standard testing pipeline of the MPEG CDVS Test Model and an extended pipeline which make use of color information is proposed. The second category of object detectors that is investigated is based on Convolutional Neural Networks. Two applications of Convolutional Neural Networks for object recognition are in particular addressed. The first concerns logo recognition. Two classification pipelines are designed and tested on a real-world dataset of images collected from Flickr. The first architecture makes use of a pre-trained network as feature extractor and it achieves comparable results keypoint based approaches. The second architecture makes use of a tiny end-to-end trained Neural Network that outperformed state-of-the-art keypoint based methods. The other application addressed is Painting Categorization. It consists in associating the author, assigning a painting to the school or art movement it belongs to, and categorizing the genre of the painting, e.g. landscape, portrait, illustration etc. To tackle this problem, a novel multibranch and multitask Neural Network structure is proposed which benefit from joint use of keypoint-based approaches and neural features. In both applications the use of data augmentation techniques to enlarge the training set is also investigated. In particular for paintings, a neural style transfer algorithm is exploited for generating synthetic paintings to be used in training.
Bendale, Pashmina Ziparu. « Development and evaluation of a multiscale keypoint detector based on complex wavelets ». Thesis, University of Cambridge, 2011. https://www.repository.cam.ac.uk/handle/1810/252226.
Texte intégralKemp, Neal. « Content-Based Image Retrieval for Tattoos : An Analysis and Comparison of Keypoint Detection Algorithms ». Scholarship @ Claremont, 2013. http://scholarship.claremont.edu/cmc_theses/784.
Texte intégralHansen, Peter Ian. « Wide-baseline keypoint detection and matching with wide-angle images for vision based localisation ». Thesis, Queensland University of Technology, 2010. https://eprints.qut.edu.au/37667/1/Peter_Hansen_Thesis.pdf.
Texte intégralBuck, Robert. « Cluster-Based Salient Object Detection Using K-Means Merging and Keypoint Separation with Rectangular Centers ». DigitalCommons@USU, 2016. https://digitalcommons.usu.edu/etd/4631.
Texte intégralLiu, Wen-Pin, et 劉文彬. « A face recognition system based on keypoint exclusion and dual keypoint detection ». Thesis, 2014. http://ndltd.ncl.edu.tw/handle/02572728630414645978.
Texte intégral銘傳大學
電腦與通訊工程學系碩士班
103
This thesis presents a face recognition system based on keypoint exclusion and dual keypoiont detection. There are three major problems with conventional SIFT (Scale Invariant Feature Transform). (1) It uses single type keypoint detector. For images of small size the number of detected keypoints may be too small and this causes difficulties on image matching. (2) Each keypoint of the test image is matched independently against all keypoints of the training images. This is very time consuming. (3) Only similarities between descriptors are compared and this may still causes some false matches. To increase the number of keypoints, SIFT and FAST (Features from accelerated segment test) keypoints are combined for face image matching. Since there is no corresponding descriptor for FAST detector, the LOG (Laplace of Gaussian) function with Automatic Scale Selection is applied on each FAST keypoint to find proper scales and corresponding SIFT descriptors. On the other hand, based on the similarities between locations of features on human faces, three keypoint exclusion methods (relative location, orientation, and scale) are proposed to eliminate impossible keypoints for further descriptor matching. In this way, the number of false matches can be reduced and hence higher recognition rates can be obtained. On the other hand, matching time can also be reduced. The proposed algorithms are evaluated with the ORL and the Yale face databases. Each database pick 10 person, every person get 10 image. Our proposed method shows significantly improvements on recognition rates over conventional methods.
Chen, Yi-An, et 陳翊安. « CREAK : Color-based REtinA Keypoint descriptor ». Thesis, 2016. http://ndltd.ncl.edu.tw/handle/96ke4e.
Texte intégral國立交通大學
多媒體工程研究所
104
Feature matching between images is key to many computer vision applications. Effective Feature matching requires effective feature description. Recently, binary descriptors which are used to describe feature points are attracting increasing attention for their low computational complexity and small memory requirement. However, most binary descriptors are based on intensity comparisons of grayscale images and did not consider color information. In this paper, a novel binary descriptor inspired by human retina is proposed, which considers not only gray values of pixels but also color information. Experimental results show that the proposed feature descriptor spends fewer storage spaces while having better precision level than other popular binary descriptors. Besides, the proposed feature descriptor has the fastest matching speed among all the descriptors under comparison, which makes it suitable for real-time applications.
Chapitres de livres sur le sujet "Keypoint-based"
Her, Paris, Logan Manderle, Philipe A. Dias, Henry Medeiros et Francesca Odone. « Keypoint-Based Gaze Tracking ». Dans Pattern Recognition. ICPR International Workshops and Challenges, 144–55. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68790-8_12.
Texte intégralZeng, Ming, Jian Liu, Youfu Li, Qinghao Meng, Ting Yang et Zhengbiao Bai. « Keypoint-Based Enhanced Image Quality Assessment ». Dans Communications in Computer and Information Science, 420–27. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22456-0_60.
Texte intégralWang, Shen, Xunzhi Jiang, Xiangzhan Yu et Shuai Sun. « KCFuzz : Directed Fuzzing Based on Keypoint Coverage ». Dans Lecture Notes in Computer Science, 312–25. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-78609-0_27.
Texte intégralAvola, Danilo, Marco Bernardi, Marco Cascio, Luigi Cinque, Gian Luca Foresti et Cristiano Massaroni. « A New Descriptor for Keypoint-Based Background Modeling ». Dans Lecture Notes in Computer Science, 15–25. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30642-7_2.
Texte intégralGrycuk, Rafał, Magdalena Scherer et Sviatoslav Voloshynovskiy. « Local Keypoint-Based Image Detector with Object Detection ». Dans Artificial Intelligence and Soft Computing, 507–17. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59063-9_45.
Texte intégralCataño, M. A., et J. Climent. « Keypoint Detection Based on the Unimodality Test of HOGs ». Dans Advances in Visual Computing, 189–98. Berlin, Heidelberg : Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33179-4_19.
Texte intégralSafdarnejad, S. Morteza, Yousef Atoum et Xiaoming Liu. « Temporally Robust Global Motion Compensation by Keypoint-Based Congealing ». Dans Computer Vision – ECCV 2016, 101–19. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-46466-4_7.
Texte intégralGiebenhain, Simon, Urs Waldmann, Ole Johannsen et Bastian Goldluecke. « Neural Puppeteer : Keypoint-Based Neural Rendering of Dynamic Shapes ». Dans Computer Vision – ACCV 2022, 239–56. Cham : Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-26316-3_15.
Texte intégralJin, Ling, Yiguang Liu, Zhenyu Xu, Yunan Zheng et Shuangli Du. « Robust Binary Keypoint Descriptor Based on Local Hierarchical Octagon Pattern ». Dans Lecture Notes in Electrical Engineering, 277–84. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-91659-0_21.
Texte intégralZeng, Ming, Ting Yang, Youfu Li, Qinghao Meng, Jian Liu et Tiemao Han. « Finding Regions of Interest Based on Scale-Space Keypoint Detection ». Dans Communications in Computer and Information Science, 428–35. Berlin, Heidelberg : Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-22456-0_61.
Texte intégralActes de conférences sur le sujet "Keypoint-based"
Estrada, F. J., P. Fua, V. Lepetit et S. Susstrunk. « Appearance-based keypoint clustering ». Dans 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2009. http://dx.doi.org/10.1109/cvprw.2009.5206514.
Texte intégralEstrada, Francisco J., Pascal Fua, Vincent Lepetit et Sabine Susstrunk. « Appearance-based keypoint clustering ». Dans 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops). IEEE, 2009. http://dx.doi.org/10.1109/cvpr.2009.5206514.
Texte intégralBralet, Antoine, Razmig Kechichian et Sebastien Valette. « Local Surf-Based Keypoint Transfer Segmentation ». Dans 2021 IEEE 18th International Symposium on Biomedical Imaging (ISBI). IEEE, 2021. http://dx.doi.org/10.1109/isbi48211.2021.9434106.
Texte intégralFan, Guanglei, Xin Song, Lei Yang et Yong Zhao. « Research on Keypoint-based Object Detection ». Dans 2021 2nd International Conference on Electronics, Communications and Information Technology (CECIT). IEEE, 2021. http://dx.doi.org/10.1109/cecit53797.2021.00173.
Texte intégralVolkov, Alexandr, Valeria Efimova, Viacheslav Shalamov et Andrey Filchenkov. « Keypoint-based static object removal from photographs ». Dans Thirteenth International Conference on Machine Vision, sous la direction de Wolfgang Osten, Jianhong Zhou et Dmitry P. Nikolaev. SPIE, 2021. http://dx.doi.org/10.1117/12.2587036.
Texte intégralBendale, Pashmina, Bill Triggs et Nick Kingsbury. « Multiscale Keypoint Analysis based on Complex Wavelets ». Dans British Machine Vision Conference 2010. British Machine Vision Association, 2010. http://dx.doi.org/10.5244/c.24.49.
Texte intégralFanani, Nolang, Matthias Ochs, Henry Bradler et Rudolf Mester. « Keypoint trajectory estimation using propagation based tracking ». Dans 2016 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2016. http://dx.doi.org/10.1109/ivs.2016.7535500.
Texte intégralZeng, Hui, Ji-Yuan Dong, Zhi-Chun Mu et Yin Guo. « Ear recognition based on 3D keypoint matching ». Dans 2010 10th International Conference on Signal Processing (ICSP 2010). IEEE, 2010. http://dx.doi.org/10.1109/icosp.2010.5656140.
Texte intégralCao, Weihua, Qiang Ling, Feng Li, Quan Zheng et Song Wang. « A keypoint-based fast object tracking algorithm ». Dans 2016 35th Chinese Control Conference (CCC). IEEE, 2016. http://dx.doi.org/10.1109/chicc.2016.7553993.
Texte intégralHsiao, Shan-Chien, et Ching-Te Chiu. « Efficient 2D Keypoint-based Hand Pose Estimation ». Dans 2021 International Conference on Computational Science and Computational Intelligence (CSCI). IEEE, 2021. http://dx.doi.org/10.1109/csci54926.2021.00315.
Texte intégral