Articles de revues sur le sujet « Keldysha »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Keldysha.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Keldysha ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Radovskaya, A. A., et A. G. Semenov. « Lokal'nyy kvench v tekhnike Keldysha ». Письма в Журнал экспериментальной и теоретической физики 118, no 11-12 (12) (15 décembre 2023) : 921–27. http://dx.doi.org/10.31857/s1234567823240096.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Popov, Vladimir S. « Tunnel and multiphoton ionization of atoms and ions in a strong laser field (Keldysh theory) ». Uspekhi Fizicheskih Nauk 174, no 9 (2004) : 921. http://dx.doi.org/10.3367/ufnr.0174.200409a.0921.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Capasso, Federico, Paul Corkum, Olga Kocharovskaya, Lev Pitaevskii et Michael V. Sadovskii. « Leonid Keldysh ». Physics Today 70, no 6 (juin 2017) : 75–76. http://dx.doi.org/10.1063/pt.3.3605.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Galiautdinov, Andrei. « Anisotropic Keldysh interaction ». Physics Letters A 383, no 25 (septembre 2019) : 3167–74. http://dx.doi.org/10.1016/j.physleta.2019.07.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Polilova, Tatyana Alekseevna. « Keldysh Institute Preprints in the diagrams of the Science Space system ». Keldysh Institute Preprints, no 27 (2022) : 1–38. http://dx.doi.org/10.20948/prepr-2022-27.

Texte intégral
Résumé :
The bibliometric and statistical indicators of the scientific journal "Keldysh Institute Preprints" are considered. The functionality of the system named “Science Space” is demonstrated. The issues of correspondence of the thematic directions of the GRNTI rubricator used in the Science Space system and the thematic scientific directions fixed in the charter and in the electronic library of the Keldysh Insitute are discussed. The given bibliometric characteristics of the "Keldysh Institute Preprints" is forced to be more careful about the interpretation of scientometric indicators and the results of the ratings in the eLibrary.ru.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Andreev, Aleksandr F., N. G. Basov, Vitalii L. Ginzburg, Aleksandr V. Gurevich, Boris B. Kadomtsev, D. A. Kirzhnits, Yurii V. Kopaev et al. « Leonid Veniaminovich Keldysh (On his sixtieth birthday) ». Uspekhi Fizicheskih Nauk 161, no 4 (1991) : 179. http://dx.doi.org/10.3367/ufnr.0161.199104h.0179.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Volkov, Boris A., Aleksandr V. Gurevich, Vitalii L. Ginzburg, Yurii V. Kopaev, Oleg N. Krokhin, Vladimir I. Ritus, Viktor P. Silin, V. Ya Fainberg, Evgenii L. Feinberg et Dmitrii S. Chernavskii. « Leonid Veniaminovich Keldysh (on his seventieth birthday) ». Uspekhi Fizicheskih Nauk 171, no 4 (2001) : 435. http://dx.doi.org/10.3367/ufnr.0171.200104e.0435.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Bauer, Jarosław H. « Keldysh theory re-examined ». Journal of Physics B : Atomic, Molecular and Optical Physics 49, no 14 (15 juin 2016) : 145601. http://dx.doi.org/10.1088/0953-4075/49/14/145601.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Jauho, A. P., et K. Johnsen. « Dynamical Franz-Keldysh Effect ». Physical Review Letters 76, no 24 (10 juin 1996) : 4576–79. http://dx.doi.org/10.1103/physrevlett.76.4576.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Trunin, Dmitrii A. « Comments on the adiabatic theorem ». International Journal of Modern Physics A 33, no 24 (30 août 2018) : 1850140. http://dx.doi.org/10.1142/s0217751x18501403.

Texte intégral
Résumé :
We consider the simplest example of a nonstationary quantum system which is quantum mechanical oscillator with varying frequency and [Formula: see text] self-interaction. We calculate loop corrections to the Keldysh, retarded/advanced propagators and vertices using Schwinger–Keldysh diagrammatic technique and show that there is no physical secular growth of the loop corrections in the cases of constant and adiabatically varying frequency. This fact corresponds to the well-known adiabatic theorem in quantum mechanics. However, in the case of nonadiabatically varying frequency we obtain strong IR corrections to the Keldysh propagator which come from the “sunset” diagrams, grow with time indefinitely and indicate energy pumping into the system. It reveals itself via the change in time of the level population and of the anomalous quantum average.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Long, Zi Jian, et Wing-Ki Liu. « Keldysh theory of strong-field ionization ». Canadian Journal of Physics 88, no 4 (avril 2010) : 227–45. http://dx.doi.org/10.1139/p09-111.

Texte intégral
Résumé :
In this paper, we provide a detailed derivation of the strong-field ionization rates originally developed by Keldysh who introduced the strong-field approximation. Numerical results are presented to examine the saddle-point approximation, the low photoelectron energy approximation, and neglecting the interference terms, which are necessary to arrive at the simple quasistatic result, when the Keldysh parameter becomes very small.
Styles APA, Harvard, Vancouver, ISO, etc.
12

Andreev, Aleksandr F., Petr I. Arseev, Mikhail A. Vasiliev, Aleksandr V. Gurevich, Yurii V. Kopaev, Oleg N. Krokhin, Evgenii G. Maksimov et al. « Leonid Veniaminovich Keldysh (on his 80th birthday) ». Uspekhi Fizicheskih Nauk 181, no 4 (2011) : 455. http://dx.doi.org/10.3367/ufnr.0181.201104q.0455.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Zhang, Kangqun. « Applications of Erdélyi-Kober fractional integral for solving time-fractional Tricomi-Keldysh type equation ». Fractional Calculus and Applied Analysis 23, no 5 (1 octobre 2020) : 1381–400. http://dx.doi.org/10.1515/fca-2020-0068.

Texte intégral
Résumé :
Abstract In this paper we consider Cauchy problem of time-fractional Tricomi-Keldysh type equation. Based on the theory of a Erdélyi-Kober fractional integral operator, the formal solution of the inhomogeneous differential equation involving hyper-Bessel operator is presented with Mittag-Leffler function, then nonlinear equations are considered by applying Gronwall-type inequalities. At last, we establish the existence and uniqueness of L p -solution of time-fractional Tricomi-Keldysh type equation by use of Mikhlin multiplier theorem.
Styles APA, Harvard, Vancouver, ISO, etc.
14

CHEN BAO-ZHEN. « IMPROVED KELDYSH-FAISAL-REISS THEORY ». Acta Physica Sinica 42, no 2 (1993) : 237. http://dx.doi.org/10.7498/aps.42.237.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Guo, Y., et H. Überall. « Franz-Keldysh effect in superlattices ». Radiation Effects and Defects in Solids 122-123, no 2 (décembre 1991) : 653–63. http://dx.doi.org/10.1080/10420159108211497.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Milonni, P. W. « Shortcomings of the Keldysh approximation ». Physical Review A 38, no 5 (1 septembre 1988) : 2682–85. http://dx.doi.org/10.1103/physreva.38.2682.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Feigel’man, M. V., A. I. Larkin et M. A. Skvortsov. « Keldysh action for disordered superconductors ». Physical Review B 61, no 18 (1 mai 2000) : 12361–88. http://dx.doi.org/10.1103/physrevb.61.12361.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Nordstrom, K. B., K. Johnsen, S. J. Allen, A. P. Jauho, B. Birnir, J. Kono, T. Noda, H. Akiyama et H. Sakaki. « Excitonic Dynamical Franz-Keldysh Effect ». Physical Review Letters 81, no 2 (13 juillet 1998) : 457–60. http://dx.doi.org/10.1103/physrevlett.81.457.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Grishin, A. F., et I. V. Poedintseva. « Towards the Keldysh Tauberian Theorem ». Journal of Mathematical Sciences 134, no 4 (avril 2006) : 2272–87. http://dx.doi.org/10.1007/s10958-006-0102-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Bonitz, Michael, Antti‐Pekka Jauho, Michael Sadovskii et Sergei Tikhodeev. « In Memoriam Leonid V. Keldysh ». physica status solidi (b) 256, no 7 (19 mars 2019) : 1800600. http://dx.doi.org/10.1002/pssb.201800600.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Freimuth, Frank, Stefan Blügel et Yuriy Mokrousov. « Theory of unidirectional magnetoresistance and nonlinear Hall effect ». Journal of Physics : Condensed Matter 34, no 5 (10 novembre 2021) : 055301. http://dx.doi.org/10.1088/1361-648x/ac327f.

Texte intégral
Résumé :
Abstract We study the unidirectional magnetoresistance (UMR) and the nonlinear Hall effect (NLHE) in the ferromagnetic Rashba model. For this purpose we derive expressions to describe the response of the electric current quadratic in the applied electric field. We compare two different formalisms, namely the standard Keldysh nonequilibrium formalism and the Moyal–Keldysh formalism, to derive the nonlinear conductivities of UMR and NLHE. We find that both formalisms lead to identical numerical results when applied to the ferromagnetic Rashba model. The UMR and the NLHE nonlinear conductivities tend to be comparable in magnitude according to our calculations. Additionally, their dependencies on the Rashba parameter and on the quasiparticle broadening are similar. The nonlinear zero-frequency response considered here is several orders of magnitude higher than the one at optical frequencies that describes the photocurrent generation in the ferromagnetic Rashba model. Additionally, we compare our Keldysh nonequilibrium expression in the independent-particle approximation to literature expressions of the UMR that have been obtained within the constant relaxation time approximation of the Boltzmann formalism. We find that both formalisms converge to the same analytical formula in the limit of infinite relaxation time. However, remarkably, we find that the Boltzmann result does not correspond to the intraband term of the Keldysh expression. Instead, the Boltzmann result corresponds to the sum of the intraband term and an interband term that can be brought into the form of an effective intraband term due to the f-sum rule.
Styles APA, Harvard, Vancouver, ISO, etc.
22

Jaiani, G. « On a Generalization of the Keldysh Theorem ». gmj 2, no 3 (juin 1995) : 291–97. http://dx.doi.org/10.1515/gmj.1995.291.

Texte intégral
Résumé :
Abstract The Keldysh theorem for an elliptic equation with characteristic parabolic degeneration is generalized for the case of an elliptic equation of the second-order canonical form with order and type degeneration. The criteria under which the Dirichlet or Keldysh problems are correct are given in a one-sided neighborhood of the degeneration segment, enabling one to write the criteria in a single form. Moreover, some cases are pointed out in which it is even nessesary to give a criterion in the neighborhood because it is impossible to establish it on the segment of degeneracy of the equation.
Styles APA, Harvard, Vancouver, ISO, etc.
23

Alvestad, Daniel, Rasmus Larsen et Alexander Rothkopf. « Kernel controlled real-time Complex Langevin simulation ». EPJ Web of Conferences 274 (2022) : 08001. http://dx.doi.org/10.1051/epjconf/202227408001.

Texte intégral
Résumé :
This study explores the utility of a kernel in complex Langevin simulations of quantum real-time dynamics on the Schwinger-Keldysh contour. We give several examples where we use a systematic scheme to find kernels that restore correct convergence of complex Langevin. The schemes combine prior information we know about the system and the correctness of convergence of complex Langevin to construct a kernel. This allows us to simulate up to 2β on the real-time Schwinger-Keldysh contour with the 0 + 1 dimensional anharmonic oscillator using m = 1; λ = 24, which was previously unattainable using the complex Langevin equation.
Styles APA, Harvard, Vancouver, ISO, etc.
24

TANATAR, B., et V. MOLDOVEANU. « RPA APPROACH TO NON-LINEAR TRANSPORT IN QUANTUM DOTS ». International Journal of Modern Physics B 23, no 20n21 (20 août 2009) : 4414–21. http://dx.doi.org/10.1142/s0217979209063560.

Texte intégral
Résumé :
An accurate theoretical treatment of electron-electron interactions in mesoscopic systems is available in very few cases and approximation schemes are developed in most of the applications, especially for many-level quantum dots. Here we present transport calculations within the random-phase approximation for the Coulomb interaction using the Keldysh Green's functions formalism. We describe the quantum dot systems by a tight-binding Hamiltonian. Our method is similar to the one used by Faleev and Stockman [Phys. Rev. B 66 085318 (2002)] in their study of the equilibrium properties of a homogeneous 2D electron gas. The important extension at the formal level is that we combine the RPA and the Keldysh formalism for studying non-linear transport properties of open quantum dots. Within the Keldysh formalism the polarization operator becomes a contour-ordered quantity that should be computed either from the non-interacting Green functions of the coupled quantum dot (the so-called G0W approximation) either self-consistently (GW approximation). We performed both non-selfconsistent and self-consistent calculations and compare the results. In particular we recover the Coulomb diamonds for interacting quantum dots and we discuss the charge sensing effects in parallel quantum dots.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Yuan, Minghu, Dandan Wang, Junsheng Chen, Aiping Fu, Fenghui Tian et Tianshu Chu. « Influence of pulse duration on above-threshold ionization in intensive circularly polarized laser field ». Canadian Journal of Physics 93, no 1 (janvier 2015) : 93–99. http://dx.doi.org/10.1139/cjp-2014-0336.

Texte intégral
Résumé :
The above-threshold ionization (ATI) process of argon in intensive circularly polarized laser field has been investigated by solving the time-dependent Schrödinger equation in length gauge with emphasis on pulse duration effect. It is shown that the influence of pulse duration is obvious on the transition between multiple-photon and tunneling ionization regimes when the Keldysh parameter is no more than 3.25. That is, photoelectron ionization by shorter pulse occurs in the tunneling regime mainly, and yet the multiple-photon absorption appears more easily with longer pulse. However, such influence disappears when the Keldysh parameter is sufficiently large and the ATI always appears in the multiple-photon ionization regime.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Aptekarev, Alexandr, et Nadezhda Afendikova. « Unknown autographs of academician M.V. Keldysh ». Вестник Российской академии наук 88, no 12 (2018) : 1153–59. http://dx.doi.org/10.31857/s086958730003195-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Banerjee, C., I. V. Fialkovsky, M. Lewkowicz, C. X. Zhang et M. A. Zubkov. « Wigner-Weyl calculus in Keldysh technique ». Journal of Computational Electronics 20, no 6 (17 octobre 2021) : 2255–83. http://dx.doi.org/10.1007/s10825-021-01775-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Shen, H., et M. Dutta. « Franz–Keldysh oscillations in modulation spectroscopy ». Journal of Applied Physics 78, no 4 (15 août 1995) : 2151–76. http://dx.doi.org/10.1063/1.360131.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Bechler, S., M. Oehme, O. Latzel, M. Schmid, K. Kostecki, R. Koerner, M. Gollhofer, E. Kasper et J. Schulze. « Franz-Keldysh Effect in GeSn Detectors ». ECS Transactions 64, no 6 (12 août 2014) : 383–90. http://dx.doi.org/10.1149/06406.0383ecst.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Chen, Xingang, Yi Wang et Zhong-Zhi Xianyu. « Schwinger-Keldysh diagrammatics for primordial perturbations ». Journal of Cosmology and Astroparticle Physics 2017, no 12 (5 décembre 2017) : 006. http://dx.doi.org/10.1088/1475-7516/2017/12/006.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Zheltikov, Aleksei M. « Keldysh photoionization theory : through the barriers ». Uspekhi Fizicheskih Nauk 187, no 11 (août 2017) : 1169–204. http://dx.doi.org/10.3367/ufnr.2017.08.038198.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Cavallini, A., L. Polenta, M. Rossi, T. Stoica, R. Calarco, R. J. Meijers, T. Richter et H. Lüth. « Franz−Keldysh Effect in GaN Nanowires ». Nano Letters 7, no 7 (juillet 2007) : 2166–70. http://dx.doi.org/10.1021/nl070954o.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Ansari, M., et Y. V. Nazarov. « Keldysh formalism for multiple parallel worlds ». Journal of Experimental and Theoretical Physics 122, no 3 (mars 2016) : 389–401. http://dx.doi.org/10.1134/s1063776116030134.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Shen, H., et Fred H. Pollak. « Generalized Franz-Keldysh theory of electromodulation ». Physical Review B 42, no 11 (15 octobre 1990) : 7097–102. http://dx.doi.org/10.1103/physrevb.42.7097.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Citrin, D. S., et S. Hughes. « Circularly polarized dynamic Franz-Keldysh effect ». Physical Review B 60, no 19 (15 novembre 1999) : 13272–75. http://dx.doi.org/10.1103/physrevb.60.13272.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Rahmani, A., et M. A. Sadeghzadeh. « Polaritonic linear dynamics in Keldysh formalism ». Superlattices and Microstructures 100 (décembre 2016) : 842–56. http://dx.doi.org/10.1016/j.spmi.2016.10.058.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Dostanić, Milutin R. « The generalization of the Keldysh theorem ». Journal of Mathematical Analysis and Applications 162, no 1 (novembre 1991) : 7–12. http://dx.doi.org/10.1016/0022-247x(91)90175-y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Coriasso, C., D. Campi, C. Cacciatore, C. Alibert, S. Gaillard, B. Lambert et A. Regreny. « Observation of Superlattice Franz-Keldysh Oscillations ». Europhysics Letters (EPL) 16, no 6 (7 octobre 1991) : 591–96. http://dx.doi.org/10.1209/0295-5075/16/6/014.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Feigel’man, M. V., A. I. Larkin et M. A. Skvortsov. « Keldysh proximity action for disordered superconductors ». Pramana 64, no 6 (juin 2005) : 1039–49. http://dx.doi.org/10.1007/bf02704166.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Zheltikov, A. M. « Keldysh photoionization theory : through the barriers ». Physics-Uspekhi 60, no 11 (30 novembre 2017) : 1087–120. http://dx.doi.org/10.3367/ufne.2017.08.038198.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Aksent'eva, M. S., et V. A. Rubakov. « In memory of Leonid Veniaminovich Keldysh ». Physics-Uspekhi 60, no 11 (30 novembre 2017) : 1065–66. http://dx.doi.org/10.3367/ufne.2017.10.038223.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Ehlotzky, F. « Harmonic generation in keldysh-type models ». Il Nuovo Cimento D 14, no 5 (mai 1992) : 517–25. http://dx.doi.org/10.1007/bf02457041.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Nordstrom, K. B., K. Johnsen, S. J. Allen, A. P. Jauho, B. Birnir, J. Kono, T. Noda, H. Akiyama et H. Sakaki. « Observation of Dynamical Franz-Keldysh Effect ». physica status solidi (b) 204, no 1 (novembre 1997) : 52–54. http://dx.doi.org/10.1002/1521-3951(199711)204:1<52 ::aid-pssb52>3.0.co;2-n.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Hansen, Wolfhard. « On the identity of Keldych solutions ». Czechoslovak Mathematical Journal 35, no 4 (1985) : 632–38. http://dx.doi.org/10.21136/cmj.1985.102054.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Cherepanov, Dmitry A., Fedor E. Gostev, Ivan V. Shelaev, Nikolay N. Denisov et Victor A. Nadtochenko. « Monitoring the electric field in CdSe quantum dots under ultrafast interfacial electron transfer via coherent phonon dynamics ». Nanoscale 10, no 47 (2018) : 22409–19. http://dx.doi.org/10.1039/c8nr07644h.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Zhu, Lin, Ruimin Li et Kailun Yao. « Temperature-controlled colossal magnetoresistance and perfect spin Seebeck effect in hybrid graphene/boron nitride nanoribbons ». Physical Chemistry Chemical Physics 19, no 5 (2017) : 4085–92. http://dx.doi.org/10.1039/c6cp07179a.

Texte intégral
Résumé :
Thermal spin transport properties of graphene and hexagonal boron nitride nanoribbon heterojunctions have been investigated using density functional theory calculations combined with the Keldysh nonequilibrium Green's function approach.
Styles APA, Harvard, Vancouver, ISO, etc.
47

MISHIMA, K., M. HAYASHI et S. H. LIN. « QUANTUM INTERFERENCE AND LASER PULSE PHASE EFFECT ON THE PHOTOIONIZATION RATES OF EXCITED HYDROGEN ATOMS IN THE TUNNELING REGION ». Journal of Theoretical and Computational Chemistry 04, no 04 (décembre 2005) : 1153–63. http://dx.doi.org/10.1142/s0219633605001933.

Texte intégral
Résumé :
Using the generalized Keldysh theory, we investigate the quantum interference and the laser pulse phase effects by tunneling photoionization of an excited hydrogen atom. We assume that its initial state be a linear combination of 1s, 2s, 2p Stark-shifted atomic states. It is found that within the Keldysh approximation, quantum interference can take place among the 1s, 2s, and 2pz states, while this is not the case among 1s, 2s, 2pz and 2px, 2py, or 2px and 2py themselves. From the numerical calculations, we predict that the prominent destructive quantum interference takes place between 2s and 2pz atomic orbitals. In addition, we have found that in general, the laser pulse phase does not affect the individual photoionization rates while it does affect the quantum interference terms.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Huang, Ziwen, Yunwei Lu, Anna Grassellino, Alexander Romanenko, Jens Koch et Shaojiang Zhu. « Completely Positive Map for Noisy Driven Quantum Systems Derived by Keldysh Expansion ». Quantum 7 (3 novembre 2023) : 1158. http://dx.doi.org/10.22331/q-2023-11-03-1158.

Texte intégral
Résumé :
Accurate modeling of decoherence errors in quantum processors is crucial for analyzing and improving gate fidelities. To increase the accuracy beyond that of the Lindblad dynamical map, several generalizations have been proposed, and the exploration of simpler and more systematic frameworks is still ongoing. In this paper, we introduce a decoherence model based on the Keldysh formalism. This formalism allows us to include non-periodic drives and correlated quantum noise in our model. In addition to its wide range of applications, our method is also numerically simple, and yields a CPTP map. These features allow us to integrate the Keldysh map with quantum-optimal-control techniques. We demonstrate that this strategy generates pulses that mitigate correlated quantum noise in qubit state-transfer and gate operations.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Zou, Fei, Lin Zhu, Gaoying Gao, Menghao Wu et Kailun Yao. « Temperature-controlled spin filter and spin valve based on Fe-doped monolayer MoS2 ». Physical Chemistry Chemical Physics 18, no 8 (2016) : 6053–58. http://dx.doi.org/10.1039/c5cp05001d.

Texte intégral
Résumé :
The thermal transport properties of an iron-doped molybdenum disulfide system were explored theoretically using the density functional theory calculations combined with the Keldysh non-equilibrium Green's function approach.
Styles APA, Harvard, Vancouver, ISO, etc.
50

Kornilina, Marina Andreyevna. « Analysis of dissertation defenses in dissertation council 24.1.237.01 at Keldysh Institute of Applied Mathematics of Russian Academy of Sciences ». Keldysh Institute Preprints, no 14 (2024) : 1–22. http://dx.doi.org/10.20948/prepr-2024-14.

Texte intégral
Résumé :
Statistic data was collected and analyzed for dissertation defenses carried out in dissertation council 24.1.237.01 at Keldysh Institute of Applied Mathematics of Russian Academy of Sciences during 2010-2023.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie