Sommaire
Littérature scientifique sur le sujet « Kanizsa illusion »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Kanizsa illusion ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Kanizsa illusion"
ITOH, MAKOTO, et LEON O. CHUA. « IMITATION OF VISUAL ILLUSIONS VIA OPENCV AND CNN ». International Journal of Bifurcation and Chaos 18, no 12 (décembre 2008) : 3551–609. http://dx.doi.org/10.1142/s0218127408022573.
Texte intégralSakiyama, Tomoko, et Yukio-Pegio Gunji. « The Kanizsa triangle illusion in foraging ants ». Biosystems 142-143 (avril 2016) : 9–14. http://dx.doi.org/10.1016/j.biosystems.2016.02.003.
Texte intégralVandenbroucke, Annelinde R. E., Johannes J. Fahrenfort, Ilja G. Sligte et Victor A. F. Lamme. « Seeing without Knowing : Neural Signatures of Perceptual Inference in the Absence of Report ». Journal of Cognitive Neuroscience 26, no 5 (mai 2014) : 955–69. http://dx.doi.org/10.1162/jocn_a_00530.
Texte intégralWestheimer, Gerald, et Christian Wehrhahn. « Real and Virtual Borders in the Poggendorff Illusion ». Perception 26, no 12 (décembre 1997) : 1495–501. http://dx.doi.org/10.1068/p261495.
Texte intégralRon, Eldar, et Hedva Spitzer. « Is the Kanizsa illusion triggered by the simultaneous contrast mechanism ? » Journal of the Optical Society of America A 28, no 12 (23 novembre 2011) : 2629. http://dx.doi.org/10.1364/josaa.28.002629.
Texte intégralMitsudo, Hiroyuki, et Sachio Nakamizo. « Evidence for the Correcting-Mechanism Explanation of the Kanizsa Amodal Shrinkage ». Perception 34, no 3 (mars 2005) : 289–303. http://dx.doi.org/10.1068/p5178.
Texte intégralSpillmann, Lothar, et Birgitta Dresp. « Phenomena of Illusory Form : Can We Bridge the Gap between Levels of Explanation ? » Perception 24, no 11 (novembre 1995) : 1333–64. http://dx.doi.org/10.1068/p241333.
Texte intégralWYZISK, KATJA, et CHRISTA NEUMEYER. « Perception of illusory surfaces and contours in goldfish ». Visual Neuroscience 24, no 3 (mai 2007) : 291–98. http://dx.doi.org/10.1017/s095252380707023x.
Texte intégralWestheimer, Gerald, et Wu Li. « Classifying Illusory Contours : Edges Defined by “Pacman” and Monocular Tokens ». Journal of Neurophysiology 77, no 2 (1 février 1997) : 731–36. http://dx.doi.org/10.1152/jn.1997.77.2.731.
Texte intégralLehar, Steven. « Directional Harmonic Theory : A Computational Gestalt Model to Account for Illusory Contour and Vertex Formation ». Perception 32, no 4 (avril 2003) : 423–48. http://dx.doi.org/10.1068/p5011.
Texte intégralThèses sur le sujet "Kanizsa illusion"
OHYA, Kazuo. « Measurement of the Kanizsa Illusion Using Stereopsis ». School of Letters, Nagoya University, 2009. http://hdl.handle.net/2237/12956.
Texte intégralADRIANO, ANDREA. « Visual Illusions and Fourier analysis as psychophysical tools to support the existence of the Number Sense ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2022. http://hdl.handle.net/10281/379213.
Texte intégralThe natural environment in which animals are forced to survive shapes their brain and the way in which they behave to adapt and overcome natural pressures. These selective pressures may have determined the emergence of an evolutionary ancient neural system suited to rapidly extract abstract information from collections, such as their numerosity, to take informed decisions pivotal for survivance and adaptation. The “Number Sense” theory represents the most influential neural model accounting for neuropsychological and psychophysical evidence in humans and animals. However, this model is still largely debated because of the methodological difficulties in isolating neural signals related to “discrete” (i.e., the real number of objects in a collection) abstract numerosity processing from those related to other features correlated or confounded with numerosity in the raw sensory input (e.g., visual area, density, spatial frequency, etc). The present thesis aimed to investigate which mechanisms might be at the basis of visual numerosity representations, overcoming the difficulties in isolating discrete from continuous features. After reviewing the main theoretical models and findings from the literature (Chapter 1 and 2), in the Chapter 3 we presented a psychophysical paradigm in which Kanizsa-like illusory contours (ICs) lines were used to manipulate the connectedness (e.g., grouping strength) of the items in the set, controlling all the continuous features across connectedness levels. We showed that numerosity was underestimated when connections increased, suggesting that numerosity relies on segmented perceptual objects rather than on raw low-level features. In Chapter 4, we controlled for illusory brightness confounds accompanying ICs. Exploiting perceptual properties of the reverse-contrast Kanizsa illusion, we found that underestimation was insensitive to inducer contrast direction, suggesting that the effect was specifically induced by a sign invariant boundary grouping and not due to perceived brightness confounds. In Chapter 5, we concurrently manipulated grouping with ICs lines and the perceived size of the collections using classic size illusions (Ponzo Illusion). By using a combination of visual illusions, we showed that numerosity perception is not based on perceived continuous cues, despite continuous cue might affect numerical perception. In Chapter 6 we tackled the issue with a direct physical approach: using Fourier analysis to equalize spatial frequency (SF) in the stimuli, we showed that stimulus energy is not involved in numerosity representation. Rather segmentation of the items and perceptual organization explained our main findings. In Chapter 7 we also showed that the ratio effect, an important hallmark of Weber-like encoding of numerical perception, is not primarily explained by stimulus energy or SF. Finally, in Chapter 8, we also provided the first empirical evidence that non-symbolic numerosity are represented spatially regardless of the physical SF content of the stimuli. Overall, this thesis strongly supports the view that numerosity processing is not merely based on low-level features, and rather strongly suggests that discrete information is at the core of the Number Sense.
Li, Xingshan. « Perception of Kanizsa subjective contour requires attention ». 2005. https://scholarworks.umass.edu/theses/2435.
Texte intégralChapitres de livres sur le sujet "Kanizsa illusion"
Sakiyama, Tomoko, Aisato Sasaki et Yukio-Pegio Gunji. « Origin of Kanizsa Triangle Illusion ». Dans Advances in Intelligent Systems and Computing, 95–103. Cham : Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-05533-6_10.
Texte intégralBertamini, Marco. « Kanizsa Square ». Dans Programming Visual Illusions for Everyone, 49–62. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-64066-2_4.
Texte intégralGrossberg, Stephen. « Overview ». Dans Conscious Mind, Resonant Brain, 1–49. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780190070557.003.0001.
Texte intégralGrossberg, Stephen. « How a Brain Sees : Constructing Reality ». Dans Conscious Mind, Resonant Brain, 86–121. Oxford University Press, 2021. http://dx.doi.org/10.1093/oso/9780190070557.003.0003.
Texte intégral