Littérature scientifique sur le sujet « JPEG blockiness »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « JPEG blockiness ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "JPEG blockiness"

1

Meesters, Lydia, et Jean-Bernard Martens. « A single-ended blockiness measure for JPEG-coded images ». Signal Processing 82, no 3 (mars 2002) : 369–87. http://dx.doi.org/10.1016/s0165-1684(01)00177-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Tang, Chaoying, et Biao Wang. « A No-Reference Adaptive Blockiness Measure for JPEG Compressed Images ». PLOS ONE 11, no 11 (10 novembre 2016) : e0165664. http://dx.doi.org/10.1371/journal.pone.0165664.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Zhan, Yibing, et Rong Zhang. « No-Reference JPEG Image Quality Assessment Based on Blockiness and Luminance Change ». IEEE Signal Processing Letters 24, no 6 (juin 2017) : 760–64. http://dx.doi.org/10.1109/lsp.2017.2688371.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

SALLEE, PHIL. « MODEL-BASED METHODS FOR STEGANOGRAPHY AND STEGANALYSIS ». International Journal of Image and Graphics 05, no 01 (janvier 2005) : 167–89. http://dx.doi.org/10.1142/s0219467805001719.

Texte intégral
Résumé :
This paper presents methods for performing steganography and steganalysis using a statistical model of the cover medium. The methodology is general, and can be applied to virtually any type of media. It provides answers for some fundamental questions that have not been fully addressed by previous steganographic methods, such as how large a message can be hidden without risking detection by certain statistical methods, and how to achieve this maximum capacity. Current steganographic methods have been shown to be insecure against simple statistical attacks. Using the model-based methodology, an example steganography method is proposed for JPEG images that achieves a higher embedding efficiency and message capacity than previous methods while remaining secure against first order statistical attacks. A method is also described for defending against "blockiness" steganalysis attacks. Finally, a model-based steganalysis method is presented for estimating the length of messages hidden with Jsteg in JPEG images.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Tanaka, Shigehiko, Takayuki Fujiwara, Manabu Hashimoto, Takuma Funahashi et Hiroyasu Koshimizu. « Evaluation of JPEG Blockiness by the Fast Analysis of Information on Local Image Frequency ». IEEJ Transactions on Industry Applications 131, no 4 (2011) : 600–607. http://dx.doi.org/10.1541/ieejias.131.600.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Sazzad, Z. M. Parvez, Roushain Akhter, J. Baltes et Y. Horita. « Objective No-Reference Stereoscopic Image Quality Prediction Based on 2D Image Features and Relative Disparity ». Advances in Multimedia 2012 (2012) : 1–16. http://dx.doi.org/10.1155/2012/256130.

Texte intégral
Résumé :
Stereoscopic images are widely used to enhance the viewing experience of three-dimensional (3D) imaging and communication system. In this paper, we propose an image feature and disparity dependent quality evaluation metric, which incorporates human visible system characteristics. We believe perceived distortions and disparity of any stereoscopic image are strongly dependent on local features, such as edge (i.e., nonplane areas of an image) and nonedge (i.e., plane areas of an image) areas within the image. Therefore, a no-reference perceptual quality assessment method is developed for JPEG coded stereoscopic images based on segmented local features of distortions and disparity. Local feature information such as edge and non-edge area based relative disparity estimation, as well as the blockiness and the edge distortion within the block of images are evaluated in this method. Subjective stereo image database is used for evaluation of the metric. The subjective experiment results indicate that our metric has sufficient prediction performance.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "JPEG blockiness"

1

CORCHS, SILVIA ELENA. « Image quality assessment for Digital documents ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2014. http://hdl.handle.net/10281/50461.

Texte intégral
Résumé :
This thesis focuses on No Reference (NR) methods for Image Quality Assessment (IQA). A review of the IQA field is presented in Chapter 2; where the different IQA methods are described and classified. In particular, the application of IQA methods within a workflow chain is discussed. In Chapter 3 we focus on NR metrics for JPEG-blockiness and noise artifacts. It is in general assumed that subjective methods produce an actual estimate of the perceived quality while objective methods produce values that should be correlated with human perceptions as best as possible. From the analysis of the regression curves that correlate objective and subjective data we have found that in some cases the metric's predictions are not in correspondence with the subjective scores. After reviewing the available databases, we realize that the distortion ranges considered are not in general representative of real case applications. Therefore, in Chapter 4 the Imaging and Vision Lab (IVL) database is introduced. It was generated with the aim of assessing the quality of images corrupted by JPEG and noise. In Chapter 5 we approach the NR-IQA field by focusing on a classification problem. A framework based on machine learning classification is proposed that let us evaluate how images can be classified within different groups or classes, according to their quality. NR metrics are considered as features and the assigned classes are obtained from the psychovisual data. For the JPEG distortion case, the feature space of the classifiers is built using each NR metric as single feature and also a pool of eleven NR metrics. Classification within five and three classes was addressed. In the former case, the five classes are in correspondence to the five categories recommended by the ITU (excellent, good, fair, poor, and bad) when designing image quality experiments. In the latter case we were interested in classifying images as high, medium or low quality ones. The classifiers are trained and tested on different databases. The classifier obtained using the pool of metrics outperforms each single metric classifier. Better performance is obtained in the case of three classes. Considering an image as the combining of two signals, content and distortion, we note that the crosstalk between both signals influences both subjective and objective quality assessment. We address this problem in Chapter 6 where our working hypothesis is that regression can be improved if performed within a group of images that present similar contents in terms of low level features. The criteria chosen to divide the images in different groups is the image complexity. The proposed strategy consists on two steps: the images (of a given database) are first classified in three groups of low, medium and high complexity. In a second step, regression is performed within each of these groups separately. The strategy is tested for different NR metrics for JPEG-blockiness and noise artifacts, different databases are considered. Correlation coefficients are computed and statistical significance tests are applied. The gain in performance depends on the metric and distortion considered. Summarizing, the two main proposals of this research work, i.e. the classification approach that combines several NR metrics and the grouping strategy, are able to outperform the correlation between subjective and objective data for the case of JPEG-blockiness. Both strategies can be extended to consider other type of distortions.
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "JPEG blockiness"

1

Wang, Wei, Yuanlin Zheng, Kaiyang Liao, Li Liu et Zhisen Tang. « A Novel Blind JPEG Image Quality Assessment Based on Blockiness and the Low Frequency Feature in DCT Domain ». Dans Lecture Notes in Electrical Engineering, 169–74. Singapore : Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-7629-9_21.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "JPEG blockiness"

1

Meesters, Lydia, et Jean-Bernard Martens. « Blockiness in JPEG-coded images ». Dans Electronic Imaging '99, sous la direction de Bernice E. Rogowitz et Thrasyvoulos N. Pappas. SPIE, 1999. http://dx.doi.org/10.1117/12.348446.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie