Articles de revues sur le sujet « Jacobi manifolds »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Jacobi manifolds.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Jacobi manifolds ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

GATSE, Servais Cyr. « Jacobi Manifolds, Contact Manifolds and Contactomorphism ». Journal of Mathematics Research 13, no 4 (29 juillet 2021) : 85. http://dx.doi.org/10.5539/jmr.v13n4p85.

Texte intégral
Résumé :
Let M be a smooth manifold and let D(M) be the module of first order differential operators on M. In this work, we give a link between Jacobi manifolds and Contact manifolds. We also generalize the notion of contactomorphism on M and thus, we characterize the Contact diffeomorphisms.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Chen, Bang-Yen, Sharief Deshmukh et Amira A. Ishan. « On Jacobi-Type Vector Fields on Riemannian Manifolds ». Mathematics 7, no 12 (21 novembre 2019) : 1139. http://dx.doi.org/10.3390/math7121139.

Texte intégral
Résumé :
In this article, we study Jacobi-type vector fields on Riemannian manifolds. A Killing vector field is a Jacobi-type vector field while the converse is not true, leading to a natural question of finding conditions under which a Jacobi-type vector field is Killing. In this article, we first prove that every Jacobi-type vector field on a compact Riemannian manifold is Killing. Then, we find several necessary and sufficient conditions for a Jacobi-type vector field to be a Killing vector field on non-compact Riemannian manifolds. Further, we derive some characterizations of Euclidean spaces in terms of Jacobi-type vector fields. Finally, we provide examples of Jacobi-type vector fields on non-compact Riemannian manifolds, which are non-Killing.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Okassa, Eugène. « Symplectic Lie–Rinehart–Jacobi Algebras and Contact Manifolds ». Canadian Mathematical Bulletin 54, no 4 (1 décembre 2011) : 716–25. http://dx.doi.org/10.4153/cmb-2011-033-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Blažić, Novica, Neda Bokan et Zoran Rakić. « Osserman pseudo-Riemannian manifolds of signature (2,2) ». Journal of the Australian Mathematical Society 71, no 3 (décembre 2001) : 367–96. http://dx.doi.org/10.1017/s1446788700003001.

Texte intégral
Résumé :
AbstractA pseudo-Riemannian manifold is said to be timelike (spacelike) Osserman if the Jordan form of the Jacobi operator Kx is independent of the particular unit timelike (spacelike) tangent vector X. The first main result is that timelike (spacelike) Osserman manifold (M, g) of signature (2, 2) with the diagonalizable Jacobi operator is either locally rank-one symmetric or flat. In the nondiagonalizable case the characteristic polynomial of Kx has to have a triple zero, which is the other main result. An important step in the proof is based on Walker's study of pseudo-Riemannian manifolds admitting parallel totally isotropic distributions. Also some interesting additional geometric properties of Osserman type manifolds are established. For the nondiagonalizable Jacobi operators some of the examples show a nature of the Osserman condition for Riemannian manifolds different from that of pseudo-Riemannian manifolds.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Vitagliano, Luca, et Aïssa Wade. « Holomorphic Jacobi manifolds ». International Journal of Mathematics 31, no 03 (14 février 2020) : 2050024. http://dx.doi.org/10.1142/s0129167x2050024x.

Texte intégral
Résumé :
In this paper, we develop holomorphic Jacobi structures. Holomorphic Jacobi manifolds are in one-to-one correspondence with certain homogeneous holomorphic Poisson manifolds. Furthermore, holomorphic Poisson manifolds can be looked at as special cases of holomorphic Jacobi manifolds. We show that holomorphic Jacobi structures yield a much richer framework than that of holomorphic Poisson structures. We also discuss the relationship between holomorphic Jacobi structures, generalized contact bundles and Jacobi–Nijenhuis structures.
Styles APA, Harvard, Vancouver, ISO, etc.
6

Haji-Badali, Ali, et Amirhesam Zaeim. « Commutative curvature operators over four-dimensional homogeneous manifolds ». International Journal of Geometric Methods in Modern Physics 12, no 10 (25 octobre 2015) : 1550123. http://dx.doi.org/10.1142/s0219887815501236.

Texte intégral
Résumé :
Four-dimensional pseudo-Riemannian homogeneous spaces whose isotropy is non-trivial with commuting curvature operators have been studied. The only example of homogeneous Einstein four-manifold which is curvature-Ricci commuting but not semi-symmetric has been presented. Non-trivial examples of semi-symmetric homogeneous four-manifolds which are not locally symmetric, also Jacobi–Jacobi commuting manifolds which are not flat have been presented.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Bascone, Francesco, Franco Pezzella et Patrizia Vitale. « Topological and Dynamical Aspects of Jacobi Sigma Models ». Symmetry 13, no 7 (5 juillet 2021) : 1205. http://dx.doi.org/10.3390/sym13071205.

Texte intégral
Résumé :
The geometric properties of sigma models with target space a Jacobi manifold are investigated. In their basic formulation, these are topological field theories—recently introduced by the authors—which share and generalise relevant features of Poisson sigma models, such as gauge invariance under diffeomorphisms and finite dimension of the reduced phase space. After reviewing the main novelties and peculiarities of these models, we perform a detailed analysis of constraints and ensuing gauge symmetries in the Hamiltonian approach. Contact manifolds as well as locally conformal symplectic manifolds are discussed, as main instances of Jacobi manifolds.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Ibáñez, Raul, Manuel de León, Juan C. Marrero et Edith Padrón. « Nambu-Jacobi and generalized Jacobi manifolds ». Journal of Physics A : Mathematical and General 31, no 4 (30 janvier 1998) : 1267–86. http://dx.doi.org/10.1088/0305-4470/31/4/015.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Gilkey, Peter, et Veselin Videv. « Jacobi–Jacobi Commuting Models and Manifolds ». Journal of Geometry 92, no 1-2 (24 janvier 2009) : 60–68. http://dx.doi.org/10.1007/s00022-008-2061-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Cariñena, J. F., X. Gràcia, G. Marmo, E. Martínez, M. C. Muñoz-Lecanda et N. Román-Roy. « Structural aspects of Hamilton–Jacobi theory ». International Journal of Geometric Methods in Modern Physics 13, no 02 (26 janvier 2016) : 1650017. http://dx.doi.org/10.1142/s0219887816500171.

Texte intégral
Résumé :
In our previous papers [J. F. Cariñena, X. Gràcia, G. Marmo, E. Martínez, M. C. Muñoz-Lecanda and N. Román-Roy, Geometric Hamilton–Jacobi theory, Int. J. Geom. Meth. Mod. Phys. 3 (2006) 1417–1458; Geometric Hamilton–Jacobi theory for nonholonomic dynamical systems, Int. J. Geom. Meth. Mod. Phys. 7 (2010) 431–454] we showed that the Hamilton–Jacobi problem can be regarded as a way to describe a given dynamics on a phase space manifold in terms of a family of dynamics on a lower-dimensional manifold. We also showed how constants of the motion help to solve the Hamilton–Jacobi equation. Here we want to delve into this interpretation by considering the most general case: a dynamical system on a manifold that is described in terms of a family of dynamics (slicing vector fields) on lower-dimensional manifolds. We identify the relevant geometric structures that lead from this decomposition of the dynamics to the classical Hamilton–Jacobi theory, by considering special cases like fibered manifolds and Hamiltonian dynamics, in the symplectic framework and the Poisson one. We also show how a set of functions on a tangent bundle can determine a second-order dynamics for which they are constants of the motion.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Marrero, Juan C., Juan Monterde et Edith Padron. « Jacobi—Nijenhuis manifolds and compatible Jacobi structures ». Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 329, no 9 (janvier 1999) : 797–802. http://dx.doi.org/10.1016/s0764-4442(99)90010-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

VAISMAN, IZU. « COUPLING POISSON AND JACOBI STRUCTURES ON FOLIATED MANIFOLDS ». International Journal of Geometric Methods in Modern Physics 01, no 05 (octobre 2004) : 607–37. http://dx.doi.org/10.1142/s0219887804000307.

Texte intégral
Résumé :
Let M be a differentiable manifold endowed with a foliation ℱ. A Poisson structure P on M is ℱ-coupling if ♯P(ann(Tℱ)) is a normal bundle of the foliation. This notion extends Sternberg's coupling symplectic form of a particle in a Yang–Mills field [11]. In the present paper we extend Vorobiev's theory of coupling Poisson structures [16] from fiber bundles to foliated manifolds and give simpler proofs of Vorobiev's existence and equivalence theorems of coupling Poisson structures on duals of kernels of transitive Lie algebroids over symplectic manifolds. We then discuss the extension of the coupling condition to Jacobi structures on foliated manifolds.
Styles APA, Harvard, Vancouver, ISO, etc.
13

Ibort, A., M. de León et G. Marmo. « Reduction of Jacobi manifolds ». Journal of Physics A : Mathematical and General 30, no 8 (21 avril 1997) : 2783–98. http://dx.doi.org/10.1088/0305-4470/30/8/022.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

OKASSA, EUGÈNE. « ON LIE–RINEHART–JACOBI ALGEBRAS ». Journal of Algebra and Its Applications 07, no 06 (décembre 2008) : 749–72. http://dx.doi.org/10.1142/s0219498808003107.

Texte intégral
Résumé :
We show that Jacobi algebras (Poisson algebras respectively) can be defined only as Lie–Rinehart–Jacobi algebras (as Lie–Rinehart–Poisson algebras respectively). Also we show that contact manifolds, locally conformal symplectic manifolds (symplectic manifolds respectively) can be defined only as symplectic Lie–Rinehart–Jacobi algebras (only as symplectic Lie–Rinehart–Poisson algebras respectively). We define symplectic Lie algebroids.
Styles APA, Harvard, Vancouver, ISO, etc.
15

GILKEY, P., et S. NIKČEVIĆ. « PSEUDO-RIEMANNIAN JACOBI–VIDEV MANIFOLDS ». International Journal of Geometric Methods in Modern Physics 04, no 05 (août 2007) : 727–38. http://dx.doi.org/10.1142/s0219887807002272.

Texte intégral
Résumé :
We exhibit several families of Jacobi–Videv pseudo-Riemannian manifolds which are not Einstein. We also exhibit Jacobi–Videv algebraic curvature tensors where the Ricci operator defines an almost complex structure.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Costa, J. M. Nunes da, et F. Petalidou. « Twisted Jacobi manifolds, twisted Dirac–Jacobi structures and quasi-Jacobi bialgebroids ». Journal of Physics A : Mathematical and General 39, no 33 (2 août 2006) : 10449–75. http://dx.doi.org/10.1088/0305-4470/39/33/014.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Cioroianu, Eugen-Mihaita, et Cornelia Vizman. « Jacobi structures with background ». International Journal of Geometric Methods in Modern Physics 17, no 04 (mars 2020) : 2050063. http://dx.doi.org/10.1142/s0219887820500632.

Texte intégral
Résumé :
Combining the twisted Jacobi structure [Twisted Jacobi manifolds, twisted Dirac–Jacobi structures and quasi-Jacobi bialgebroids, J. Phys. A: Math. Gen. 39(33) (2006) 10449–10475] with that of a Poisson structure with a 3-form background [Poisson geometry with a 3-form background, Prog. Theor. Phys. Suppl. 144 (2001) 145–154], alias twisted Poisson, we propose and analyze a new structure, called Jacobi structure with background. The background is a pair consisting of a [Formula: see text]-form and a [Formula: see text]-form. We describe their characteristic leaves. For twisted contact dual pairs, we show the correspondence of characteristic leaves of the two Jacobi manifolds with background.
Styles APA, Harvard, Vancouver, ISO, etc.
18

Munteanu, Marian Ioan, et Ana Irina Nistor. « Magnetic Jacobi Fields in 3-Dimensional Cosymplectic Manifolds ». Mathematics 9, no 24 (13 décembre 2021) : 3220. http://dx.doi.org/10.3390/math9243220.

Texte intégral
Résumé :
We classify the magnetic Jacobi fields in cosymplectic manifolds of dimension 3, enriching the results in the study of magnetic Jacobi fields derived from uniform magnetic fields. In particular, we give examples of Jacobi magnetic fields in the Euclidean space E3 and we conclude with the description of magnetic Jacobi fields in the product spaces S2×R and H2×R.
Styles APA, Harvard, Vancouver, ISO, etc.
19

Schmidt, Benjamin, Krishnan Shankar et Ralf Spatzier. « Almost isotropic Kähler manifolds ». Journal für die reine und angewandte Mathematik (Crelles Journal) 2020, no 767 (1 octobre 2020) : 1–16. http://dx.doi.org/10.1515/crelle-2019-0030.

Texte intégral
Résumé :
AbstractLet M be a complete Riemannian manifold and suppose {p\in M}. For each unit vector {v\in T_{p}M}, the Jacobi operator, {\mathcal{J}_{v}:v^{\perp}\rightarrow v^{\perp}} is the symmetric endomorphism, {\mathcal{J}_{v}(w)=R(w,v)v}. Then p is an isotropic point if there exists a constant {\kappa_{p}\in{\mathbb{R}}} such that {\mathcal{J}_{v}=\kappa_{p}\operatorname{Id}_{v^{\perp}}} for each unit vector {v\in T_{p}M}. If all points are isotropic, then M is said to be isotropic; it is a classical result of Schur that isotropic manifolds of dimension at least 3 have constant sectional curvatures. In this paper we consider almost isotropic manifolds, i.e. manifolds having the property that for each {p\in M}, there exists a constant {\kappa_{p}\in\mathbb{R}} such that the Jacobi operators {\mathcal{J}_{v}} satisfy {\operatorname{rank}({\mathcal{J}_{v}-\kappa_{p}\operatorname{Id}_{v^{\perp}}}% )\leq 1} for each unit vector {v\in T_{p}M}. Our main theorem classifies the almost isotropic simply connected Kähler manifolds, proving that those of dimension {d=2n\geqslant 4} are either isometric to complex projective space or complex hyperbolic space or are totally geodesically foliated by leaves isometric to {{\mathbb{C}}^{n-1}}.
Styles APA, Harvard, Vancouver, ISO, etc.
20

Nunes da Costa, J. M., et Fani Petalidou. « Reduction of Jacobi–Nijenhuis manifolds ». Journal of Geometry and Physics 41, no 3 (mars 2002) : 181–95. http://dx.doi.org/10.1016/s0393-0440(01)00054-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Pirhadi, Vahid, et Asadollah Razavi. « Integrability of Transitive Jacobi Manifolds ». Iranian Journal of Science and Technology, Transactions A : Science 43, no 4 (13 août 2018) : 1657–64. http://dx.doi.org/10.1007/s40995-018-0609-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Beltran, J. V. « Star calculus on Jacobi manifolds ». Differential Geometry and its Applications 16, no 2 (mars 2002) : 181–98. http://dx.doi.org/10.1016/s0926-2245(02)00059-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Brozos-Vázquez, Miguel, et Peter Gilkey. « Manifolds with commuting Jacobi operators ». Journal of Geometry 86, no 1-2 (avril 2007) : 21–30. http://dx.doi.org/10.1007/s00022-006-1898-z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Kal'nitskii, V. S. « Jacobi Algebras on Flat Manifolds ». Journal of Mathematical Sciences 131, no 1 (novembre 2005) : 5345–50. http://dx.doi.org/10.1007/s10958-005-0406-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Yoldas, Halil. « Some Results on Cosymplectic Manifolds Admitting Certain Vector Fields ». Journal of Geometry and Symmetry in Physics 60 (2021) : 83–94. http://dx.doi.org/10.7546/jgsp-60-2021-83-94.

Texte intégral
Résumé :
The purpose of present paper is to study cosymplectic manifolds admitting certain special vector fields such as holomorphically planar conformal (in short HPC) vector field. First, we prove that an HPC vector field on a cosymplectic manifold is also a Jacobi-type vector field. Then, we obtain the necessary conditions for such a vector field to be Killing. Finally, we give an important characterization for a torse-forming vector field on such a manifold given as to be recurrent.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Fitzpatrick, Sean. « On the Geometry of Almost -Manifolds ». ISRN Geometry 2011 (13 décembre 2011) : 1–12. http://dx.doi.org/10.5402/2011/879042.

Texte intégral
Résumé :
An -structure on a manifold is an endomorphism field satisfying . We call an f-structure regular if the distribution is involutive and regular, in the sense of Palais. We show that when a regular f-structure on a compact manifold M is an almost -structure, it determines a torus fibration of M over a symplectic manifold. When rank , this result reduces to the Boothby-Wang theorem. Unlike similar results for manifolds with -structure or -structure, we do not assume that the f-structure is normal. We also show that given an almost -structure, we obtain an associated Jacobi structure, as well as a notion of symplectization.
Styles APA, Harvard, Vancouver, ISO, etc.
27

BLAŽIĆ, N., et P. GILKEY. « CONFORMALLY OSSERMAN MANIFOLDS AND CONFORMALLY COMPLEX SPACE FORMS ». International Journal of Geometric Methods in Modern Physics 01, no 01n02 (avril 2004) : 97–106. http://dx.doi.org/10.1142/s021988780400006x.

Texte intégral
Résumé :
We characterize manifolds which are locally conformally equivalent to either complex projective space or to its negative curvature dual in terms of their Weyl curvature tensor. As a byproduct of this investigation, we classify the conformally complex space forms if the dimension is at least 8. We also study when the Jacobi operator associated to the Weyl conformal curvature tensor of a Riemannian manifold has constant eigenvalues on the bundle of unit tangent vectors and classify such manifolds which are not conformally flat in dimensions congruent to 2 mod 4.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Petalidou, Fani, et J. M. Nunes da Costa. « Local structure of Jacobi–Nijenhuis manifolds ». Journal of Geometry and Physics 45, no 3-4 (mars 2003) : 323–67. http://dx.doi.org/10.1016/s0393-0440(01)00074-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Chinea, Domingo, Juan C. Marrero et Manuel de León. « Prequantizable Poisson manifolds and Jacobi structures ». Journal of Physics A : Mathematical and General 29, no 19 (7 octobre 1996) : 6313–24. http://dx.doi.org/10.1088/0305-4470/29/19/016.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Costa, J. M. Nunes da. « Compatible Jacobi manifolds : geometry and reduction ». Journal of Physics A : Mathematical and General 31, no 3 (23 janvier 1998) : 1025–33. http://dx.doi.org/10.1088/0305-4470/31/3/013.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Obukhov, Valeriy V. « Algebra of the Symmetry Operators of the Klein–Gordon–Fock Equation for the Case When Groups of Motions G3 Act Transitively on Null Subsurfaces of Spacetime ». Symmetry 14, no 2 (9 février 2022) : 346. http://dx.doi.org/10.3390/sym14020346.

Texte intégral
Résumé :
The algebras of the symmetry operators for the Hamilton–Jacobi and Klein–Gordon–Fock equations are found for a charged test particle, moving in an external electromagnetic field in a spacetime manifold on the isotropic (null) hypersurface, of which a three-parameter groups of motions acts transitively. We have found all admissible electromagnetic fields for which such algebras exist. We have proved that an admissible field does not deform the algebra of symmetry operators for the free Hamilton–Jacobi and Klein–Gordon–Fock equations. The results complete the classification of admissible electromagnetic fields, in which the Hamilton–Jacobi and Klein–Gordon–Fock equations admit algebras of motion integrals that are isomorphic to the algebras of operators of the r-parametric groups of motions of spacetime manifolds if (r≤4).
Styles APA, Harvard, Vancouver, ISO, etc.
32

Cho, Jong Taek, et Makoto Kimura. « Transversal Jacobi Operators in Almost Contact Manifolds ». Mathematics 9, no 1 (24 décembre 2020) : 31. http://dx.doi.org/10.3390/math9010031.

Texte intégral
Résumé :
Along a transversal geodesic γ whose tangent belongs to the contact distribution D, we define the transversal Jacobi operator Rγ=R(·,γ˙)γ˙ on an almost contact Riemannian manifold M. Then, using the transversal Jacobi operator Rγ, we give a new characterization of the Sasakian sphere. In the second part, we characterize the complete ruled real hypersurfaces in complex hyperbolic space.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Bruce, Andrew James. « Odd Jacobi Manifolds and Loday-Poisson Brackets ». Journal of Mathematics 2014 (2014) : 1–10. http://dx.doi.org/10.1155/2014/630749.

Texte intégral
Résumé :
We construct a nonskew symmetric version of a Poisson bracket on the algebra of smooth functions on an odd Jacobi supermanifold. We refer to such Poisson-like brackets as Loday-Poisson brackets. We examine the relations between the Hamiltonian vector fields with respect to both the odd Jacobi structure and the Loday-Poisson structure. Furthermore, we show that the Loday-Poisson bracket satisfies the Leibniz rule over the noncommutative product derived from the homological vector field.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Wang, Wenjie, et Xinxin Dai. « Pseudo-Parallel Characteristic Jacobi Operators on Contact Metric 3 Manifolds ». Journal of Mathematics 2021 (21 juillet 2021) : 1–6. http://dx.doi.org/10.1155/2021/6148940.

Texte intégral
Résumé :
We prove that the characteristic Jacobi operator on a contact metric three manifold is semiparallel if and only if it vanishes. We determine Lie groups of dimension three admitting left invariant contact metric structures such that the characteristic Jacobi operators are pseudoparallel.
Styles APA, Harvard, Vancouver, ISO, etc.
35

BONOME, Agustin, Regina CASTRO, Eduardo GARCÍA-RÍO, Luis HERVELLA et Ramón VÁZQUEZ-LORENZO. « Pseudo-Riemannian manifolds with simple Jacobi operators ». Journal of the Mathematical Society of Japan 54, no 4 (octobre 2002) : 847–75. http://dx.doi.org/10.2969/jmsj/1191591994.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Chinea, Domingo, Juan C. Marrero et Manuel de León. « A canonical differential complex for Jacobi manifolds. » Michigan Mathematical Journal 45, no 3 (décembre 1998) : 547–79. http://dx.doi.org/10.1307/mmj/1030132300.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

de León, Manuel, Juan C. Marrero et Edith Padrón. « On the geometric quantization of Jacobi manifolds ». Journal of Mathematical Physics 38, no 12 (décembre 1997) : 6185–213. http://dx.doi.org/10.1063/1.532207.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Brozos-Vázquez, M., et P. Gilkey. « Pseudo-riemannian manifolds with commuting jacobi operators ». Rendiconti del Circolo Matematico di Palermo 55, no 2 (juin 2006) : 163–74. http://dx.doi.org/10.1007/bf02874699.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Lê, Hong Vân, Yong-Geun Oh, Alfonso G. Tortorella et Luca Vitagliano. « Deformations of coisotropic submanifolds in Jacobi manifolds ». Journal of Symplectic Geometry 16, no 4 (2018) : 1051–116. http://dx.doi.org/10.4310/jsg.2018.v16.n4.a7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

de León, Manuel, David Martín de Diego et Miguel Vaquero. « A Hamilton-Jacobi theory on Poisson manifolds ». Journal of Geometric Mechanics 6, no 1 (2014) : 121–40. http://dx.doi.org/10.3934/jgm.2014.6.121.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Vitagliano, Luca, et Aïssa Wade. « Holomorphic Jacobi manifolds and holomorphic contact groupoids ». Mathematische Zeitschrift 294, no 3-4 (20 mai 2019) : 1181–225. http://dx.doi.org/10.1007/s00209-019-02320-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Zapata-Carratalá, Carlos. « Jacobi geometry and Hamiltonian mechanics : The unit-free approach ». International Journal of Geometric Methods in Modern Physics 17, no 12 (24 septembre 2020) : 2030005. http://dx.doi.org/10.1142/s0219887820300056.

Texte intégral
Résumé :
We present a systematic treatment of line bundle geometry and Jacobi manifolds with an application to geometric mechanics that has not been noted in the literature. We precisely identify categories that generalize the ordinary categories of smooth manifolds and vector bundles to account for a lack of choice of a preferred unit, which in standard differential geometry is always given by the global constant function [Formula: see text]. This is what we call the “unit-free” approach. After giving a characterization of local Lie brackets via their symbol maps, we apply our novel categorical language to review Jacobi manifolds and related notions such as Lichnerowicz brackets and Jacobi algebroids. The main advantage of our approach is that Jacobi geometry is recovered as the direct unit-free generalization of Poisson geometry, with all the familiar notions translating in a straightforward manner. We then apply this formalism to the question of whether there is a unit-free generalization of Hamiltonian mechanics. We identify the basic categorical structure of ordinary Hamiltonian mechanics to argue that it is indeed possible to find a unit-free analogue. This paper serves as a prelude to the investigation of dimensioned structures, an attempt at a general mathematical framework for the formal treatment of physical quantities and dimensional analysis.
Styles APA, Harvard, Vancouver, ISO, etc.
43

Andrejic, Vladica. « Quasi-special Osserman manifolds ». Filomat 28, no 3 (2014) : 623–33. http://dx.doi.org/10.2298/fil1403623a.

Texte intégral
Résumé :
In this paper we deal with a pseudo-Riemannian Osserman curvature tensor whose reduced Jacobi operator is diagonalizable with exactly two distinct eigenvalues. The main result gives new insight into the theory of the duality principle for pseudo-Riemannian Osserman manifolds. We concern with special Osserman curvature tensor and propose new ways to exclude some additional duality principle conditions from its definition.
Styles APA, Harvard, Vancouver, ISO, etc.
44

Andrejic, Vladica. « On Lorentzian spaces of constant sectional curvature ». Publications de l'Institut Math?matique (Belgrade) 103, no 117 (2018) : 7–15. http://dx.doi.org/10.2298/pim1817007a.

Texte intégral
Résumé :
We investigate Osserman-like conditions for Lorentzian curvature tensors that imply constant sectional curvature. It is known that Osserman (moreover zwei-stein) Lorentzian manifolds have constant sectional curvature. We prove that some generalizations of the Rakic duality principle (Lorentzian totally Jacobi-dual or four-dimensional Lorentzian Jacobi-dual) imply constant sectional curvature. Moreover, any four-dimensional Jacobi-dual algebraic curvature tensor such that the Jacobi operator for some nonnull vector is diagonalizable, is Osserman. Additionally, any Lorentzian algebraic curvature tensor such that the reduced Jacobi operator for all nonnull vectors has a single eigenvalue has a constant sectional curvature.
Styles APA, Harvard, Vancouver, ISO, etc.
45

Rovenski, Vladimir, et Dhriti Sundar Patra. « Characteristics of Sasakian Manifolds Admitting Almost ∗-Ricci Solitons ». Fractal and Fractional 7, no 2 (4 février 2023) : 156. http://dx.doi.org/10.3390/fractalfract7020156.

Texte intégral
Résumé :
This article presents some results of a geometric classification of Sasakian manifolds (SM) that admit an almost ∗-Ricci soliton (RS) structure (g,ω,X). First, we show that a complete SM equipped with an almost ∗-RS with ω≠ const is a unit sphere. Then we prove that if an SM has an almost ∗-RS structure, whose potential vector is a Jacobi vector field on the integral curves of the characteristic vector field, then the manifold is a null or positive SM. Finally, we characterize those SM represented as almost ∗-RS, which are ∗-RS, ∗-Einstein or ∗-Ricci flat.
Styles APA, Harvard, Vancouver, ISO, etc.
46

Berndt, Jürgen, Friedbert Prüfer et Lieven Vanhecke. « Symmetric-like Riemannian manifolds and geodesic symmetries ». Proceedings of the Royal Society of Edinburgh : Section A Mathematics 125, no 2 (1995) : 265–82. http://dx.doi.org/10.1017/s0308210500028031.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Hounkonnou, Mahouton Norbert, Mahougnon Justin Landalidji et Melanija Mitrović. « Einstein Field Equation, Recursion Operators, Noether and Master Symmetries in Conformable Poisson Manifolds ». Universe 8, no 4 (17 avril 2022) : 247. http://dx.doi.org/10.3390/universe8040247.

Texte intégral
Résumé :
We show that a Minkowski phase space endowed with a bracket relatively to a conformable differential realizes a Poisson algebra, confering a bi-Hamiltonian structure to the resulting manifold. We infer that the related Hamiltonian vector field is an infinitesimal Noether symmetry, and compute the corresponding deformed recursion operator. Besides, using the Hamiltonian–Jacobi separability, we construct recursion operators for Hamiltonian vector fields in conformable Poisson–Schwarzschild and Friedmann–Lemaître–Robertson–Walker (FLRW) manifolds, and derive the related constants of motion, Christoffel symbols, components of Riemann and Ricci tensors, Ricci constant and components of Einstein tensor. We highlight the existence of a hierarchy of bi-Hamiltonian structures in both the manifolds, and compute a family of recursion operators and master symmetries generating the constants of motion.
Styles APA, Harvard, Vancouver, ISO, etc.
48

Rezaei-Aghdam, A., et M. Sephid. « Jacobi–Lie symmetry and Jacobi–Lie T-dual sigma models on group manifolds ». Nuclear Physics B 926 (janvier 2018) : 602–13. http://dx.doi.org/10.1016/j.nuclphysb.2017.12.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Esen, Oğul, Manuel de León, Cristina Sardón et Marcin Zajşc. « Hamilton–Jacobi formalism on locally conformally symplectic manifolds ». Journal of Mathematical Physics 62, no 3 (1 mars 2021) : 033506. http://dx.doi.org/10.1063/5.0021790.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

JAVALOYES, MIGUEL ANGEL, et BRUNO LEARTH SOARES. « Geodesics and Jacobi fields of pseudo-Finsler manifolds ». Publicationes Mathematicae Debrecen 87, no 1-2 (1 juin 2015) : 57–78. http://dx.doi.org/10.5486/pmd.2015.7028.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie