Littérature scientifique sur le sujet « Iterated forcing »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Iterated forcing ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Iterated forcing"
Friedman, Sy D. « Iterated Class Forcing ». Mathematical Research Letters 1, no 4 (1994) : 427–36. http://dx.doi.org/10.4310/mrl.1994.v1.n4.a3.
Texte intégralGroszek, Marcia J. « Applications of iterated perfect set forcing ». Annals of Pure and Applied Logic 39, no 1 (juillet 1988) : 19–53. http://dx.doi.org/10.1016/0168-0072(88)90044-9.
Texte intégralFerrero, Daniela, Thomas Kalinowski et Sudeep Stephen. « Zero forcing in iterated line digraphs ». Discrete Applied Mathematics 255 (février 2019) : 198–208. http://dx.doi.org/10.1016/j.dam.2018.08.019.
Texte intégralSpinas, O. « Iterated forcing in quadratic form theory ». Israel Journal of Mathematics 79, no 2-3 (octobre 1992) : 297–315. http://dx.doi.org/10.1007/bf02808222.
Texte intégralIhoda, Jaime I., et Saharon Shelah. « Souslin forcing ». Journal of Symbolic Logic 53, no 4 (décembre 1988) : 1188–207. http://dx.doi.org/10.1017/s0022481200028012.
Texte intégralAudrito, Giorgio, et Matteo Viale. « Absoluteness via resurrection ». Journal of Mathematical Logic 17, no 02 (27 novembre 2017) : 1750005. http://dx.doi.org/10.1142/s0219061317500052.
Texte intégralIshiu, Tetsuya, et Paul B. Larson. « Some results about (+) proved by iterated forcing ». Journal of Symbolic Logic 77, no 2 (juin 2012) : 515–31. http://dx.doi.org/10.2178/jsl/1333566635.
Texte intégralShelah, Saharon. « Iterated forcing and normal ideals onω 1 ». Israel Journal of Mathematics 60, no 3 (décembre 1987) : 345–80. http://dx.doi.org/10.1007/bf02780398.
Texte intégralMitchell, William. « Prikry forcing at κ+ and beyond ». Journal of Symbolic Logic 52, no 1 (mars 1987) : 44–50. http://dx.doi.org/10.2307/2273859.
Texte intégralKanovei, Vladimir. « On non-wellfounded iterations of the perfect set forcing ». Journal of Symbolic Logic 64, no 2 (juin 1999) : 551–74. http://dx.doi.org/10.2307/2586484.
Texte intégralThèses sur le sujet "Iterated forcing"
Tzimas, Dimitrios V. « A new framework of iterated forcing along a gap one morass at [omega]1 ». Thesis, Massachusetts Institute of Technology, 1993. http://hdl.handle.net/1721.1/29862.
Texte intégralOn t.p., "[omega]" appears as the lower case Greek letter.
Includes bibliographical references (leaves 38-39 ).
by Dimitrios V. Tzimas.
Ph.D.
Santiago, Suárez Juan Manuel. « Infinitary logics and forcing ». Electronic Thesis or Diss., Université Paris Cité, 2024. http://www.theses.fr/2024UNIP7024.
Texte intégralThe main results of this thesis are related to forcing, but our presentation benefits from relating them to another domain of logic: the model theory of infinitary logics. In the 1950s, after the basic framework of first-order model theory had been established, Carol Karp, followed by Makkai, Keisler and Mansfield among others, developed the area of logic known as "infinitary logics". One key idea from our work, which was more or less implicit in the research of many, is that forcing plays a role in infinitary logic similar to the role compactness plays in first-order logic. Specifically, much alike compactness is the key tool to produce models of first-order theories, forcing can be the key tool to produce the interesting models of infinitary theories. The first part of this thesis explores the relationship between infinitary logics and Boolean valued models. Leveraging on the translation of forcing in the Boolean valued models terminology, this part lays the foundations connecting infinitary logics to forcing. A consistency property is a family of sets of non-contradictory sentences closed under certain natural logical operations. Consistency properties are the standard tools to produce models of non-contradictory infinitary sentences. The first major result we establish in the thesis is the Boolean Model Existence Theorem, asserting that any sentence which belongs to some set which is in some consistency property has a Boolean valued model with the mixing property, and strengthens Mansfield's original result. The Boolean Model Existence Theorem allows us to prove three additional results in the model theory of Boolean valued models for the semantics induced by Boolean valued models with the mixing property: a completeness theorem, an interpolation theorem, and an omitting types theorem. These can be shown to be generalizations of the corresponding results for first order logic in view of the fact that a first order sentence has a Tarski model if and only if it has a Boolean valued model. However we believe that the central result of this part of the thesis is the Conservative Compactness Theorem. In pursuit of a generalization of first-order compactness for infinitary logics, we introduce the concepts of conservative strengthening and of finite conservativity. We argue that the appropriate generalization of finite consistency (relative to Tarski semantics for first order logic) is finite conservativity (relative to the semantics given by Boolean valued models). The Conservative Compactness Theorem states that any finitely conservative family of sentences admits a Boolean valued model with the mixing property. In our opinion these results support the claim: Boolean-valued models with the mixing property provide a natural semantics for infinitary logics. In the second part of the thesis we leverage on the results of the first part to address the following question: For what family of infinitary formulae can we force the existence of a Tarski model for them without destroying stationary sets? Kasum and Velickovic introduced a characterization of which sentences can be forced by a stationary set preserving forcing (AS-goodness). Their work builds on the groundbreaking result of Asperò and Schindler. We define the ASK property -a variant of AS-goodness- which we also employ to the same effect of Kasum and Velickovic. It is shown that for any formula with the ASK-property, one can force the existence of a Tarski model in a stationary set preserving way. The proof of this result builds on the model theoretic perspective of forcing presented in the first part of the thesis, and does so introducing a new notion of iterated forcing. This presentation of iterated forcing is strictly intertwined with the Conservative Compactness Theorem, thereby emphasizing again the analogy between the pairs (forcing, infinitary logics) and (compactness, first-order logic)
Spasojević, Zoran. « Gaps, trees and iterated forcing ». 1994. http://catalog.hathitrust.org/api/volumes/oclc/32101789.html.
Texte intégralLivres sur le sujet "Iterated forcing"
Chong, C. T., W. H. Woodin, Qi Feng, T. A. Slaman et Yue Yang. Forcing, iterated ultrapowers, and Turing degrees. New Jersey : World Scientific, 2015.
Trouver le texte intégralChong, Chitat, Qi Feng, Theodore A. Slaman, W. Hugh Woodin et Yue Yang. Forcing, Iterated Ultrapowers, and Turing Degrees. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9697.
Texte intégralForcing, Iterated Ultrapowers, and Turing Degrees. World Scientific Publishing Co Pte Ltd, 2015.
Trouver le texte intégralForcing, Iterated Ultrapowers, and Turing Degrees. World Scientific Publishing Co Pte Ltd, 2015.
Trouver le texte intégralChapitres de livres sur le sujet "Iterated forcing"
Shelah, Saharon. « Iterated Forcing with Uncountable Support ». Dans Perspectives in Mathematical Logic, 679–731. Berlin, Heidelberg : Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-12831-2_14.
Texte intégralCummings, James. « Iterated Forcing and Elementary Embeddings ». Dans Handbook of Set Theory, 775–883. Dordrecht : Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-5764-9_13.
Texte intégral« Iterated Forcing ». Dans An Introduction to Independence for Analysts, 183–228. Cambridge University Press, 1987. http://dx.doi.org/10.1017/cbo9780511662256.009.
Texte intégral« Iterated Forcing ». Dans Forcing for Mathematicians, 85–88. WORLD SCIENTIFIC, 2014. http://dx.doi.org/10.1142/9789814566018_0022.
Texte intégralGitik, Moti. « PRIKRY-TYPE FORCINGS AND A FORCING WITH SHORT EXTENDERS ». Dans Forcing, Iterated Ultrapowers, and Turing Degrees, 1–38. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814699952_0001.
Texte intégral« Iterated Forcing and Martin’s Axiom ». Dans Fast Track to Forcing, 71–78. Cambridge University Press, 2020. http://dx.doi.org/10.1017/9781108303866.012.
Texte intégralSteel, John. « AN INTRODUCTION TO ITERATED ULTRAPOWERS ». Dans Forcing, Iterated Ultrapowers, and Turing Degrees, 123–74. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814699952_0003.
Texte intégralShore, Richard A. « THE TURING DEGREES : AN INTRODUCTION ». Dans Forcing, Iterated Ultrapowers, and Turing Degrees, 39–121. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814699952_0002.
Texte intégralActes de conférences sur le sujet "Iterated forcing"
Kara, Mustafa C., et Thorsten Stoesser. « A Strong FSI Coupling Scheme to Investigate the Onset of Resonance of Cylinders in Tandem Arrangement ». Dans ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/omae2014-23972.
Texte intégral