Littérature scientifique sur le sujet « Isomorphisme de type »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Isomorphisme de type ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Isomorphisme de type"
Eriksson, Dennis. « Un isomorphisme de type Deligne–Riemann–Roch ». Comptes Rendus Mathematique 347, no 19-20 (octobre 2009) : 1115–18. http://dx.doi.org/10.1016/j.crma.2009.09.003.
Texte intégralGonzalez-Lorca, Jorge. « Structure des algèbres de Hecke de type A : Un isomorphisme explicite ». Comptes Rendus de l'Académie des Sciences - Series I - Mathematics 326, no 2 (janvier 1998) : 147–52. http://dx.doi.org/10.1016/s0764-4442(97)89460-8.
Texte intégralHampiholi, Prabhakar R., et Meenal M. Kaliwal. « Operations on Semigraphs ». Bulletin of Mathematical Sciences and Applications 18 (mai 2017) : 11–22. http://dx.doi.org/10.18052/www.scipress.com/bmsa.18.11.
Texte intégralPoulain d'Andecy, L., et R. Walker. « Affine Hecke algebras and generalizations of quiver Hecke algebras of type B ». Proceedings of the Edinburgh Mathematical Society 63, no 2 (9 mars 2020) : 531–78. http://dx.doi.org/10.1017/s0013091519000294.
Texte intégralStroppel, Markus J. « An isomorphism between unitals and between related classical groups ». Advances in Geometry 24, no 4 (1 octobre 2024) : 463–71. http://dx.doi.org/10.1515/advgeom-2024-0022.
Texte intégralYe, Junming. « A study of sign-changing Poisson-type equations in two configurations ». Theoretical and Natural Science 55, no 1 (1 novembre 2024) : 67–84. http://dx.doi.org/10.54254/2753-8818/55/20240206.
Texte intégralFURUTANI, R., I. KIKUMASA et H. YOSHIMURA. « ISOMORPHISM OF QF ALGEBRAS OVER ℚ ». Journal of Algebra and Its Applications 12, no 03 (20 décembre 2012) : 1250166. http://dx.doi.org/10.1142/s0219498812501666.
Texte intégralChristensen, Erik, et Allan M. Sinclair. « Completely bounded isomorphisms of injective von Neumann algebras ». Proceedings of the Edinburgh Mathematical Society 32, no 2 (juin 1989) : 317–27. http://dx.doi.org/10.1017/s0013091500028716.
Texte intégralGoberstein, Simon M. « Correspondences of completely regular semigroups and -isomorphisms of semigroups ». Proceedings of the Royal Society of Edinburgh : Section A Mathematics 125, no 3 (1995) : 625–37. http://dx.doi.org/10.1017/s0308210500032728.
Texte intégralAbdeljawad, Ahmed, Sandro Coriasco et Joachim Toft. « Liftings for ultra-modulation spaces, and one-parameter groups of Gevrey-type pseudo-differential operators ». Analysis and Applications 18, no 04 (18 septembre 2019) : 523–83. http://dx.doi.org/10.1142/s0219530519500143.
Texte intégralThèses sur le sujet "Isomorphisme de type"
Bonnet, Jean-Paul. « Un isomorphisme motivique entre deux variétés homogènes projectives sous l'action d'un groupe de type $G_2$ ». Phd thesis, Université des Sciences et Technologie de Lille - Lille I, 2003. http://tel.archives-ouvertes.fr/tel-00004214.
Texte intégralBonnet, Jean-Paul. « Un isomorphisme motivique entre deux variétés homogènes projectives sous l'action d'un groupe de type G2 ». Lille 1, 2003. https://ori-nuxeo.univ-lille1.fr/nuxeo/site/esupversions/6a534f30-9098-43a3-8423-d4413bfe78f0.
Texte intégralStolze, Claude. « Types union, intersection, et dépendants dans le lambda-calcul explicitement typé ». Thesis, Université Côte d'Azur (ComUE), 2019. http://www.theses.fr/2019AZUR4104.
Texte intégralThe subject of this thesis is about lambda-calculus decorated with types, usually called "Church-style typed lambda-calculus". We study this lambda-calculus enhanced with Intersection types, as described by Barendregt, Dekkers and Statman in the book "Lambda-calculus with Types"; Union types, as introduced by Plotkin, MacQueen and Sethi; and Dependent types, as described by Plotkin, Harper and Honsell when they introduced the Edinburgh Logical Framework LF. Intersection and union types are a way to express ad hoc polymorphism and are an alternative to the parametric polymorphism of Girard. Dependent types were introduced as a way to formalize intuitionistic logic using the "proof-as-lambda-terms / formulas-as-types" Curry-Howard principle. The resulting type system can be enriched with a decidable subtyping relation. Combining these three type disciplines gives rise to a family of calculi that can be parametrized and classified: we call the resulting system the Delta-calculus. We then discuss the design decisions which have led us to the formulation of these calculi, study their metatheory, and provide various examples of applications; and we finally present a software implementation of the Delta-calculus, with a description of the type checker, the refinement algorithm, the subtyping algorithm, the evaluation algorithm and the command-line interface. This work can be understood as a little step toward an alternative type theory to defining polymorphic programming languages and interactive proof assistants
Chemouil, David. « Types inductifs, isomorphismes et récriture extensionnelle ». Toulouse 3, 2004. http://www.theses.fr/2004TOU30187.
Texte intégralThis PhD thesis copes with extensions of the simply-typed lambda-calculus by various rewrite relations preserving termination and confluence. Our first purpose is to ensure that some types become isomorphic. As far as inductive types are concerned, this problem is undecidable: therefore, we added some particular reductions solving it only in peculiar cases, namely the inductive encoding of the product and unit types and, more importantly, the notion of parameterised copy. Next, leaving isomorphims, we consider new reductions enabling to set up some algebraic structures on finite types: firstly, we deal with the definition of a category on a fragment of the calculus; and, secondly, with the representation of the symmetric group by factorisation of permutations as products of disjoint cycles. These results are obtained using techniques from abstract rewriting theory, some of which we have specifically developped for this thesis
Lasson, Marc. « Réalisabilité et paramétricité dans les systèmes de types purs ». Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2012. http://tel.archives-ouvertes.fr/tel-00770669.
Texte intégralLataillade, Joachim Guilhem de. « Quantification du second ordre en sémentique des jeux : application aux isomorphismes de types ». Paris 7, 2007. http://www.theses.fr/2007PA077228.
Texte intégralGame semantics is a flexible and precise framework for interpreting programming languages. The present dissertation illustrates this fact in two ways : first by studying polymorphism and its logical counterpart : second-order quantification, and second by caracterising sorne syntactic properties via game models. Polymorphism is first considered in its most usual form, Church- style System F, We propose a new, complete, game model, inspired by previous works but in which we will be able to do effective calculations. The syntactic question of characterising type isomorphisms can then be solved inside this model, by proving the invariance through isomorphism of some structure called hyperforest. This semantic approach allows to retrieve a result by Roberto Di Cosmo, Another variant of second- order logic, namely Curry- style System F, is studied and modellsed, partially but with enough precision to give once again a characterisation of type isomorphisms through a geometric invariant. The corresponding equationnal system is an enrichment of that of Church-style isomorphisms by a news non-trivial, equation. An extension to classical logic of the results for Church-style System F is proposed, through theconstruction of a game model which results in a control hyperdoctrine, ie a categorical structuresuitable for second- order classical logic
Herrera, Diana. « Homormophic Images and their Isomorphism Types ». CSUSB ScholarWorks, 2014. https://scholarworks.lib.csusb.edu/etd/37.
Texte intégralRamirez, Jessica Luna. « CONSTRUCTIONS AND ISOMORPHISM TYPES OF IMAGES ». CSUSB ScholarWorks, 2015. https://scholarworks.lib.csusb.edu/etd/254.
Texte intégralDi, Guardia Rémi. « Identity of Proofs and Formulas using Proof-Nets in Multiplicative-Additive Linear Logic ». Electronic Thesis or Diss., Lyon, École normale supérieure, 2024. http://www.theses.fr/2024ENSL0050.
Texte intégralThis study is concerned with the equality of proofs and formulas in linear logic, with in particular contributions for the multiplicative-additive fragment of this logic. In linear logic, and as in many other logics (such as intuitionistic logic), there are two transformations on proofs: cut-elimination and axiom-expansion. One often wishes to identify two proofs related by these transformations, as it is the case semantically (in a categorical model for instance). This situation is similar to the one in the λ-calculus where terms are identified up to β-reduction and η-expansion, operations that, through the prism of the Curry-Howard correspondence, are related respectively to cut-elimination and axiom-expansion. We show here that this identification corresponds exactly to identifying proofs up to rule commutation, a third well-known operation on proofs which is easier to manipulate. We prove so only in multiplicative-additive linear logic, even if we conjecture such a result holds in full linear logic.Not only proofs but also formulas can be identified up to cut-elimination and axiom-expansion. Two formulas are isomorphic if there are proofs between them whose compositions yield identities, still up to cut-elimination and axiom-expansion. These formulas are then really considered to be the same, and every use of one can be replaced with one use of the other. We give an equational theory characterizing exactly isomorphic formulas in multiplicative-additive linear logic. A generalization of an isomorphism is a retraction, which intuitively corresponds to a couple of formulas where the first can be replaced by the second -- but not necessarily the other way around, contrary to an isomorphism. Studying retractions is more complicated, and we characterize retractions to an atom in the multiplicative fragment of linear logic.When studying the two previous problems, the usual syntax of proofs from sequent calculus seems ill-suited because we consider proofs up to rule commutation. Part of linear logic can be expressed in a better adapted syntax in this case: proof-nets, which are graphs representing proofs quotiented by rule commutation. This syntax was an instrumental tool for the characterization of isomorphisms and retractions. Unfortunately, proof-nets are not (or badly) defined with units. Concerning our issues, this restriction leads to a study of the unit-free case by means of proof-nets with the crux of the demonstration, preceded by a work in sequent calculus to handle the units. Besides, this thesis also develops part of the theory of proof-nets by providing a simple proof of the sequentialization theorem, which relates the two syntaxes of proof-net and sequent calculus, substantiating that they describe the same underlying objects. This new demonstration is obtained as a corollary of a generalization of Yeo's theorem. This last result is fully expressed in the theory of edge-colored graphs, and allows to recover proofs of sequentialization for various definitions of proof-nets. Finally, we also formalized proof-nets for the multiplicative fragment of linear logic in the proof assistant Coq, with notably an implementation of our new sequentialization proof
Lengrand, Stéphane. « Normalisation & ; equivalence in proof theory & ; type theory / ». St Andrews, 2007. http://hdl.handle.net/10023/319.
Texte intégralLivres sur le sujet "Isomorphisme de type"
Philippe, De Groote, et Université catholique de Louvain (1970- ). Départment de philosophie., dir. The Curry-Howard isomorphism. Louvain-la-Neuve : Academia, 1995.
Trouver le texte intégralDi Cosmo, Roberto. Isomorphisms of Types : from λ-calculus to information retrieval and language design. Boston, MA : Birkhäuser Boston, 1995. http://dx.doi.org/10.1007/978-1-4612-2572-0.
Texte intégralSimmons, Harold. Derivation and computation : Taking the Curry-Howard correspondence seriously. Cambridge : Cambridge University Press, 2000.
Trouver le texte intégralElatskov, Aleksey. General Geopolitics : Theoretical and Methodological Issues in Geographical Interpretation. ru : INFRA-M Academic Publishing LLC., 2024. http://dx.doi.org/10.12737/2033550.
Texte intégralDicosmo, Roberto. Isomorphisms of Types. Island Press, 1994.
Trouver le texte intégralButton, Tim, et Sean Walsh. Modelism and mathematical doxology. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198790396.003.0006.
Texte intégralKraus, Alain, et Nuno Freitas. On the Symplectic Type of Isomorphisms of the $p$-Torsion of Elliptic Curves. American Mathematical Society, 2022.
Trouver le texte intégralIsomorphisms of Types : From ? -calculus to information retrieval and language design. Birkhäuser Boston, 2011.
Trouver le texte intégralDiCosmo, Roberto. Isomorphisms of Types : From ?-Calculus to Information Retrieval and Language Design. Birkhauser Verlag, 2012.
Trouver le texte intégralTits, Jacques. Buildings of Spherical Type and Finite Bn-Pairs (Ergebnisse Der Mathematik Und Ihrer Grenzgebiete). Springer, 1986.
Trouver le texte intégralChapitres de livres sur le sujet "Isomorphisme de type"
Thatte, Satish R. « Coercive type isomorphism ». Dans Functional Programming Languages and Computer Architecture, 29–49. Berlin, Heidelberg : Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/3540543961_3.
Texte intégralAtanassow, Frank, et Johan Jeuring. « Inferring Type Isomorphisms Generically ». Dans Lecture Notes in Computer Science, 32–53. Berlin, Heidelberg : Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-27764-4_4.
Texte intégralAponte, María Virginia, et Roberto Cosmo. « Type isomorphisms for module signatures ». Dans Lecture Notes in Computer Science, 334–46. Berlin, Heidelberg : Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/3-540-61756-6_95.
Texte intégralGaifman, Haim, et E. P. Specker. « Isomorphism Types of Trees ». Dans Ernst Specker Selecta, 202–8. Basel : Birkhäuser Basel, 1990. http://dx.doi.org/10.1007/978-3-0348-9259-9_18.
Texte intégralDi Cosmo, Roberto. « Isomorphisms for ML ». Dans Isomorphisms of Types : from λ-calculus to information retrieval and language design, 165–204. Boston, MA : Birkhäuser Boston, 1995. http://dx.doi.org/10.1007/978-1-4612-2572-0_6.
Texte intégralBarthe, Gilles, et Olivier Pons. « Type Isomorphisms and Proof Reuse in Dependent Type Theory ». Dans Lecture Notes in Computer Science, 57–71. Berlin, Heidelberg : Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-45315-6_4.
Texte intégralXu, Xiaoping. « Isomorphisms, Conjugacy and Exceptional Types ». Dans Representations of Lie Algebras and Partial Differential Equations, 95–123. Singapore : Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6391-6_4.
Texte intégralDezani-Ciancaglini, Mariangiola, Roberto Di Cosmo, Elio Giovannetti et Makoto Tatsuta. « On Isomorphisms of Intersection Types ». Dans Computer Science Logic, 461–77. Berlin, Heidelberg : Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-87531-4_33.
Texte intégralBalat, Vincent, et Roberto Di Cosmo. « A Linear Logical View of Linear Type Isomorphisms ». Dans Computer Science Logic, 250–65. Berlin, Heidelberg : Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-48168-0_18.
Texte intégralNuida, Koji. « On the Isomorphism Problem for Coxeter Groups and Related Topics ». Dans Groups of Exceptional Type, Coxeter Groups and Related Geometries, 217–38. New Delhi : Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1814-2_12.
Texte intégralActes de conférences sur le sujet "Isomorphisme de type"
Balyo, Tomáš, Martin Suda, Lukáš Chrpa, Dominik Šafránek, Stephan Gocht, Filip Dvořák, Roman Barták et G. Michael Youngblood. « Planning Domain Model Acquisition from State Traces without Action Parameters ». Dans 21st International Conference on Principles of Knowledge Representation and Reasoning {KR-2023}, 812–22. California : International Joint Conferences on Artificial Intelligence Organization, 2024. http://dx.doi.org/10.24963/kr.2024/76.
Texte intégralCosmo, Robero Di. « Type isomorphisms in a type-assignment framework ». Dans the 19th ACM SIGPLAN-SIGACT symposium. New York, New York, USA : ACM Press, 1992. http://dx.doi.org/10.1145/143165.143208.
Texte intégralAloupis, Greg, John Iacono, Stefan Langerman, Özgür Ozkan et Stefanie Wuhrer. « The Complexity of Order Type Isomorphism ». Dans Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms. Philadelphia, PA : Society for Industrial and Applied Mathematics, 2013. http://dx.doi.org/10.1137/1.9781611973402.30.
Texte intégralFiore, Marcelo. « Isomorphisms of generic recursive polynomial types ». Dans the 31st ACM SIGPLAN-SIGACT symposium. New York, New York, USA : ACM Press, 2004. http://dx.doi.org/10.1145/964001.964008.
Texte intégralZibin, Yoav, Joseph (Yossi) Gil et Jeffrey Considine. « Efficient algorithms for isomorphisms of simple types ». Dans the 30th ACM SIGPLAN-SIGACT symposium. New York, New York, USA : ACM Press, 2003. http://dx.doi.org/10.1145/604131.604146.
Texte intégralIlik, Danko. « Axioms and decidability for type isomorphism in the presence of sums ». Dans CSL-LICS '14 : JOINT MEETING OF the Twenty-Third EACSL Annual Conference on COMPUTER SCIENCE LOGIC. New York, NY, USA : ACM, 2014. http://dx.doi.org/10.1145/2603088.2603115.
Texte intégralTarau, Paul. « Isomorphisms, hylomorphisms and hereditarily finite data types in Haskell ». Dans the 2009 ACM symposium. New York, New York, USA : ACM Press, 2009. http://dx.doi.org/10.1145/1529282.1529706.
Texte intégralClairambault, Pierre. « Isomorphisms of Types in the Presence of Higher-Order References ». Dans 2011 26th Annual IEEE Symposium on Logic in Computer Science (LICS 2011). IEEE, 2011. http://dx.doi.org/10.1109/lics.2011.32.
Texte intégralBruce, K. B., et G. Longo. « Provable isomorphisms and domain equations in models of typed languages ». Dans the seventeenth annual ACM symposium. New York, New York, USA : ACM Press, 1985. http://dx.doi.org/10.1145/22145.22175.
Texte intégralForster, Yannick, Felix Jahn et Gert Smolka. « A Computational Cantor-Bernstein and Myhill’s Isomorphism Theorem in Constructive Type Theory (Proof Pearl) ». Dans CPP '23 : 12th ACM SIGPLAN International Conference on Certified Programs and Proofs. New York, NY, USA : ACM, 2023. http://dx.doi.org/10.1145/3573105.3575690.
Texte intégralRapports d'organisations sur le sujet "Isomorphisme de type"
Gross, Jonathan L. Topological Representation of Graph Isomorphism Types. Fort Belvoir, VA : Defense Technical Information Center, novembre 1991. http://dx.doi.org/10.21236/ada243528.
Texte intégral