Thèses sur le sujet « Isolanti topologici »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les 50 meilleures thèses pour votre recherche sur le sujet « Isolanti topologici ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Parcourez les thèses sur diverses disciplines et organisez correctement votre bibliographie.
LONGO, EMANUELE MARIA. « HETEROSTRUCTURES BASED ON THE LARGE-AREA Sb2Te3 TOPOLOGICAL INSULATOR FOR SPIN-CHARGE CONVERSION ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2021. http://hdl.handle.net/10281/311358.
Texte intégralSpin-based electronic devices constitute an intriguing area in the development of the future nanoelectronics. Recently, 3D topological insulators (TI), when in contact with ferromagnets (FM), play a central role in the context of enhancing the spin-to-charge conversion efficiency in FM/TI heterostructures. The main subject of this thesis is the study of the chemical-physical interactions between the granular and epitaxial Sb2Te3 3D-TI with Fe and Co thin films by means of X-ray Diffraction/Reflectivity, Ferromagnetic Resonance spectroscopy (FMR) and Spin Pumping-FMR. Beside the optimization of the materials properties, particular care was taken on the industrial impact of the presented results, thus large-scale deposition processes such as Metal Organic Chemical Vapor Deposition (MOCVD) and Atomic Layer Deposition (ALD) were adopted for the growth of the Sb2Te3 3D-TI and part of the FM thin films respectively. A thorough chemical, structural and magnetic characterization of the Fe/granular Sb2Te3 interface evidenced a marked intermixing between the materials and a general bonding mechanism between Fe atoms and the chalcogen element in chalcogenide-based TIs. Through rapid and mild thermal treatments performed on the granular Sb2Te3 substrate prior to Fe deposition, the Fe/granular-Sb2Te3 interface turned out to be sharper and chemically stable. The study of ALD-grown Co thin films deposited on top of the granular-Sb2Te3 allowed the production of high-quality Co/granular-Sb2Te3interfaces, with also the possibility to tune the magneto-structural properties of the Co layer through a proper substrate selection. In order to improve the structural properties of the Sb2Te3, specific thermal treatments were performed on the as deposited granular Sb2Te3, achieving highly oriented films with a nearly epitaxial fashion. The latter substrates were used to produce Au/Co/epitaxial-Sb2Te3 and Au/Co/Au/epitaxial-Sb2Te3 and the dynamic of the magnetization in these structures was investigated studying their FMR response. The FMR data for the Au/Co/Sb2Te3 samples were interpreted considering the presence of a dominant contribution attributed to the Two Magnon Scattering (TMS), likely due to the presence of an unwanted magnetic roughness at the Co/epitaxial-Sb2Te3 interface. The introduction of a Au interlayer to avoid the direct contact between Co and Sb2Te3 layers was shown to be beneficial for the total suppression of the TMS effect. SP-FMR measurements were conducted on the optimized Au/Co/Au/epitaxial-Sb2Te3 structure, highlighting the role played by the epitaxial Sb2Te3substrate in the SP process. The SP signals for the Au/Co/Au/Si(111) and Co/Au/Si(111) reference samples were measured and used to determine the effective spin-to-charge conversion efficiency achieved with the introduction of the epitaxial Sb2Te3 layer. The extracted SCC efficiency was calculated interpreting the SP-FMR data using the Inverse Edelstein effect and Inverse Spin-Hall effect models, which demonstrated that the Sb2Te3 3D-TI is a promising candidate to be employed in the next generation of spintronic devices.
Fruchart, Michel. « Topological phases of periodically driven crystals ». Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEN025/document.
Texte intégralThis thesis aims at developing and using a coherent framework to characterize topological states in spatially periodic media stemming from a time-periodic drive (« topological Floquet states » or « Floquet topological insulators »), when symmetries are present. Such states are a generalization of topological insulators, which appeared from the study of the control by light of topological insulators, and from the study of the wave-physics versions of topological insulators (in acoustics, mechanics and optics). New invariants characterizing such systems are defined, in particular when fermionic time-reversal is present. The cases of complex classes A and AIII in the Cartan-Altland-Zirnbauer classification, which are already known in particular cases, are generalized to any space dimension, and their survival in real classes is discussed. Potential physical consequences in electronic systems are explored by time-resolved numerical simulation of transport properties, which show evidence of quantized average differential conductances when a topological edge state is present
Repellin, Cécile. « Numerical study of fractional topological insulators ». Thesis, Paris, Ecole normale supérieure, 2015. http://www.theses.fr/2015ENSU0028/document.
Texte intégralTopological insulators are band insulators which are fundamentally different from atomic insulators. Only a non-local quantity called topological invariant can distinguish these two phases. The quantum Hall effect is the first example of a topological insulator, but the same phase can arise in the absence of a magnetic field, and is called a Chern insulator. In the presence of strong interactions, topological insulators may host exotic excitations called anyons. The fractional quantum Hall effect is the only experimentally realized example of such phase. In this manuscript, we study the conditions of emergence of different types of fractional topological insulators, using numerical simulations. We first look at the fractional quantum Hall effect on the torus. We introduce a new projective construction of exotic quantum Hall states that complements the existing construction. We study the low energy excitations on the torus of two of the most emblematic quantum Hall states, the Laughlin and Moore-Read states. We propose and validate model wave functions to describe them. We apply this knowledge to characterize the excitations of the Laughlin state in Chern insulators. We show the stability of other fractional quantum Hall states in Chern insulators, the composite fermion, Halperin and NASS states. We explore the physics of fractional phases with no equivalent in a quantum Hall system, using two different strategies: first by choosing a model with a higher value of the topological invariant, second by adding time-reversal symmetry, which changes the nature of the topological invariant
Le, calvez Kévin. « Signatures of a 4pi periodic Andreev bound state in topological Josephson junctions ». Thesis, Université Grenoble Alpes (ComUE), 2017. http://www.theses.fr/2017GREAY099/document.
Texte intégralThree dimensional topological insulators (3D TI) are a new state of matter composedof an electrically insulating bulk covered by metallic surface states. Theoretically, a topo-logical Josephson junction composed of these surface states can host an Andreev Boundstate (ABS) that has twice the periodicity of the conventional 2p periodic ABSs. The4p periodic ABS is expected to be the building block of topological quantum computing.Therefore, we study the dynamic of this particular ABS by performing Shapiro measure-ment on Josephson junctions built with bismuth based 3D TI.To identify the e?ects of a 4p periodic ABS in a Shapiro measurement, we use a phe-nomenological model that simulates the voltage-current characteristics of a TJJ. We predicttwo signatures of the 4p periodic ABS and estimate their robustness against Joule heatingand thermally activated quasiparticle poisoning of the 4p periodic mode.We study the Josephson junctions dynamics by performing Shapiro measurements onjunctions built on Bi2Se3. We observe the two previously anticipated signatures, whichare the non-conventional appearance order of the Shapiro steps and the remaining of asupercurrent at the closing of the Shapiro step n = 0. They prove the presence of a 4pperiodic ABS.We also study the topological insulator BiSbTeSe2 that we have grown by using themelting growth method. By superconducting interferometric measurements, we show asuperconducting surface transport without bulk electronic conduction
Bègue, Frédéric. « Isolants topologiques et magnétisme ». Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30392/document.
Texte intégralThe discovery of the quantum Hall effect by von Klitzing in 1980 paved the way for what is now known as topological band theory. In this theory, we are interested not only in the energy spectra of the electrons in crystals, but also in the topological structure of the bands. A new phase of matter was discovered thanks to this theory : the topological insulators. Topological insulators are unique in the sense that they behave like trivial insulators in the bulk, but possess metallic edge states. In this thesis, we are particularly interested in so-called Z2 topological insulators, whose edge states are protected by time reversal symmetry : they cannot disappear in the presence of a perturbation that respects this symmetry, without the system undergoing a quantum phase transition. For three-dimensional topological insulators, we propose an experimental criterion based on magnetic quantum oscillations to identify a special kind of topological insulators : the strong topological insulator. In two dimensions, we study the consequences of time reversal symmetry breaking due to anti-ferromagnetic order. In this case, the important symmetry is time reversal times a trans- lation. In this context, we first establish an analytical expression for systems that also have inversion symmetry. We then adapt three numerical methods usually employed for time reversal symmetric systems : the reconnection phase method, the Wannier charge center method and the explicit construction of edge states. We show that they are useful to probe the topology of models for which no methods were available ; such as non-centrosymmetric systems
Rocha, Leandro Seixas. « Estrutura eletrônica de isolantes topológicos em duas e três dimensões ». Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-16102014-092038/.
Texte intégralIn this doctoral thesis we present a study of the electronic structure of topological insulators materials. The fundamental theory of topological insulators was addressed through the Z2 topological invariants, as well as their methods to calculate these topological invariants and the consequences of non-trivial band topology. Just as atomistic and energetic properties, the electronic properties of some topological insulators were calculated using first-principles methods based upon Density Functional Theory. We present in this thesis the study of four systems of physical interest: (1) In topological insulators like Bi2Se3 and Bi2Te3 with stacking faults, we found that the Bi2Te3 with stacking faults presents metallic states in the region of the defect; (2) For Bi2Se3/GaAs interface with Se-treatment in the GaAs region, we found that the interaction between the Dirac cone of the Bi2Se3 and the valence band of the GaAs opens a bandgap at the -point; (3) In germanene nanoroads embedded on germanane with zigzag interfaces/edge, we found that from a critical width we can observe the quantum spin Hall effect; and (4) For SixGe1x two-dimensional hexagonal disordered alloy, the system shares the same non-trivial band topology of the silicene and germanene, while the ordered alloy Si0.5Ge0.5 is a trivial insulator. The electronic structures of these systems were investigated in order to understand the physical consequences of non-trivial band topology in the bulk and surfaces/interfaces Bloch states.
Marcinkiewicz, Michal. « Terahertz Spectroscopy of Topological Phase Transitions in HgCdTe-based systems ». Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTS068/document.
Texte intégralThis thesis presents an investigation of different topological phases in mercury-cadmium-telluride (HgCdTe or MCT) based heterostructures. These solid state systems are indeed a perfect playground to study topological states, as their band structure can be easily varied from inverted to non-inverted, by changing internal or external parameters.If a system has an inverted band ordering, its electronic structure has a non-trivial topology. One cannot change its topological order without closing the band gap, which is inevitably accompanied with the appearance of massless particles in the bulk. A system, that has an inverted band structure and a finite gap in which the Fermi level is positioned, is called a topological insulator. These novel materials are insulators in the bulk, but host gapless metallic states with linear dispersion relation at boundaries, protected against disorder and backscattering on non-magnetic impurities. These states arise at the interfaces between materials characterized by a different topological order. A 2D topological insulator is thus characterized by a set of 1D spin-polarized channels of conductance at the edges, while a 3D topological insulator supports spin-polarized 2D Dirac fermions on its surfaces.The 2D and 3D massless fermions have already been demonstrated experimentally in HgCdTe-based heterostructures. However, the topological phase transitions during which the massless particles appear remain barely explored. The HgCdTe band structure can be tuned from inverted to non-inverted using chemical composition, pressure, temperature, or quantum confinement. These parameters therefore allow to probe the system in the vicinity of different topological phase transitions. In this thesis, the use of temperature as continuous band gap tuning parameter allows to study the appearance and the parameters of semi-relativistic 2D Dirac and 3D Kane fermions emerging at the points of phase transitions.The systems investigated were Hg$_{1-x}$Cd$_x$Te bulk systems and HgTe/CdTe quantum wells characterized by an inverted and regular band order, and strained HgTe films which can be considered as 3D topological insulators with a residual quantum confinement. All these systems exhibit topological properties, and the experimental results are interpreted according to theoretical predictions based on the Kane model. This thesis is complemented by an overview and the preliminary results obtained on a different compound -- a InAs/GaSb broken-gap quantum well, which was also identified as a topological insulator. The structures were studied by means of terahertz and mid-infrared magneto-transmission spectroscopy in a specifically designed experimental system, in which temperature could be tuned in a broad range
Hijano, Cubelos Oliver. « Hétérostructures supraconductrices et isolants topologiques ». Thesis, Université Paris-Saclay (ComUE), 2015. http://www.theses.fr/2015SACLS247/document.
Texte intégralThe thesis is focused on the theoretical study of the electronic properties at the surface of the transition metal oxide STO. This material is the cornerstone of oxide electronics, an emerging research area that has the goal of investigating transition metal oxides as post-silicon candidates for a future emerging new electronics. STO is in itself an astounding system; in its purest chemical composition is a good ban-insulator with a wide bandgap. Nevertheless, upon doing it with tiny amounts of other elements it transforms itself in a metal with high electron mobility. Even more remarkably, at the lowest temperatures, typically below 300mK, it goes superconductor. And adding to these properties, strain induces also ferroelectricity in this material. Over the last years, STO has also grabbed attention because of its ability of hosting two-dimensional electron gas (2DEGs) when it is interfaced with some polar oxides. Such 2DEGs exhibit fascinating properties, the most conspicuous is the coexistence of magnetism and superconductivity.The surface of STO can host 2DEGs too, without need of interfacing it to other materials; in this case the electrons participating in transport are generated by oxygen vacancies created at the surface. This is remarkable observation, as it affords a simpler structure where the 2DEGs properties can be studied. In spite of the accumulated knowledge, still a better fundamental comprehension is required of the electronic structure of the quantum wells at the surfaces oriented along the 111 direction, for which the perovskite structure is reminiscent of the celebrated honeycomb-like structure of graphene. Contrary to the latter, in which electrons are in s- and p- states, 111 quantum wells in STO would host electrons in d-bands. Higher electronic correlations are then expected, that may bring new fascinating physics.The outline of this Thesis has two main branches: first, it studies the 111-oriented STO bilayer, formed by just two unit cells; secondly it analyzes the quantum wells generated by Oxygen vacancies at the 111-surface of STO. Both subjects are approached using tight-binding models in which the Hamiltonian incorporates different terms related to on-site energies, hopping interactions or spin-orbit coupling. From these calculations, I have carried out an exhaustive analysis of the orbital character and parity properties of valence and conduction bands, as well as edge states in the 111 bilayer. Tight-binding calculations have also shed light on the orbital character, space location and extension and energy of electronic states generated by oxygen vacancies at the 001 surface of STO
Thomas, Candice. « Strained HgTe/CdTe topological insulators, toward spintronic applications ». Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAY090/document.
Texte intégralWith graphene-like transport properties governed by massless Dirac fermions and a topological protection preventing from backscattering phenomena, topological insulators, characterized by an insulating bulk and conducting surfaces, are of main interest to build low power consumption electronic building-blocks of primary importance for future electronics.Indeed, the absence of disorder, the generation of dissipation-less spin-polarized current or even the possibility to generate pure spin current without magnetic materials are some of the promises of these new materials.The objective of this PhD thesis has been to experimentally demonstrate the eligibility of HgTe three dimensional topological insulator system for applications and especially for spintronics.To do so, strong efforts have been dedicated to the improvement of the growth process by molecular beam epitaxy.Chemical composition, strain, defect density and sharpness of the HgTe interfaces have been identified as the major parameters of study and improvement to ensure HgTe inverted band structure, bulk gap opening and to emphasize the resulting topological surface state electronic properties. Verification of the topological nature of this system has then been performed using low temperature magneto-transport measurements of Hall bars designed with various HgTe thicknesses. It is worth noting that the high desorption rate of Hg has made the nanofabrication process more complex and required the development of a low temperature process adapted to this constraint. While the thicker samples have evidenced very complex transport signatures that need to be further investigated and understood, the thickness reduction has led to the suppression of any additional contributions, such as bulk or even side surfaces, and the demonstration of quantum Hall effect with vanishing resistance. Consequently, we have managed to demonstrate direct evidences of Dirac fermions by temperature dependent analysis of the quantum Hall effect. The next step has been to use the topological properties and especially the locking predicted between momentum and spin to test the HgTe potential for spintronics. Spin pumping experiments have demonstrated the power of these topological structures for spin injection and detection. Moreover, the implementation of HgTe into simple p-n junction has also been investigated to realize a first spin-based logic element
Ghelli, Greta. « Topological phases in spin ladders ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amslaurea.unibo.it/17050/.
Texte intégralPetrescu, Alexandru. « Topological phases with ultracold atoms and photons ». Palaiseau, Ecole polytechnique, 2015. https://theses.hal.science/tel-01208205/document.
Texte intégralWe propose theoretical models that support topological phases and which are relevant to current experiments on lattices hosting photonic modes or ultracold atoms. In the first part of this thesis, we introduce a topological phase on a Kagom ́e lattice whose degrees of freedom are photons. In that context, we discuss two protocols to access the local Berry curvature and the Chern number of Bloch bands from semiclassical dynamics of wavepackets. Secondly, we obtain the phase diagram for bosons at unit filling with repulsive on–site interactions whose kinetic term corresponds to a Chern insulator defined on the honeycomb lattice. In the second part, we turn to recently realized quasi one–dimensional lattices, and un- cover their phase diagrams, comprising low–dimensional Meissner phases, chiral Mott insulating phases as well as abelian fractional quantum Hall states
Vasconcelos, Hugo Menezes do Nascimento. « Propriedades estruturais e magnéticas do isolante topológico Bi2Se3 com aglomerados de FexSey ». Universidade Federal de São Carlos, 2016. https://repositorio.ufscar.br/handle/ufscar/8122.
Texte intégralApproved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-21T12:45:43Z (GMT) No. of bitstreams: 1 TeseHMNV.pdf: 4404722 bytes, checksum: 1983a667805c061a711a3694028b17b0 (MD5)
Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-10-21T12:45:59Z (GMT) No. of bitstreams: 1 TeseHMNV.pdf: 4404722 bytes, checksum: 1983a667805c061a711a3694028b17b0 (MD5)
Made available in DSpace on 2016-10-21T12:46:06Z (GMT). No. of bitstreams: 1 TeseHMNV.pdf: 4404722 bytes, checksum: 1983a667805c061a711a3694028b17b0 (MD5) Previous issue date: 2016-03-29
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
In this work, we discuss the growth of Fe containing Bi2 Se3epilayers on the GaAs(111) substrate by molecular beam epitaxy (MBE) with Fe contents of in the 8- 20% range. It is shown that Bi2 Se3 film thin are grown with quality and the Fe form a phase segregation of Fe x Sey material that may have different stoichiometries possibity, leading to magnetic and superconducting results. Despite the composite structure, the surface state of Bi2 Se3 is preserved as shown with persistence of Dirac Cone of the Γ point by Angle-Resolved Photoemission Spectroscopy (ARPES). It was observed that higher Fe content deposited is increased formation of compound responsible for ferrimagnetic layers together with the superconducting phase supposed. The Fe3Se 4 was the most abundant type of segregation in all samples, with the results ferrimagnetic these samples at temperatures around 315 K.
Neste trabalho, abordamos o crescimento de Bi2 Se3 com adição de Fe em substrato de GaAs(111) por meio de epitaxia de feixe molecular (MBE), variando o teor de Fe depositado de 8% até 20%. É mostrado que os filmes de Bi2 Se3 são crescidos com qualidade e o Fe juntamente com o Se formam uma segregação de fases Fex Sey , material que pode ter diferentes estequiometrias levando a resultados magnéticos e possivelmente supercondutor. Apesar da estrutura compósita, a estrutura superficial do Bi2 Se3 é preservada como mostrado pela persistência do cone de Dirac no ponto Γ nas medidas de espectroscopia de fotoemissão de resolução angular (ARPES). Foi possível observar que quanto maior o teor de Fe depositado, ocorre uma maior formação de compostos responsável pela fase ferrimagnética em conjunto com a fase supostamente supercondutora. O Fe3Se 4 foi o tipo de segregação mais abundante em todas as amostras, levando a resultados ferrimagnéticos nessas amostras em temperaturas em torno de 315 K.
Mottaghizadeh, Alireza. « Non-conventional insulators : metal-insulator transition and topological protection ». Thesis, Paris 6, 2014. http://www.theses.fr/2014PA066652/document.
Texte intégralThis manuscript presents an experimental study of unconventional insulating phases, which are the Anderson insulator, induced by disorder, the Mott insulator, induced by Coulomb interactions, and topological insulators.In a first part of the manuscript, I will describe the development of a method to study the charge response of nanoparticles through Electrostatic Force Microscopy (EFM). This method has been applied to magnetite Fe3O4 nanoparticles, a material that presents a metal-insulator transition, i.e. the Verwey transition, upon cooling the system below a temperature Tv=120K. In a second part, this manuscript presents a detailed study of the evolution of the Density Of States (DOS) across the metal-insulator transition between an Anderson-Mott insulator and a metallic phase in the material SrTiO3 and this, as function of dopant concentration, i.e. oxygen vacancies. We found that in this memristive type device Au-SrTiO3-Au, the dopant concentration could be fine-tuned through electric-field migration of oxygen vacancies. In this tunnel junction device, the evolution of the DOS can be followed continuously across the metal-insulator transition. Finally, in a third part, the manuscript presents the development of a method for the microfabrication of Aharonov-Bohm rings with the topological insulator material, Bi2Se3, grown by molecular beam epitaxy. Preliminary results on the quantum transport properties of these devices will be presented
Dhungana, Daya Sagar. « Growth of InAs and Bi1-xSBx nanowires on silicon for nanoelectronics and topological qubits by molecular beam epitaxy ». Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30150/document.
Texte intégralInAs and Bi1-xSbx nanowires with their distinct material properites hold promises for nanoelec- tronics and quantum computing. While the high electron mobility of InAs is interesting for na- noelectronics applications, the 3D topological insulator behaviour of Bi1-xSbx can be used for the realization of Majorana Fermions based qubit devices. In both the cases improving the quality of the nanoscale material is mandatory and is the primary goal of the thesis, where we study CMOS compatible InAs nanowire integration on Silicon and where we develop a new nanoscale topological insulator. For a full CMOS compatiblity, the growth of InAs on Silicon requires to be self-catalyzed, fully vertical and uniform without crossing the thermal budge of 450 °C. These CMOS standards, combined with the high lattice mismatch of InAs with Silicon, prevented the integration of InAs nanowires for nanoelectronics devices. In this thesis, two new surface preparations of the Silicon were studied involving in-situ Hydrogen gas and in-situ Hydrogen plasma treatments and leading to the growth of fully vertical and self-catalyzed InAs nanowires compatible with the CMOS limitations. The different growth mechanisms resulting from these surface preparations are discussed in detail and a switch from Vapor-Solid (VS) to Vapor- Liquid-Solid (VLS) mechanism is reported. Very high aspect ratio InAs nanowires are obtained in VLS condition: upto 50 nm in diameter and 3 microns in length. On the other hand, Bi1-xSbx is the first experimentally confirmed 3D topololgical insulator. In this new material, the presence of robust 2D conducting states, surrounding the 3D insulating bulk can be engineered to host Majorana fermions used as Qubits. However, the compostion of Bi1-xSbx should be in the range of 0.08 to 0.24 for the material to behave as a topological insula- tor. We report growth of defect free and composition controlled Bi1-xSbx nanowires on Si for the first time. Different nanoscale morphologies are obtained including nanowires, nanoribbons and nanoflakes. Their diameter can be 20 nm thick for more than 10 microns in length, making them ideal candidates for quantum devices. The key role of the Bi flux, the Sb flux and the growth tem- perature on the density, the composition and the geometry of nanoscale structures is investigated and discussed in detail
Phuphachong, Thanyanan. « Magneto-spectroscopy of Dirac matter : graphene and topological insulators ». Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066170/document.
Texte intégralThis thesis reports on the study under magnetic field of the electronic properties of relativistic-like Dirac fermions in two Dirac systems: graphene and topological insulators. Their analogies with high-energy physics and their potential applications have attracted great attention for fundamental research in condensed matter physics. The carriers in these two materials obey a Dirac Hamiltonian and the energy dispersion is analogous to that of the relativistic particles. The particle rest mass is related to the band gap of the Dirac material, with the Fermi velocity replacing the speed of light. Graphene has been considered as a “role model”, among quantum solids, that allows us to study the relativistic behavior of massless Dirac fermions satisfying a linear dispersion. When a Dirac system possesses a nonzero gap, we have massive Dirac fermions. Massless and massive Dirac fermions were studied in high-mobility multilayer epitaxial graphene and in topological crystalline insulators Pb1-xSnxSe and Pb1-xSnxTe. The latter system is a new class of topological materials where the bulk states are insulating but the surface states are conducting. This particular aspect results from the inversion of the lowest conduction and highest valence bulk bands having different parities, leading to a topological phase transition. Infrared magneto-spectroscopy is an ideal technique to probe these zero-gap or narrow gap materials since it provides quantitative information about the bulk parameters via the Landau quantization of the electron states. In particular, the topological phase transition can be characterized by a direct measurement of the topological index
Hajlaoui, Mahdi. « Entre métal et isolant : Dynamique ultrarapide dans l'isolant topologique Bi2Te3 et domaines microscopiques à la transition De Mott Dans V203 ». Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00924392.
Texte intégralAtteia, Jonathan. « Topologie et transport électronique dans des systèmes de Dirac sous irradiation ». Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0378/document.
Texte intégralThis thesis presents a theoretical work done in the field of condensed matter physics, and in particular solid state physics. This field of physics aims at describing the behaviour of electrons in crystalline materials at very low temperature to observe effects characteristic of quantum physics at the mesoscopic scale.This thesis lies at the interface between two types of materials : graphene and topological insulators. Graphene is a monoatomic layer of carbon atoms arranged in a honeycomb lattice that presents a wide range of striking properties in optics, mechanics and electronics. Topological insulators are materials that are insulators in the bulk and conduct electricity at the edges. This characteristic originates from a topological property of the electrons in the bulk. Topology is a branch of mathematics that aims to describe objects globally retaining only characteristics invariant under smooth deformations. The edge states of topological insulators are robust to certain king of perturbations such as disorder created by impurities in the bulk. The link between these two topics is two-fold. On one hand, the first models of band topological insulators were formulated for graphene, by Haldane in 1988 and Kane and Mele in 2005, opening the way to the discovery of 2D and 3D topological insulators in materials with strong spin-orbit coupling. On the other hand, it was predicted that graphene, even without spin-orbit coupling, turns to a topological insulator under irradiation by an electromagnetic wave. In this thesis, we follow two directions in parallel : describe the topological properties on one hand, and the electronic transport properties on the other hand.First, we review the tight-binding model of graphene, and the effective model that describes low-energy electrons as massless Dirac fermions. We then introduce the Haldane model, a simple model defined on the honeycomb lattice that presents non-trivial bands characterised by a topological invariant, the Chern number. Due to this topological property, this model possesses a chiral edge state that propagates around the sample and a quantized Hall conductance. When graphene is irradiated by a laser with a frequency larger than the graphene bandwidth, it acquires a dynamical gap similar to the topological gap of the Haldane model. When the frequency is lowered, we show that topological transitions happens and that different edge states appear.The main work of this thesis is the study of electronic transport in irradiated graphene in a regime of experimentally achievable parameters. A graphene sheet is connected to two electrodes with a potential difference that generates a current. We compute the differential conductance of the sample according to Landauer-Büttiker formalism extended to periodically driven systems. Using this simple formalism, we are able to obtain the conductance as a function of the geometry of the sample and of several parameters such as the chemical potential, the frequency and the intensity of the electromagnetic wave.Another kind of topological insulator is the quantum spin Hall insulator. This type of phase possesses two edge states in which opposite spins propagate in opposite directions. The second work of this thesis concerns electronic transport through this irradiated edge state. We observe the apparition of a pumped current in the absence of a potential difference. We observe two regimes : a quantized adiabatic at low frequency, and a non-quantized linear response regime at high frequency. Compared to previous studies, we show an important effect originating from the presence of electrodes
Báring, Luís Augusto Gomes 1983. « Supercondutividade em semimetais e isolantes topológicos ». [s.n.], 2012. http://repositorio.unicamp.br/jspui/handle/REPOSIP/277009.
Texte intégralTese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin
Made available in DSpace on 2018-08-22T01:33:07Z (GMT). No. of bitstreams: 1 Baring_LuisAugustoGomes_D.pdf: 21081310 bytes, checksum: 275f0ba5ff80d6f9f19f53cf8316e1a6 (MD5) Previous issue date: 2012
Resumo: No presente trabalho estudamos os semimetais bismuto Bi, antimônio Sb e Bi1-xSbx, materiais com propriedades topologicamente não triviais. Observamos a ocorrência de supercondutividade intrínseca em bismuto com TC »= 8:5K. Construímos, a partir dos dados de magnetização e resistência, o diagrama de fase do campo crítico H versus a temperatura T. Esse diagrama de fase, pode ser ajustado segundo modelos da literatura válidos para supercondutividade granular. Detectamos, no bismuto, o aumento da corrente Josephson e acoplamento intergranular no limite quântico devidos à quantização de Landau. Isso se manifesta como uma supercondutividade reentrante. Foi também encontrada transição tipo metal-isolante induzida por campo magnético em todos os materiais estudados. O diagrama de fase H versus T mostra uma extraordinária semelhança entre os três materiais. A amostra Bi1-xSbx, com x = 0:052, revelou a ocorrência de transição semimetal-isolante topológico já em campo magnético zero. Fizemos uma comparação com resultados anteriores da literatura, analisando a dependência da temperatura em que ocorre essa transição em relação à concentração de antimônio x e ao campo magnético B e demonstramos a similaridade entre eles. Observamos, também, supercondutividade nos semimetais bismuto, antimônio e no Bi1-xSbx, induzida por dopagem com os metais ouro e índio, e mostramos que a supercondutividade está associada à interface entre os metais e os semimetais. Finalmente, encontramos a indução de supercondutividade mediante a aplicação de campo magnético em bismuto, consistente com a ocorrência de férmions de Majorana na interface entre esse material e a tinta prata usada para os contatos. Tal observação pode ser devida, também, à ocorrência de um estado supercondutor fora do equilíbrio.
Abstract: In this work we studied the semimetals bismuth Bi, antimony Sb and Bi1-xSbx, all of them with non-trivial topologic properties. We observed an intrinsic superconductivity in bismuth, with TC »= 8:5 K. The phasediagram of the critical field H versus the temperature T, based upon the magnetization and resistance data, may be well fitted according to theoretical models valid for granular superconductivity. We also detected, in bismuth, the increase of the Josephson current and interganular coupling in the quantum limit due to Landau quantization. This manifests itself as a reentrant superconducting state. Our results revealed a metal-insulator transition triggered by magnetic field, for all the studied materials. The phase diagram H ¡T shows a striking similarity between them. The sample Bi1-xSbx with x = 0:052 demonstrated a semimetal-insulator transition even at zero field. We compared our results with previous results of other groups and analyzed the temperature dependence of the transition as a function of the antimony amount x and the magnetic field B and demonstrated their similarity. We also observed supeerconductivity in the semimetals bismuth, antimony and Bi1-xSbx, triggered by doping with the metals gold and indium, and showed that the superconductivity is associated to the interface between the metals and the semimetals. Finally, we found the superconductivity induced by the aplication of magnetic field in bismuth, consistent with the Majorana fermions present in the interface between this material and the silver paste contacts. This may also be related to a non-equilibrium superconduting state.
Doutorado
Física
Doutor em Ciências
Bleu, Olivier. « Physics of quantum fluids in two-dimensional topological systems ». Thesis, Université Clermont Auvergne (2017-2020), 2018. http://www.theses.fr/2018CLFAC044/document.
Texte intégralThis thesis is dedicated to the description of both single-particle and bosonic quantum fluid Physics in topological systems. After introductory chapters on these subjects, I first discuss single-particle topological phenomena in honeycomb lattices. This allows to compare two theoretical models leading to quantum anomalous Hall effect for electrons and photons and to discuss the photonic quantum valley Hall effect at the interface between opposite staggered cavity lattices.In a second part, I present some phenomena which emerge due to the interplay of the linear topological effects with the presence of interacting bosonic quantum fluid described by mean-field Gross-Pitaevskii equation. First, I show that the spin-anisotropic interactions lead to density-driven topological transitions for elementary excitations of a condensate loaded in the polariton quantum anomalous Hall model (thermal equilibrium and out-of-equilibrium quasi-resonant excitation configurations). Then, I show that the vortex excitations of a scalar condensate in a quantum valley Hall system, contrary to linear wavepackets, can exhibit a robust chiral propagation along the interface, with direction given by their winding in real space, leading to an analog of quantum spin Hall effect for these non-linear excitations. Finally, coming back to linear geometrical effects, I will focus on the anomalous Hall effect exhibited by an accelerated wavepacket in a two-band system. In this context, I present a non-adiabatic correction to the known semiclassical equations of motion which can be expressed in terms of the quantum geometric tensor elements. We also propose a protocol to directly measure the tensor components in radiative photonic systems
Weis, Mateusz. « Growth and spectroscopic studies (continuous and time-resolved) of ultrathin films of topological insulators ». Thesis, Le Mans, 2019. http://www.theses.fr/2019LEMA1001.
Texte intégralTopological insulators (TI) are one of the critical elements for the new generation of electronics and spintronics devices. Such as charge-to-spin current conversion gates or Dirac fermions based nanometer scale Schottky diodes. When reduced just too a few single layers or exposed to additional doping, TI begins to show a dramatic effect that changes the electronic structure and in consequence dynamics of carriers and phonons. In order to describe those behaviors, I used advanced high-vacuum cluster with MBE to produce ultrathin films of Bi2Te3. The samples were grown on a muscovite mica substrate. The monocrystalline structure of the film was confirmed with both LEED and RHEED measurements, and the complementary studies of electronic structure focused on the analysis of the valence band and core levels. The femtosecond pump-probe spectroscopy has been used to excite the hot carriers and generate coherent optical phonons within Bi2Te3 nanostructures and observe it in the time domain.In this thesis, I reveal an evident modification of the out-of-equilibrium carriers and phonons dynamics when extreme thickness or doping modify the BT layer. Performed experimental optical measurement integrate both bulk and surface electrons, but nonnegligible surface carriers contribution still gives a strong response. This continuous and time-domain investigation provides new insight into physical properties of topological insulators and shows that downscaling the topological insulators properties and their interaction with metallic interfaces have to be taken into account for potential TIs based spintronic devices
Pérez, Oscar Andres Babilonia. « Efeito Rashba em isolantes topológicos ». Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-22122016-131859/.
Texte intégralIn this work, were studied the Rashba effect in topological insulators without structural inversion symmetry. We performed a first principles study based on density functional theory to calculate the atomistic properties, formation energy and electronic structure. These results were used to development a effective Hamiltonian based on Zhang model. They were studied two systems: 1) Bi$_2$Se$_3$ with Sn atoms deposited on the surface: This system can be seen as the Rashba effect manifestation on a topological insulator due to the structural inversion symmetry breaking. For a specific deposition site, the Sn atoms cause a reconstruction of the surface and display a third Dirac cone in the electronic structure. This third cone is not located on the surface and can be understood as the giant Rashba effect manifestation. 2) We propose a new non-centrosymmetric honeycomb-lattice QSH insulator family formed by the IV, V, and VII elements. The system formed by Bi, Pb and I atoms is reported here as a new 2D topological insulator with Rashba effect. We show that this system has: i) Mechanical stability, ii) spin-splitting Rashba of 60 meV, iii) nontrivial energy gap of 0.14 eV, iv) backscattering forbidden for both edge and bulk conductivity channels in the nanoribbon band structure. These properties make PbBiI a good candidate to construct spintronic devices with less energy loss.
Ayadi, Moncef. « Propriétés dynamiques des verres de spin isolants : influence de la topologie du réseau magnétique et effets magnétiques photoinduits ». Paris 11, 1985. http://www.theses.fr/1985PA112269.
Texte intégralThe study we present in this thesis is a qualitative approach of the relations existing between the topology of the lattice of insulating spin glasses (interaction range, type of disorder, nature of the magnetic interactions in these materials generate magnetic inhomogeneities due to some independent factors, i. E. : - the local chemical fluctuations which, in the case of metallic spin-glasses, are masked by the long-range R. K. K. Y interactions, - the localized character of the frustration, which in the case of metallic spin-glasses, is well distributed over the lattice spins, - the morphology of the magnetic lattice in the case of the amorphous systems. This approach was suggested to us by the discovery of a photoinduced magnetic effect which appears on dynamic properties in the spin-glass phase of manganese or cobalt aluminosilicate glasses. The space and time related characteristics of this phenomenon reveal the local character of the magnetic response to an optical excitation. Such behaviour is inconsistent with the hypothesis of a magnetically homogeneous system. It is consistent with the presence of magnetic inhomogeneities which are evidenced by the structural studies that I did in these materials. We have pursued the same idea by studying the magnetic properties of two other spin glasses which have different structural characteristics as compared to the aluminosilicates: they are EuₓSr₁₋ₓ and Cd₁₋ₓMnₓTe mixed crystals, no photomagnetic effect has been observed in these compounds. The differences and similarities of the dynamical properties in their spin glasses phase as compared to the metallic systems are consistent with the characteristics of their respective magnetic lattices
Candido, Denis Ricardo. « Blurring the boundaries between topological and non-topological physical phenomena in dots ». Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/76/76131/tde-24092018-150734/.
Texte intégralNesta tese investigamos a estrutura eletrônica e as propriedades de transporte de pontos quânticos cilíndricos topologicamente triviais e não-triviais, definidos por confinamento de poços quânticos (QWs) InAs1-xBix/AlSb. Primeiramente, nós prevemos que os QWs usuais baseados em InAs1-xBix/AlSb podem se tornar isolantes topológicos 2D para largura de poço dc > 6.9 nm, com um gap topologicamente não-trivial de aproximadamente 30 meV (> kBT), o que pode permitir aplicações em temperatura ambiente. Além disso, investigamos pontos quânticos cilíndricos definidos a partir de confinamento desses poços contendo Bi, em ambos os regimes trivial (d < dc) e não-trivial (d > dc). Surpreendentemente, descobrimos que os pontos quânticos topologicamente triviais e não triviais têm propriedades de transporte semelhantes, um resultado em grande contraste com as suas versões semiinfinitas, como por exemplo uma fita. Mais especificamente, através de cálculos detalhados, que envolvem uma solução analítica do problema de autovalores dos pontos quânticos, demonstramos que pontos quânticos cilíndricos triviais e não-triviais possuem estados de borda semelhantes, isto é, estados quânticos helicoidais protegidos contra espalhamento elástico não magnético. Curiosamente, nossos pontos quânticos triviais exibem estados helicoidais geometricamente robustos, similarmente aos pontos quânticos topologicamente não-triviais, em uma ampla faixa de parâmetros do sistema, como por exemplo, o raio do ponto quântico. Nós também calculamos as correntes circulantes para os pontos quânticos topologicamente triviais e não-triviais e não encontramos diferenças substanciais entre elas. No entanto, notamos que os pontos quânticos cilíndricos feitos de materiais ordinários III-V ou II-VI (isto é, pontos quânticos não descritos pelo Hamiltoniano BHZ com confinamento) não apresentam estados helicoidais robustos. Consideramos ainda pontos quânticos triviais e não-triviais com quatro estados de borda e calculamos sua condutância entre dois terminais G através de uma abordagem padrão das funções de Green. Para os pontos quânticos triviais e não-triviais, encontramos que G mostra uma ressonância de pico duplo em 2e2/h como função do raio do ponto quantico R e da tensão Vg que controla os níveis de energia do ponto quântico. Por outro lado, tanto os pontos quânticos triviais como os não-triviais podem ter pares de Kramers localizados na borda (edge) e em todo seu volume (bulk) coexistindo em uma mesma janela de energia na região dos estados de valência. Nesse caso, G exibe uma ressonância de pico único em 2e2/h, já que os quatro níveis (dois estados de borda e dois estados de volume bulk) se tornam degenerados para alguns valores de parâmetros particulares R = Rc and Vg = Vgc, em pontos quânticos topologicamente triviais e não triviais. Nós também estendemos nossa investigação para os pontos quanticos de HgTe onde encontramos resultados similares.
Khalil, Lama. « Ultrafast study of Dirac fermions in topological insulators ». Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS344/document.
Texte intégralThis thesis presents an experimental study of the electronic properties of two topological materials, namely, the irradiated three-dimensional topological insulator Bi₂Te₃ and the natural topological superlattice phase Sb₂Te. Both systems were investigated by techniques based on photoemission spectroscopy. The Bi₂Te₃ compounds have been irradiated by high-energy electron beams. Irradiation with electron beams is a very promising approach to realize materials that are really insulating in the bulk, in order to emphasize the quantum transport in the protected surface states. By studying a series of samples of Bi₂Te₃ using time- and angle-resolved photoemission spectroscopy (trARPES) we show that, while the topological properties of the Dirac surface states are preserved after electron irradiation, their ultrafast relaxation dynamics are very sensitive to the related modifications of the bulk properties. Furthermore, we have studied the occupied and unoccupied electronic band structure of Sb₂Te. Using scanning photoemission microscopy (SPEM), we have consistently found various nonequivalent regions on the same surface after cleaving several Sb₂Te single crystals. We were able to identify three distinct terminations characterized by different Sb/Te surface stoichiometric ratios and with clear differences in their band structure. For the dominating Te-rich termination, we also provided a direct observation of the excited electronic states and of their relaxation dynamics by means of trARPES. Our results clearly indicate that the surface electronic structure is strongly affected by the bulk properties of the superlattice. Therefore, for both systems, we show that the surface electronic structure is absolutely connected to the bulk properties
Soto, Alexander Perez. « Tunelamento de estados na superfície de isolantes topológicos ». reponame:Repositório Institucional da UFABC, 2015.
Trouver le texte intégralSticlet, Doru. « Edge states in Chern Insulators and Majorana fermions in topological superconductors ». Thesis, Paris 11, 2012. http://www.theses.fr/2012PA112318/document.
Texte intégralThis thesis follows two threads in the field of topological insulators and superconductors. The first part of the thesis is devoted to the study of two-dimensional quantum anomalous Hall insulators on a lattice, in the absence of an external magnetic flux, but induced by an inhomogeneous flux in the unit cell. The system possesses several gapped phases characterized by a topological invariant, the Chern number, that is related to the conductance carried by the edge states. Here we show that two-band models admit an arbitrary large number of Chern phases or, equivalently, an arbitrary number of edge states, by adding hopping between distant neighbor sites. This result is based on a formula proving that the Chern number of a band depends on certain properties of a finite set of points in the Brillouin zone, i.e. the Dirac points for the gapless system. These ideas are made more concrete in the study of a modified Haldane model, and also by creating an artificial model with five Chern phases, whose edge states are determined in detail. The second part of the thesis focuses on one-dimensional topological superconductors with exotic zero-energy edge states: the Majorana bound states. Here we investigate the presence of Majorana fermions in spin-orbit coupled semiconducting wire in proximity to an s-wave superconductor. We show that the spin-polarization of the electronic degrees of freedom in the Majorana wave function depends on the relative weight of Dresselhaus and Rashba spin-orbit couplings. We also investigate Majorana fermions in linear superconductor-normal and long superconductor-normal-superconductor (SNS) junctions where they appear as extended states in the normal junction. Furthermore, ring geometries can be mapped to an SNS junction, and, we have shown that under the action of superconducting phases gradients, extended Majorana fermions can form again inside the normal wire. Finally a two-band model with multiple Majorana fermions is treated and we show that Josephson junctions built from this model maintain the 4π periodicity for the fractional Josephson effect, one of Majorana fermions signatures
Abdalla, Leonardo Batoni. « Propriedades eletrônicas dos isolantes topológicos ». Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-17072015-140214/.
Texte intégralIn the search of a better understanding of the electronic and magnetic properties of topological insulators we are faced with one of its most striking features, the existence of metallic surface states with helical spin texture which are protected from non-magnetic impurities. On the surface these spin channels allows a huge potential for applications in spintronic devices. There is much to do and treating calculations via \\textit{Ab initio} simulations allows us a predictive character that corroborates the elucidation of physical phenomena through experimental analysis. In this work we analyze the electronic properties of topological insulators such as: (Bi, Sb)$_2$(Te, Se)$_3$, Germanene and functionalized Germanene. Calculations based on DFT show the importance of the separation from interlayers of Van der Waals in materials like Bi$_2$Se$_3$ and Bi$_2$Te$_3$. We show that due to stacking faults, small oscillations in the QLs axis (\\textit{Quintuple Layers}) can generate a decoupling of the Dirac cones and create metal states in the bulk phase Bi$_2$Te$_3$. Regarding the Bi$_2$Se$_3$ a systematic study of the effects of transition metal impurities was performed. We observed that there is a degeneracy lift of the Dirac cone if there is any magnetization on any axis. If the magnetization remains in plane, we observe a small shift to another reciprocal lattice point. However, if the magnetization is pointing out of the plane a lifting in energy occurs at the very $ \\Gamma $ point, but in a more intense way. It is important to emphasize that in addition to mapping the sites with their magnetic orientations of lower energy we saw that the lifting in energy is directly related to the local geometry of the impurity. This provides distinct STM images for each possible site, allowing an experimental to locate each situation in the laboratory. We also studied the topological transition in the alloy (Bi$_x$Sb$_{1-x}$)$_ 2$Se$_3$, where we identify a trivial and topological insulator for $x = 0$ and $x = 1$. Despite the obvious existence of such a transition, important details remain unclear. We conclude that doping with non-magnetic impurities provides a good technique for handling and cone engineering this family of materials so that depending on the range of doping we can eliminate conductivity channels coming from the bulk. Finally we studied a Germanene and functionalized Germanene with halogens. Using an asymmetrical functionalization and with the topological invariant $Z_2$ we noted that the Ge-I-H system is a topological insulator that could be applied in the development of spin-based devices.
Adroguer, Pierre. « Propriétés de transport électronique des isolants topologiques ». Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2013. http://tel.archives-ouvertes.fr/tel-00832048.
Texte intégralMedeiros, Marcos Henrique Lima de. « Propagação de excitações de carga e spin em isolantes topológicos 2D ». Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-11102017-132437/.
Texte intégralIn this work, our main motivation was the understanding about the dynamics of wave packets in 2D topological insulators. How charge excitations move throughout theses materials? In what way their trajectories depend on the initial conditions, and how boundary conditions change this dynamics? These were some of the questions that have guided us in our work. Using numerical simulations, we have studied the movement of gaussian wave packets in HgTe/CdTe quantum wells. The topological insulator behavior for this heterostructure was theoretically predicted on the important work conducted in 2006 by Bernevig et al. (Science, vol. 314, n. 5806, 2006), and experimentally confirmed by König et al. (Science, vol. 318, no. 5851, 2007) a year later. Studing the time evolution of this system, was possible to observe trajectories that depend evidently, not only from the spin projection, but also from the pseudospin orientation coming from the BHZ model. From simulations with periodic boundary conditions in both of the two dimensions, and without the application of any external fields, we observed spiral trajectories accompanied by a spin and pseudospin dependent side-jump. Especially, for the case in which the pseudospin was iniatially oriented in \"z\" direction, the spiral trajectories were replaced by a pattern of the type \"zitterbewegung\" dependent of a bias potential. For the confined systems with barriers of hardwall type, was observed the formation of helical edge states, that is the fingerprint of topological insulators.
Morvan, Alexis. « Honeycomb lattices of superconducting microwave resonators : Observation of topological Semenoff edge states ». Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLS037/document.
Texte intégralThis thesis describes the realization and study of honeycomb lattices of superconducting resonators. This work is a first step towards the simulation of condensed matter systems with superconducting circuits. Our lattices are micro-fabricated and typically contains a few hundred sites. In order to observe the eigen-modes that appear between 4 and 8 GHz, we have developed a mode imaging technique based on the local dissipation introduced by a laser spot that we can move across the lattice. We have been able to measure the band structure and to characterize the edge states of our lattices. In particular, we observe localized states that appear at the interface between two Semenoff insulators with opposite masses. These states, called Semenoff states, have a topological origin. Our observations are in good agreement with ab initio electromagnetic simulations
Demion, Arnaud. « Transport électronique dans le graphène et les isolants topologiques 2D en présence de désordre magnétique ». Thesis, Aix-Marseille, 2015. http://www.theses.fr/2015AIXM4349.
Texte intégralIn this thesis, we study the effect of a magnetic disorder on the electronic transport properties of graphene and HgTe-type 2D topological insulators. Graphene and topological insulators are materials whose electronic excitations are treated as massless Dirac fermions.The influence of magnetic impurities on the transport properties of graphene is investigated in the regime of strong applied electric fields. As a result of electron-hole pair creation, the response becomes nonlinear and dependent on the magnetic polarization.We investigate a transition between a two-dimensional topological insulator conduction state, characterized by a conductance G = 2 (in conductance quantum) and a Chern insulator with G = 1, induced by polarized magnetic impurities
Anversa, Jonas. « Cálculos de primeiros princípios em isolantes topológicos : HgTe/CdTe ». Universidade Federal de Santa Maria, 2014. http://repositorio.ufsm.br/handle/1/3927.
Texte intégralThe observation of the quantum spin Hall effect in the HgTe/CdTe heterostructure triggered the study of materials exhibiting a spin polarized electronic current at their surfaces/ interfaces. These states are topologically protected against perturbations preserving time reversal symmetry and presenting a linear dispersion, forming a Dirac cone. However, non-magnetic perturbations (that preserve time reversal symmetry) will certainly affect these surface/interface states. In this work we user the density functional theory to characterize the topologically protected states of the (001) HgTe/CdTe heterostructure. We observed that for a correct description of the HgTe band structure we use a GGA+U method. The topological states showed a Rashba-like in-plane spin texture. We analyzed the effects of external pressures and electric fields in the HgTe/CdTe heterostructures. We show that these perturbations modify the energetics and dispersion of the protected states, although not destroying the topological phase. Also, we study defects like antisite, vacancy and a Fe magnetic impurity at the interface of the (001) HgTe/CdTe heterostructure. We show that the antisite and the vacancy do not affect the spin polarization nor the energy dispersion of the protected states. On the other hand, the magnetic impurity significantly affects the topological states, degrading the spin polarization for the states close to the magnetic impurity and inducing out-of-plane spin components. Further, we study the (001) HgTe surface for different thicknesses of the HgTe sample, and with different terminations (Hg and Te). To the (001) HgTe samples with a thickness of 38 Å , the spin polarized states do not show a linear dispersion, however, when the thickness is increased we observe the formation of spin-polarized surface states with linear dispersion, characterizing the formation of a Dirac cone. Also, we show that biaxial pressures modify the energy dispersion of the spin polarized states. Finally, we study materials that turn topological insulators under external pressures as the anti-perovskite structures Sr3BiN and Ca3BiN, using the self-consistent GW method. We show that these materials present an inversion of the Bi-pz and Bi-s band edge states when subjected to biaxial tensile stress. We conclude that these materials can be characterized Topological Insulators under pressure.
A observação do efeito Spin Hall Quântico na heteroestrutura HgTe/CdTe motivou o estudo de materiais que exibem uma corrente eletrônica spin-polarizada nas suas interfaces/ superfícies. Estes estados são topologicamente protegidos frente a perturbações que preservam a simetria de reversão temporal e apresentam uma dispersão linear formando um Cone de Dirac. Entretanto, perturbações não-magnéticas (que preservam a reversão temporal) irão certamente afetar estes estados de interface/superfície. Neste trabalho, usamos a Teoria do Funcional da Densidade (DFT), para caracterizar os estados topologicamente protegidos da heteroestrutura HgTe/CdTe (001), que é um Isolante Topológico (IT) 2D. Para uma descrição mais correta das posições dos níveis na estrutura de bandas do HgTe, nós usamos o método GGA+U. Na heteroestrutura, a caracterização dos estados topologicamente protegidos mostrou uma textura de spin no plano da interface, do tipo Rashba. Analisamos os efeitos de perturbações externas na heteroestrutura HgTe/CdTe (001), como pressões e campo elétrico. Mostramos que ambas perturbações modificam a energia do ponto de cruzamento e a dispersão dos estados protegidos, mas não destroem a fase topológica. Estudamos também a presença de defeitos na interface HgTe/CdTe (001), como um anti-sítio, uma vacância e uma impureza magnética de Fe. A presença de um anti-sítio e de uma vacância não afetam a polarização de spin dos estados protegidos e nem sua dispersão. Por outro lado, a presença de uma impureza magnética afeta significantemente estes estados, degradando a polarização de spin para os estados próximos a impureza magnética e fazendo que o sistema apresente componentes de spin fora do plano da interface/superfície. Além disso, estudamos a superfície de HgTe com diferentes espessuras (38, 64, e 129 Å ) e terminações (Hg e Te). Para as estruturas com uma espessura de 38 Å , os estados com polarização de spin não apresentam uma dispersão linear, entretanto, quando aumentamos a espessura do material, observamos a formação dos estados de superfície com uma dispersão linear e polarização de spin, caracterizando a formação do cone de Dirac. Mostramos também, que pressões biaxiais modificam a dispersão dos estados com polarização de spin. Realizamos um estudo de materiais que são Isolantes Topológicos quando submetidos a pressões externas. Neste caso estudamos as estruturas antiperovsquitas Sr3BiN e Ca3BiN, usando método GW auto-consistente. Mostramos que esses materiais apresentam uma inversão dos níveis de energia Bi-pz e Bi-s quando sujeitos a pressão externa biaxial distensiva. Concluímos que estes materiais podem ser caracterizados como Isolantes Topológicos sob pressão.
Bouvier, Clément. « Preuves expérimentales d'un transport de surface sur un isolant topologique 3D HgTe/CdTe sus contrainte ». Thesis, Grenoble, 2013. http://www.theses.fr/2013GRENY078/document.
Texte intégralThis report deal with caracterisation of magnetotransport in HgTe/CdTe structures bulk strained in that a topological surface transport is predicted. This new kind of material is a 3D topological insulator.In this thesis, I will explain what means 3D/2D topological insulator before focusing on II-VI system lijke HgTe/CdTe.Next, I will discuss about growing conditions performed in CEA/Leti and then material caracterisation by X-ray. Surfaces band structures were also, observed by ARPES, underligned in the report.A third part deal with Hall bars design and conception in order to emphasize topological behavior of these surfaces.The last part shows the results obtained on these Hall bars with magnetotransport at low and high magnetic field. Ambipolaire behaviour, non trivial Berry phase, weak antilocalization and the interger quantum hall effect in HgTe/CdTe structures are studied and a possible interpretation of these results are given
Resende, Bruno Messias Farias de. « Modelos matemáticos para isolantes topológicos em redes ». Universidade Federal de Uberlândia, 2017. http://dx.doi.org/10.14393/ufu.di.2018.90.
Texte intégralSistemas descritos por Hamiltonianos do tipo Dirac são ubíquos. Surgindo em materiais como grafeno, isolantes topológicos ou recentemente nos semimetais de Weyl. Devido ao interesse tecnológico e acadêmico desses materiais, caracterizar suas propriedades é essencial. Uma abordagem matemática para efetuar o estudo de tais sistemas consiste em discretizar o Hamiltoniano no espaço das posições, mas tal abordagem esbarra no problema da duplicação de férmions. De forma breve, esse problema atesta pela impossibilidade de simulação de férmions livres não massivos em uma rede discreta sem que alguma simetria ou propriedade da Hamiltoniana seja quebrada. No presente trabalho demonstramos que tal problemática não deveria ser causa de preocupação para o estudo de sistemas na matéria condensada, pois podemos utilizar a simetria quebrada para confinar os portadores de carga no sistema para remover os estados duplicados. Tal remoção é conseguida com a inserção de um termo quadrático em relação ao momento, conhecido como massa de Wilson. Nesse sentido podemos inserir um termo de Wilson com quebra de simetria necessária para o confinamento, tornando o problema de duplicação de férmions irrelevante, essa relação não tinha sido notada até o presente trabalho, e recentes resultados na literatura erroneamente atribuem a massa de Wilson com a quebra de uma simetria de reversão temporal, o que não necessariamente é verdade. Nesse contexto além de abordar essa relação a presente dissertação objetiva também elucidar alguns mal entendimentos a respeitos das massas de Wilson, quiralidade e outras simetrias. Para validar nosso argumento central estudamos diversos sistemas de interesse e comparamos com os resultados na literatura.
Hamiltonians of Dirac type are ubiquitous. Appearing in materials such as graphene, topological insulators or recently in the Weyl semimetals. Due to the technological and academic interest of these materials, characterizing their properties is essential. A mathematical approach to study these systems consists of discretizing the Hamiltonian in the space of positions, but such an approach causes the problem of doubling fermions (FDP). We demonstrate the FDP should not be a cause of concern for the study of confined systems because we can use the broken symmetry to confine in the system to remove the duplicate states. Such removal is achieved by inserting a quadratic term with respect to the moment, known as the Wilson mass. In this sense we can insert a Wilson term with symmetry breaking required for confinement, rendering the fermion duplication problem irrelevant, this relationship had not been noticed until the present work, and recent literature results erroneously attribute Wilson’s mass to break of a symmetry of time reversal, which is not necessarily true. In this context, in addition to addressing this relationship, the present dissertation also aims to elucidate some misconceptions regarding the Wilson masses, chirality and other symmetries. In order to validate our central argument we study several systems of interest and compare it with the results in the literature.
Dissertação (Mestrado)
Tauber, Clément. « Trois applications d'une approche géométrique à la théorie conforme des champs ». Thesis, Lyon, École normale supérieure, 2015. http://www.theses.fr/2015ENSL1047/document.
Texte intégralThe thesis, consisting of three parts, is focusing on different physical problems that are related to two dimensional Conformal Field Theory (CFT).The first part deals with nonequilibrium transport properties across a junction of quantum wires. Three models are studied. The first one describes the wires by a free compactified bosonic field, seen as the bosonization of the Luttinger liquid of electrons. The junction of the wires is modeled by a boundary condition that ensures nontrivial scattering of the charges between the wires. Combining canonical quantization and functional integral, we compute exactly the current correlation functions in equilibrium, but also in a nonequilibrium stationary state, as well as the full counting statistics of charge and energy between the wires set at different temperatures and potentials. The two other models of quantum wire junction are based on Wess-Zumino-Witten theory (WZW). In the first one, the junction is described by a “cyclic brane” and in the second, by a “coset brane”. The results in the first case are as complete as for the free field, but the charges are fully transmitted from one wire to the next one. In the second case, the scattering is nontrivial, but the model turns out to be difficult to solve.The second part of the thesis studies the global gauge anomalies in “coset” models of CFT, realized as gauged WZW theories. The (almost) complete classification of such anomalies, that lead to some inconsistent coset models, is presented. It is based on Dynkin classification of subalgebras of simple Lie algebras.Finally, the third part of the thesis describes the geometric construction of index from unitary operator families obtained from valence band projectors of a two-dimensional time-reversal invariant topological insulator. The index is related on one hand to the square root of the Wess-Zumino amplitude of such a family, and, on the other hand, it reproduces the Kane-Mele invariant of the insulator. The last identification requires a nontrivial argument that uses a new gauge anomaly of WZW models with boundary.The three parts of the thesis use similar geometrical tool of CFT, that permits to obtain several original results. The unity in the method, as well as the topic of anomalies, builds a bridge between the different components of the manuscript
Yves, Simon. « Métamatériaux cristallins : du motif sub-longueur d'onde au comportement macroscopique ». Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCC226.
Texte intégralMany material properties arise from the interaction between their constituents and a wave. This is mainly conditioned by two characteristics: the composition and the structural arrangement. This interdependence is precisely described by condensed matter physics. This motivated the discovery of composite materials whose characteristics also stem from these two criteria. They divide in two categories. The first is the photonic/phononic crystals, whose properties are linked to their periodic arrangement. The second category is the one of metamaterials, whose properties come from the interaction of their constituents with the waves. The structural effects are generally neglected in the description of these media and they are considered to be homogeneous media with effective parameters. These two types of systems seem very different from the point of view of the interaction with the waves. In this thesis, we focus on locally resonant metamaterials, whose unit cell is a sub-wavelength resonator. Instead of seeing them as effective homogeneous media, the idea is to start from the characteristics of the unit cell of the medium as well as from its spatial arrangement in order to obtain its macroscopic properties. This microscopic approach makes it possible to jointly apprehend the effects of structure and composition. This is described in Chapter I, where we introduce the concept of polariton whose dispersion relation has a band linked to subwavelength modes, and a hybridization bandgap. In Chapter II, we use the latter to induce a localized coupling between resonant defects that is similar to the hopping term found in tight-binding solid-state physics Hamiltonians. We reproduce the band structures of graphene and of the dice lattice, which allows us to measure Dirac cones within the system. In Chapter III, we introduce the concept of crystalline metamaterials, which amounts to seeing these media as photonic/phononic crystals, but on a very small scale compare to the operating wavelength. This allows us to induce a negative band in the system but also a relatively flat band, and Dirac cones. In Chapter IV we break these cones by creating an analogue of the quantum Hall effect of Valley, which amounts to jointly modifying the structure and composition of the unit cell. In Chapter V we again break these cones in order to induce topological properties in the medium and to create a macroscopic analogue of a topological isolator
Souza, Jean Carlo 1993. « Estudos de ressonância de spin eletrônico (RSE) em isolantes topológicos dopados com terras-rara ». [s.n.], 2017. http://repositorio.unicamp.br/jspui/handle/REPOSIP/326704.
Texte intégralDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin
Made available in DSpace on 2018-09-02T11:57:27Z (GMT). No. of bitstreams: 1 Souza_JeanCarlo_M.pdf: 4438731 bytes, checksum: aaba7a375b2b45b638619e944111c41b (MD5) Previous issue date: 2017
Resumo: A ideia de topologia na Física da Matéria da Condensada, apesar de ter surgido com o efeito Hall quântico inteiro, só voltou a ser explorada recentemente na busca de novas fases da matéria depois do surgimento dos Isolantes Topológicos (ITs) 2D. Após a previsão teórica, e a descoberta experimental, foi proposto que esta nova fase poderia ser generalizada para sistemas 3D, em que o volume do material seria isolante com estados metálicos de superfície que possuiriam canais de spin polarizados. Apesar de diversos experimentos e o surgimento de outras fases topológicas da matéria subsequentes, ainda há dúvidas sobre a natureza dos ITs 3D. Os efeitos topológicos mais claros ainda não foram observados de forma inequívoca e reprodutível experimentalmente e ainda seria de extrema valia encontrar técnicas experimentais que possam complementar os mais discutidos experimentos de ARPES. Nesta dissertação foram estudadas duas famílias distintas de materiais propostas como possíveis ITs 3D: os binários Bi2Se3 e Sb2Te3 e o half-Heusler YPdBi. Utilizando a técnica de auto-fluxo e a fusão estequiométrica, os sistemas foram sintetizados dopados com os terras-rara Gd3+, Nd3+ e Er3+ para realizar estudos de ressonância de spin eletrônico (RSE) e do papel dos efeitos de campo cristalino (CEF) - no caso do half-Heusler. Para o ternário YPdBi foram feitos dois estudos. Na família dos half-Heuslers, a ordem topológica surge da relação entre o acoplamento spin-órbita e a hibridização, que está ligada com a mudança do parâmetro de rede, então os efeitos de CEF poderiam estar refletindo a transição entre a trivialidade e a não-trivialidade. A partir das medidas de susceptibilidade magnética em função da temperatura das amostras dopadas com Nd3+ e Er3+ combinadas com os estudos de RSE, foi possível extrair os parâmetros de campo cristalino (CFP) de quarta e sexta ordem. Comparando esses dados com resultados anteriores para o material, supostamente, não-trivial YPtBi, observou-se uma mudança sistemática no sinal dos CFP. Resultados prévios para as amostras de YPtBi dopadas com Nd3+ mostram uma evolução não usual para uma forma de linha difusiva com a potência de micro-onda. Neste trabalho também foi realizado um estudo da forma de linha em função da potência. Apenas a ressonância do Nd3+ para os monocristais de 10% de Nd em YPdBi mostrou uma forma de linha difusiva que evolui com a potência da micro-onda. No caso dos binários Bi2Se3 e Sb2Te3, o objetivo era otimizar a rampa de tratamento térmico para obter monocristais melhores que poderiam permitir a observação de um espectro totalmente resolvido do Gd3+. Após mudanças no crescimento dos monocristais, o espectro totalmente resolvido foi obtido para as amostras de Bi2Se3. No caso do Sb2Te3 apenas uma linha central com a estrutura fina colapsada foi observada. Acompanhando o deslocamento g e a evolução da largura de linha dH da RSE do Gd3+ com a temperatura, o comportamento negativo do deslocamento g para toda a faixa de temperatura indica que elétrons do tipo p são os grandes responsáveis pela formação da superfície de Fermi residual destes sistemas. Um aumento no coeficiente angular de dH em função da temperatura, a taxa Korringa b, foi observado em baixas temperaturas, logo diferentes concentrações de Gd3+ foram utilizadas para estudar este comportamento. Novamente observou-se um comportamento anômalo em baixas temperaturas, o que poderia estar relacionado com a evolução dos CFP com a temperatura. Todos esses resultados foram discutidos levando-se em conta a possibilidade de existência de topologia não-trivial na estrutura eletrônica desses materiais, com foco particular na relação da interação spin-órbita e os efeitos de campo cristalino com a manifestação da topologia não trivial nesses sistemas
Abstract: The idea of topological systems in Condensed Matter Physics, although already explored in the Quantum Hall Effect, has recently become a topic of intense scientific investigation. In particular, great efforts have been dedicated to the search for new quantum phases since the proposal of the Topological Insulators (TIs) in 2D. After the theoretical prediction and the experimental discovery of the TIs in the 2D case, the existence of the Quantum Hall Spin Effect in 3D, 3D TIs, was proposed, where an insulator bulk and metallic surface states with spin polarized channels could be experimentally realized. Although many experiments have been performed, and some groups claimed the direct observation of such new topological phases, there is still a lot of controversy about the nature of the 3D TIs and about the actual microscopic origin of the metallic states on the surface of the studied materials. Other signatures of the topological phases have not been unambiguously and repeatedly measured yet and there is an obvious lack of a supplementary lab technique to be compared to the most used technique to probe these states, which is ARPES. In this work we have studied two different classes of 3D TIs: the binaries Bi2Se3 and Sb2Te3 and the half-Heusler YPdBi. We have been able to grow single crystals of these materials pure and rare-earth doped with Gd3+, Nd3+ and Er3+ using the self-flux technique and the stoichiometric melting. The aim was to use these crystals to study Electron Spin Resonance (ESR) as a potential probe to investigate the existence of the metallic surface states and to explore the possible of the crystalline electrical field (CEF) effects on the formation of the non-trivial electronic structure of these materials. Regarding the YPdBi, our ESR and magnetization studies have revealed that, in the half-Heusler family, the topological order emerges from the interplay between spin-orbit coupling and the hybridization, which is connected with the changes on the lattice parameter. Thus, the CEF effects could reflect the transition from trivial to nontrivial topology. From the magnetic susceptibility data as a function of temperature from the Nd3+ and Er3+ doped samples combined with the ESR studies, it was possible to extract the fourth and sixth order crystal field parameters (CFP). Comparing our data with the previous results from YPtBi, which is a putative non-trivial material, a systematic change in the sign of the CFP was observed. Previous results with the YPtBi Nd-doped samples show an unusual evolution of the Nd3+ ESR line to a diusive-like line shape as a function of the microwave power. In this work we have performed a similar study of the Nd3+ ESR line shape as a function of the microwave power. Only for the single crystal of 10% Nd in YPdBi resonance shows a diffusive-like line shape that evolves with the microwave power. In the case of the binaries Bi2Se3 e Sb2Te3, the aim of this work was to optimize the heat treatment used in previous works of our group to obtain better single crystals that could allow the observation of the full resolved spectra from Gd3+. After many changes in the single crystal growth method, we were able to observe fully resolved Gd3+ ESR spectra in the Bi2Se3 samples. Regarding the Sb2Te3 single crystals, only a single Gd3+ Dysonian ESR line was observed. Following the Gd3+ ESR dg and dH as a function of temperature, the observed negative behavior of dg, in the whole temperature range studied, indicates that p-type electrons are the main source for the formation of the small the Fermi surface of these materials. An increase of the angular coefficient of dH as a function of temperature, the Korringa rate b, at low temperatures was observed and different concentrations of Gd3+ were required to investigate this anomaly. Again this anomalous behavior at low temperatures was observed for the all Gd-doped samples, which could be related to an evolution of CFP with temperature. We discuss our results taking into account the existence of non-trivial topological states in our samples and the role of spin-orbit and CEF effects might have in the formation of such states
Mestrado
Física
Mestre em Física
132653/2015-0
CNPQ
CAPES
FAPESP
Garitezi, Thales Macedo 1987. « Estudo de propriedades magnéticas e de transporte em novos materiais ». [s.n.], 2014. http://repositorio.unicamp.br/jspui/handle/REPOSIP/276979.
Texte intégralTese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin
Made available in DSpace on 2018-09-24T14:58:04Z (GMT). No. of bitstreams: 1 Garitezi_ThalesMacedo_D.pdf: 27111125 bytes, checksum: d3a94f446fa3f67a500d9adc5f733dc0 (MD5) Previous issue date: 2014
Resumo: Nesta tese, são abordadas duas principais classes de materiais: os supercondutores à base de ferro e arsênico (FeAs) e os isolantes topológicos tridimensionais. Os supercondutores à base de FeAs foram descobertos em 2008 e desde então despertaram grande interesse na comunidade científica como candidatos à supercondutividade não-convencional de alta temperatura. Dentre as várias estruturas à base de FeAs descobertas, em particular, a família BaFe2As2 (122) é uma das mais estudadas até o momento por ser um composto intermetálico possível de ser crescido com relativa facilidade e alta qualidade comparada às outras famílias. Este composto puro possui uma transição estrutural de tetragonal para ortorrômbica à uma temperatura Ts ? 139 K, e, diminuindo a temperatura, há uma transição magnética de paramagnético (PM) para uma ordem anti-ferromagnética tipo onda de densidade de spin (SDW, no inglês) em TSDW ? 134 K. Estas transições em Ts e TSDW são gradualmente suprimidas tanto por substituição química quanto por pressão aplicada, e, antes que sejam completamente suprimidas, supercondutividade é induzida. Nesta região onde a supercondutividade (SC) ainda está emergindo, há coexistência e/ou competição de SC e SDW, com a presença de momentos quase localizados do Fe. Estes momentos podem agir como centros eficientes de aprisionamento de vórtices (centros de pinning) que são suprimidos gradativamente por pressão aplicada, formando um efeito de pinning magnético que se manisfestaria na corrente crítica dessas amostras. Para estudar os possíveis efeitos de pinning magnético neste material, foram crescidas amostras com diferentes substituições químicas e realizados estudos de densidades de corrente crítica sob pressão e campos magnéticos aplicados. Enquanto observamos que a densidade de corrente crítica nas amostras estudadas é dominada pela evolução da temperatura crítica Tc, encontramos evidências indiretas para a presença de pinning magnético em nossas amostras, através da comparação da dependência com a pressão observada para a temperatura crítica supercondutora Tc e para a densidade de corrente crítica Jc. Quanto às transições estrutural e magnética, discute-se na literatura se nesses sistemas há dopagem eletrônica efetiva quando se realiza substituição química, ou se ocorre uma sintonização das propriedades pelo ajuste da geometria dos tetraedros de FeAs nos planos do material. Além disso, na faixa de temperatura entre Ts e TSDW, há certo debate se o material torna-se inteiramente ortorrômbico e PM, ou se há coexistência entre as fases tetragonal/PM e ortorrômbica/SDW. Neste trabalho, foram crescidos monocristais de Ba(Fe,M)2As2 (M = Co, Cu) e neles estudadas as transições estrutural e magnética e a fase entre elas utilizando técnicas de ressonância magnética nuclear (RMN), difração de raios-X e calor específico. Nossos resultados sugerem que, independente do substituinte, não há dopagem eletrônica e que a geometria nos planos de FeAs regula as propriedades do material. Além disso, mostramos que, de fato, existe coexistência entre as fases tetragonal/PM e ortorrômbica/SDW nas amostras. Estes resultados corroboram nossas próprias observações em amostras de (Ba,K)Fe2As2, o que também indica a independência dos resultados com o tipo, concentração e localização dos átomos substituintes na matriz 122. Os isolantes topológicos (ITs) são uma nova classificação da matéria proposta teoricamente e observada experimentalmente em 2006, e consistem de maneira simplificada em materiais que são isolantes de banda em seu volume, porém possuem estados de superfície metálicos robustos. As propriedades exóticas destes estados de superfície tornam estes materiais candidatos a aplicações em computação quântica e spintrônica. Muitas famílias foram propostas como ITs e estudadas recentemente, em particular a família 23 ((Bi,Sb)2(Se,Te)3) e a família dos half-Heuslers, que são o foco desta Tese. Porém, ainda há muitos aspectos destes materiais que não estão bem determinados, como por exemplo a penetração dos estados de superfície, e sua resposta a campos magnéticos e a radiações incidentes. Neste trabalho, sintetizamos cristais dos ITs da família 23 e o half-Heusler YBiPt, e os estudamos utilizando a técnica de ressonância de spin eletrônico (RSE). Para o YBiPt dopado com Nd3+, observamos um comportamento da forma de linha nãoconvencional do espectro de RSE do Nd3+, onde a forma da linha depende fortemente da potência da micro-ondas, das dimensões da amostra e da concentração de Nd3+. A este comportamento não convencional atribuímos a presença de um efeito de fônon bottleneck e à presença dos estados de superfície. Para o Bi2Se3, nossos resultados preliminares sugerem que os estados de superfície têm uma interação maior com as sondas de Gd3+ abaixo de 40 K, e que estes estados de superfície possuem caráter de orbitais p
Abstract: In this thesis, two main material classes are studied: the iron arsenide (FeAs) superconductors and the three-dimensional topological insulators. The FeAs based superconductors were discovered in 2008 and since then have aroused great interest in the scientific community as possible unconventional high-temperature superconductors. Amongst the many FeAs bases structures that were discovered until now, the BaFe2As2 (122) family is one of the most studied for being an intermetallic compound which can be grown with reasonable ease and high quality when compared to other families. This pure compound presents a structural transition at Ts ? 139 K from tetragonal to orthorhombic, and a magnetic transition at a lower TSDW ? 134 K from paramagnetic (PM) to a spin density wave (SDW) anti-ferromagnetic order. Both transitions at Ts and TSDW are gradually suppressed by either chemical substitution or applied pressure, and, before both are completely suppressed, superconductivity emerges. In this region where superconductivity (SC) is still emerging, there is coexistence and/or competition between SC and SDW order, with the presence of Fe quasi-localized magnetic moments. Those moments may act as efficient pinning centers that are gradually suppressed by applied pressure, producing a magnetic pinning effect that would manifest itself in the critical currents of such samples. To study magnetic pinning effects in the 122 family, samples with different chemical substitutions were grown, and critical current density studies were performed under applied pressure and magnetic fields. While the behavior of critical current densities is dominated by the evolution of critical temperature Tc with pressure, we have found indirect evidences for the presence of magnetic pinning in our samples. Regarding the structural and magnetic transitions, there are evidences that, in the 122 system, there is no effective electronic doping when a chemical substitution is performed but a tuning of the system properties by the geometric configuration of FeAs tetrahedra in the material. Also, there is some debate if in the temperature range between Ts and TSDW the material becomes completely orthorhombic and PM, or if there is coexistence of tetragonal/PM and orthorhombic/SDW phases. In this work, Ba(Fe,M)2As2 (M = Co, Cu) single crystals were grown and their structural and magnetic transitions were investigated by nuclear magnetic resonance (NMR), X-ray diffraction and specific heat. Our results show that there is no effective electronic doping induced by any of the substitutions, and that it is the geometric configuration of FeAs tetrahedra that tunes the system properties. Also, we have shown that there is coexistence between tetragonal/PM and orthorhombic/SDW phases in these samples. The results confirm our previous observations made in (Ba,K)Fe2As2, which also indicates that our results do not depend on the type, concentration and placement of substituted atoms in the 122 matrix. Topological insulators (TIs) are a new class of condensed matter which was proposed theoretically and experimentally observed in 2006. They are, in a simplified view, materials which are band insulators in the bulk, but possess roubst intrinsic metallic surface states. The exotic properties of those surface states make these materials possible candidates in quantum computing and spintronic applications. Many different materials were proposed as TIs and recently studied, in particular the 23 family ((Bi,Sb)2(Se,Te)3) and the half-Heusler family, which are the focus of this thesis. Yet, there are several aspects of these materials which are not yet fully understood, such as the penetration of the surface states, and their response to magnetic fields and incident radiation. In this work, single crystals of the 23 and half-Heusler families were grown, and were studied by electronic spin resonance (ESR). For YBiPt, we observed an anomalous lineshape behavior, to which we attribute a phonon bottleneck effect and the presence of the surface states. For Bi2Se3, our preliminary results indicate that the surface states have an enhanced exchange interaction with the Gd3+ magnetic probes below 40 K, and that those surface states have a p-orbital character
Doutorado
Física
Doutor em Ciências
Inhofer, Andreas. « Etude de la compressibilité AC des isolants topologiques 3D HgTe et Bi2Se3 : mise en évidence d'états massifs excités de surface ». Thesis, Paris Sciences et Lettres (ComUE), 2017. http://www.theses.fr/2017PSLEE016/document.
Texte intégralThis thesis discusses the electronic compressibility of two representative three dimensional topological insulators: Strained mercury telluride (HgTe) and bismuth selenide (Bi2Se3).I present low temperature phase-sensitive electron admittance data over a broad frequency range. This allows to extract the quantum capacitance related to the density of states and the resistivity of the investigated materials.We show that the response of an intrinsic topological insulator is dominated by topological surface states over a large energy range exceeding the bulk material’s transport gap. This regime, named “Dirac screening” is characterized by an electron compressibility proportional to the surface Fermi level and a high mobility.Subsequently, we investigate the limits of this regime. At high energy and large perpendicular electric fields we observe the population of excited massive surface states. Experimentally, these manifest themselves in multiple signatures: A drop in the electronic diffusion constant, a peak in the conductivity, appearance of a second carrier type in magneto-transport and meta-stability in the charge-voltage relation.A theoretical model based on a quasi-relativistic treatment of the surface Hamiltonian is presented. It allows to identify the electric field and energy dependence of the massive surface states.This thesis is complemented by experimental results on Bi2Se3 grown on boron nitride, where we demonstrate the importance of clean surfaces for the study of electronic properties in topological insulators
Nalitov, Anton. « Spin dynamics ande topological effects in physics of indirect excitons and microcavity polaritons ». Thesis, Clermont-Ferrand 2, 2015. http://www.theses.fr/2015CLF22569/document.
Texte intégralThe present thesis manuscript is devoted to new phenomena in physics of light-matter quasiparticles in heterostructures, related to spin and topology. It is divided into four parts. Chapter 1 gives a necessary background, introducing basic properties of microcavity polaritons and indirect excitons in coupled quantum wells. Chapter 2 is focused on spin dynamics and topological defects formation in indirect exciton many-body systems. The last 2 chapters are related to microcavity-based structures. Chapter 3 is devoted to polariton spin dynamics in optical parametric oscillators. Finally, Chapter 4 studies pillar microcavity lattices and introduces the polariton topological insulator
Noel, Paul. « Dynamical spin injection and spin to charge current conversion in oxide-based Rashba interfaces and topological insulators ». Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAY062.
Texte intégralUsing a ferromagnetic layer has been the first method to obtain and detect spin currents, allowing to modify the magnetization state of an adjacent layer using spin transfer torque. However, in recent years, an alternative way to manipulate spin currents has been proposed. An emerging field of spintronics, called spin-orbitronics, exploits the interplay between charge and spin currents enabled by the spin-orbit coupling (SOC) in non-magnetic systems. An efficient current conversion can be obtained through the Spin Hall Effect in heavy metals such as Platinum or Tantalum. The conversion can also be obtained by exploiting the Edelstein Effect in Rashba interfaces and topological insulators.The spin to charge conversion by means of Inverse Edelstein Effect and inverse Spin Hall Effect can be studied by the spin pumping by ferromagnetic resonance technique. This manuscript present these two conversion mechanisms as well as the technique that was used to measure them, which is based on an electrical detection of the ferromagnetic resonance. Results on the spin to charge current conversion obtained in metals, oxide-based Rashba interfaces and topological insulators will be presented. Among these systems we have demonstrated the possibility to tune the conversion efficiency by using a gate voltage in a two-dimensional electron gas at the surface of an oxide SrTiO3. Moreover it is possible to tune this effect, a remanent way, thanks to the ferroelectricity obtained in SrTiO3 at cryogenic temperatures.Other studied systems such as topological insulators HgTe and Sb2Te3 also have promising properties for an efficient spin to charge current conversion at room temperature. In particular we showed than in HgTe by using a thin HgCdTe protective layer, it is possible to obtain a spin to charge current conversion efficiency one order of magnitude larger than in Pt.These results suggest that stwo dimensional electron gases at oxide interfaces and topological insulators have a strong potential for the efficient detection of spin currents for possible beyond CMOS applications
Guillet, Thomas. « Tuning the spin-orbit coupling in Ge for spin generation, detection and manipulation ». Thesis, Université Grenoble Alpes, 2020. http://www.theses.fr/2020GRALY033.
Texte intégralOne of the main goals of spintronics is to achieve the spin transistor operation and for this purpose, one has to successfully implement a platform where spin currents can be easily injected, detected and manipulated at room temperature. In this sense, this thesis work shows that Germanium is a very good candidate thanks to its unique spin and optical properties as well as its compatibility with Silicon-based nanotechnology.Throughout the years, several spin injection and detection schemes were achieved in Ge but the electrical manipulation of the spin orientation is still a missing part. Recently we focused on two approaches in order to tune the spin-orbit interaction (SOI) in a Ge-based platform. Both rely on the structural inversion asymmetry and the spin-orbit coupling at surfaces and interfaces with germanium (111). First, we performed the epitaxial growth of the topological insulator (TI) Bi2Se3 on Ge (111). After characterizing the structural and electrical properties of the Bi2Se3/Ge heterostructure, we developed an original method to probe the spin-to-charge conversion at the interface between Bi2Se3and Ge by taking advantage of the Ge optical properties. The results showed that the hybridization between the Ge and TI surface states could pave the way for implementing an efficient spin manipulation architecture.The latter approach is to exploit the intrinsic SOI of Ge (111). By investigating the electrical properties of a thin Ge(111) film epitaxially grown on Si(111), we found a large unidirectional Rashba magnetoresistance, which we ascribe to the interplay between the externally applied magnetic field and the current-induced pseudo-magnetic field in the spin-splitted subsurface states of Ge (111). The unusual strength and tunability of this UMR effect open the door towards spin manipulation with electric fields in an all-semiconductor technology platform.In a last step, I integrated perpendicularly magnetized (Co/Pt) multilayers-based magnetic tunnel junctions on the Ge (111) platform. I developed an original electro-optical hybrid technique to detect electrically the magnetic circular dichroism in (Co/Pt) and perform magnetic imagingThese MTJs were then used to perform spin injection and detection in a lateral spin valve device. The perpendicular magnetic anisotropy (PMA) allowed to generate spin currents with the spin oriented perpendicular to the sample plane.Finally, I assembled all these building blocks that were studied during my PhD work to build a prototypical spin transistor. The spin accumulation was generated either optically or electrically, using optical spin orientation in germanium or the injection from the magnetic tunnel junction
Nicolaï, Laurent. « Couches minces de Bi et nouveaux composants : les effets du couplage spin-orbit dans la structure électronique ». Thesis, Cergy-Pontoise, 2017. http://www.theses.fr/2017CERG0913/document.
Texte intégralIn this thesis, we explore bismuth based materials that may exhibit topological properties. Bi is a parent compound of known Topological Insulators which consist of an insulating bulk while also presenting topologically protected conducting electronic surface states. In particular, these surface states are spin polarised and are protected by time-reversal symmetry. The dual appeal of topological insulators stems not only from their obvious interest from a fundamental physics point of view, but also from the fact that they may find use in spintronics and quantum computing.In those systems the spin-orbit coupling plays a central role. Spin-orbit coupling can also lead to the Rashba or Dresselhaus splitting, phenomena arising from the symmetry breaking respectively engendered by the surface/interface of a system or from the inherent atomic crystal structure.The interpretation of measured spin dependent band structure, as observed in (Spin-) and Angle-Resolved Photoemission Spectroscopy, was supported and completed by ab-initio Korringa-Kohn-Rostoker electronic structure calculations which account for all aspects of the investigated systems: in particular spin-orbit coupling, fundamentally included thanks to a fully relativistic approach.We first deposited Bi thin films onto a InAs(111) substrate. A crystal of Bi of very high quality was grown, confirmed by reproduction of the measured electronic bands by theoretical investigation. In parallel to Bi film growth, we observed that In and Bi form InBi crystals, exhibiting topological surface states. Our theoretical analyses confirm that these surface states are spin polarised.In the second part of the thesis, Bi was used as a dopant within InAs, forming an InAsBi alloy system. The strong spin-orbit coupling brought on by Bi generated simultaneously measurable Rashba and Dresselhaus effects, consequently splitting surface states in a completely atypical manner, giving non-helical spin polarised states
Teixeira, Raphael Levy Ruscio Castro. « Impurezas magnéticas no modelo de Kanie-Mele com supercondutividade ». Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-12052018-195714/.
Texte intégralIn this work, we study a honeycomb lattice with induced superconductivity and edge impurity in order to show the existence of a phase that host Majorana bound state. To do so, we start introducing topological invariants, Chern number and Z2, and we show two models for honeycomb lattice. The first, Haldane\'s Model, due its historical importance. The second, Kane-Mele model, because it will be used during all this work. Then we review superconductivity, showing the self-consistent method, and we apply it to Kane-Mele model, in which we find some necessary conditions to induce superconductivity only at the edges. From this point, we study the effect of magnetic impurities at the edges, and we introduce Majorana bound state, that will be the main objective of our results. In our results, we show the existence of topological non-trivial phases for spiral magnetic chain in the zigzag edge. With this we make a phase diagram. We also find oscillation in the energy spectrum and the topological phase changes with the oscillation, this is different from square lattice in which we should not have a change in the topological phase. We conclude this work with experimental implications of our result and possible developments.
Fromholz, Pierre. « Etude des phases topologiques de type Haldane par l'intermédiaire d'un système de fermions alcalno-terreux ultrafroids de type double-puits ». Thesis, Cergy-Pontoise, 2018. http://www.theses.fr/2018CERG0976/document.
Texte intégralTopological phases exist beyond the standard Ginzburg-Landau paradigmthat dominated the understanding of phases and phase transitions in condensed matter systems. Paradigmatic examples have been derived to establish a new theoretical basis that takes into consideration these topological aspects. The spin 1 Haldane phase is one of them for the unidimensional case. The present thesis aims to study this phase as well as its suggested generalizations by focusing on a way to implement them experimentally using ultracold fermionic alkaline-earth atoms, that involve an internal SU(N) symmetry. The model describing the experiment is called the double-well model and depicts a lattice of two interacting chains. The model is analysed at weak coupling, strong coupling and using a numerical tool. At half-filling and inthe regime of srong repulsions between particles in the same well as well as two facing wells, a Haldane-like symmetry-protected topological phase is systematically expected for all N, including the "chiral" Haldane phase. The effective model obtained when N Æ 3 is the 3-3bar ladder model (describing two spin chains, one in the fondamental representation of SU(N), and the other in its conjuguate) and is particulary explored
Alarcón, Díez Víctor. « Development of charged particle detection systems for materials analysis with rapid ion beams : large solid angle detectors and numerical nuclear pulse processing ». Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066489/document.
Texte intégralThis thesis presents new developments in charged particle detection and digital pulse processing for application in analysis with fast ion beams - Ion Beam Analysis (IBA). In particular a charged particle detector array, consisting of 16 independent charged particle detectors on a single silicon chip is implemented giving an overall solid angle of detection around two orders of magnitude greater than the standard charged particle detectors used in IBA. Sixteen parallel data acquisition channels are implemented using a fully digital approach for nuclear pulse processing. The overall system has an energy resolution equivalent to that of standard detectors. The large amount of data generated is handled in a self-consistent way by spectrum fitting with a simulated annealing algorithm via the NDF DataFurnace. The large solid angles thus achieved are exploited in Rutherford Backscattering Spectrometry (RBS) and ion channelling studies of the topological insulator Bi2Se3 enriched in Fe, in view of studies of the thermo-electric effect, spintronics and quantum computing, and in RBS and Nuclear Reaction Analysis (NRA) studies of organic photovoltaic materials based on tetraphenyldibenzoperiflanthene (DBP) as the photo-absorber and transition metal oxide charge injectors
Plekhanov, Kirill. « Topological Floquet states, artificial gauge fields in strongly correlated quantum fluids ». Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS264/document.
Texte intégralIn this thesis we study the topological aspects of condensed matter physics, that received a revolutionary development in the last decades. Topological states of matter are protected against perturbations and disorder, making them very promising in the context of quantum information. The interplay between topology and interactions in such systems is however far from being well understood, while the experimental realization is challenging. Thus, in this work we investigate analytically such strongly correlated states of matter and explore new protocols to probe experimentally their properties. In order to do this, we use various analytical and numerical techniques. First, we analyze the properties of an interacting bosonic version of the celebrated Haldane model – the model for the quantum anomalous Hall effect. We propose its quantum circuit implementation based on the application of periodic time-dependent perturbations – Floquet engineering. Continuing these ideas, we study the interacting bosonic version of the Kane-Mele model – the first model of a topological insulator. This model has a very rich phase diagram with an emergence of an effective frustrated magnetic model and a variety of symmetry broken spin states in the strongly interacting regime. Ultra-cold atoms or quantum circuits implementation of both Haldane and Kane-Mele bosonic models would allow for experimental probes of the exotic states we observed. Second, in order to deepen the perspectives of quantum circuit simulations of topological phases we analyze the strong coupling limit of the Su-Schrieffer-Heeger model and we test new experimental probes of its topology associated with the Zak phase. We also work on the out-of-equilibrium protocols to study bulk spectral properties of quantum systems and quantum phase transitions using a purification scheme which could be implemented both numerically and experimentally
Djukic, Uros. « Croissance, structure atomique et propriétés électroniques de couches minces de Bismuth sur InAs(100) et sur InAs(111) ». Thesis, Cergy-Pontoise, 2015. http://www.theses.fr/2015CERG0760/document.
Texte intégralA new class of material is coming up, Topological Insulators, have opened a wide field of research. Bismuth, an element of group V of periodic table, is one of the key ingredient of this Topological Insulators family. With the aim of improving technological applications, especially the electronic compounds, it is of most importance to control the preparation of thin films materials. Within this Phd work, we studied the growth and Bismuth electronic structure on (100) and (111) semiconductor III-V InAs surfaces.Bi deposition on InAs(100) surface result of a Bi self-assembly which forms lines at atomic scale. We show Bi interact extremely weakly with the surface because the beginning structure of clean InAs(100) surface stay unharmed. The study of valence band sheds light on the existence of resonant states strongly photon energy dependent and also depend on the light polarization, consistent with almost one dimensional structure surface.InAs(111) surface specific feature is that it has both surface ending different : In ending, (face A) and As ending, (face B). The both faces pointed out distinguishable reconstructions. By the core-level photoemission we identified a chemical reactivity difference taking place between A and B faces. Bi growth on A-face tend to be a high quality monocrystal for those films from a thickness of 10 monolayers. On the other hand, during the deposition of first layers, the B-face show an island growth and a good monocrystal is obtained only available for films with 50 monolayers at least.For the same face, A or B, we have seen some growth discrepancies more subtle between prepared surfaces either by ionic bombardment and annealing (IBA) either by molecular beam epitaxy (MBE).The angular resolved photoemission allowed to identify the band dispersion inside of this Bi films. The dispersion is absolutely relative to the bulk Bi crystal. The final step involved the study of Sb monocrystal electronic structure deposited onto Bi film.Clean InAs(111)A and InAs(111)B surfaces indicate a band bending which result in the accumulation electron charge formation. With depositing Bi onto these surfaces, the accumulation layer would be kept, it is also increased, given that Bi acts as a donor-like in InAs. The accumulation layer is characterized by an electron quantum confinement, measurable by angle resolved photoemission.Keywords:Electronic structure surface, ARPES, semimetal, band bending effect, 2DEG, Bismuth, Sb, InAs(111)A, InAs(111)B, quatum wells, Fermi surface, thin films
Mendes, Paulo de Carvalho Dias. « Síntese eletroquímica e caracterização de filmes finos de compostos da forma BiSe(X), com X = Cu, Fe ou Co ». Universidade Federal de São Carlos, 2015. https://repositorio.ufscar.br/handle/ufscar/7328.
Texte intégralApproved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-21T13:02:19Z (GMT) No. of bitstreams: 1 DissPCDM.pdf: 3450913 bytes, checksum: 84b54d1d49257840a2f202608f7dba57 (MD5)
Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-21T13:02:26Z (GMT) No. of bitstreams: 1 DissPCDM.pdf: 3450913 bytes, checksum: 84b54d1d49257840a2f202608f7dba57 (MD5)
Made available in DSpace on 2016-09-21T13:02:33Z (GMT). No. of bitstreams: 1 DissPCDM.pdf: 3450913 bytes, checksum: 84b54d1d49257840a2f202608f7dba57 (MD5) Previous issue date: 2015-10-26
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
The present work is based on the literature related to the Bi2Se3 compound, which is present in current researches as a topological insulator and is also well known for thermoelectricity applications. In this work the electrochemical synthesis of a material containing Bi, Se and X (X = Cu, Fe or Co) was carried out searching for a composition of Bi and Se in accordance with the stoichiometry of Bi2Se3. The third element, X, was used in the electrodeposition baths considering the Bi2Se3 literature, which presents doping and interaction with other elements for this compound. The synthesis conditions were determined based on studies using cyclic voltammetry. The main material studied was the ternary compound containing Bi, Se and Cu. The films obtained were characterized using scanning electron microscopy, energy dispersive x-ray spectroscopy, x-ray diffraction and Raman spectroscopy. It was found out that baths containing sulfuric acid were adequate for obtaining films of Bi, Se and Cu but a bath containing glycerol and sodium citrate was necessary for including Fe on the material. Some magnetic properties of the films obtained were also studied and paramagnetic behaviour was observed for the samples.
O presente trabalho fundamente-se na literatura relacionada com o composto Bi2Se3. Esse composto está presente na literatura atual de isolantes topológicos e também é conhecido por suas propriedades termoelétricas. Nesse trabalho foi realizada a síntese eletroquímica de um material contendo Bi, Se e X (X = Cu, Fe or Co) buscando obter composições de Bi e Se adequadas à estequiometria do Bi2Se3. O terceiro elemento, X, foi utilizado nos banhos de eletrodeposição considerando estudos da literatura para o Bi2Se3 que tratam de sua dopagem ou interação com outros elementos. As condições de síntese foram determinadas com base em estudos utilizando voltametria cíclica. O principal material estudado foi o composto ternário de Bi, Se e Cu. Os filmes obtidos foram caracterizados por microscopia eletrônica de varredura, espectroscopia dispersiva de raios X, difração de raios X e espectroscopia Raman. Foi verificado que banhos contendo ácido sulfúrico foram adequados para obter filmes de Bi, Se e Cu, mas um banho contendo glicerol e citrato de sódio foi necessário para incluir Fe no material. Algumas propriedades magnéticas dos filmes obtidos também foram estudadas e o comportamento paramagnético foi observado para as amostras.
Rahim, Abdur. « Efeito Hall de spin em nanoestruturas semicondutoras : rumo à novos dispositivos de spintrônica ». Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/43/43134/tde-12072015-080251/.
Texte intégralThis thesis present electronic transport properties of two-dimensional topological insulators (TI) based on HgTe/CdTe quantum wells. These heterostructures, in the band inverted regime, hosts a novel state known as the quantum spin Hall insulator. This state is identified as insulator in the bulk, but exhibits gapless conducting states at their edges which can be verified in transport experiments. Four-terminal resistance close to the quantized value has been observed in mesoscopic samples. However, for samples longer than 1 m, the resistance might be much higher than h/2e2 due to the presence of spin dephasing, inhomogeneity or disorder in the sample. This thesis address the problem of non-quantized resistance observed in macroscopic samples of dimensions longer than few microns. We report on the observation and a systematic investigation of local and nonlocal transport in HgTe quantum wells (8.0-8.3 nm) with inverted band structure corresponding to the quantum spin Hall insulating (QSHI) phase. The device MCT1 consists of three 4 m wide consecutive segments of different length (2 m, 8 m, 32 m), and seven voltage probes. The device MCT2 was fabricated with a lithographic length 6 m and width 5 m. Both devices are equipped with a top gate which allows tuning the carrier density of the device. Applying gate bias changes the carrier density transforming the quantum well conductivity from n-type to p-type via an intermediate phase, called the charge neutrality point (CNP). Non-universal (R >> h/2e2) peaks in both local and nonlocal resistivity were observed near the CNP which decreases rapidly going away from CNP. Such a behavior near CNP can be explained using the edge plus bulk transport model, which includes both the edge states and bulk contribution to the total current. Deviation of the four-terminal resistance from quantization (R >> h/2e2) in macroscopic samples, with dimensions above a few microns, is one of the major issue in the field of topological insulators. Recently a model was proposed by Vayrynen et al., where influence of charge puddles, resulting from inhomogeneous charge distribution in 2d topological insulators, on its helical edge conductance has been considered. The edge states are tunnel coupled to these metallic puddles or quantum dots. Electron´s dwelling in the quantum dot may lead to significant inelastic backscattering within the edge and modifies the ballistic transport. Therefore ballistic coherent transport is expected only in the region between the puddles, and the total four-terminal resistance exceeds the quantized value. Introducing electron-electron interactions in one-dimensional systems results in a Luttinger liquid (LL). The helical edge states in 2d topological insulator, can be treated as ideal Luttinger liquid, since it naturally appears in HgTe quantum wells. Among the various specific signatures of the LL behavior, such as temperature dependence, it is important to focus on non-equilibrium properties of LL. In contrast to conventional Fermi liquids, none of the excited state will decay to equilibrium state, characterized by temperature, in the absence of disorder. Electron-heating measurements can be used to understand the physics governing relaxation processes in LL. We have performed non-linear transport measurements at the CNP in HgTe based 2d topological insulators. This method together with temperature dependence of resistance can be used to determine the energy relaxation mechanism of the helical edge modes in QSHI. Our experiments fail to confirm the specific signatures of Luttinger liquid behavior. However, electron heating effect can be described by conventional energy relaxation mechanism, expected for electron-phonon interactions.