Littérature scientifique sur le sujet « Iron oxide NPs »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Iron oxide NPs ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Iron oxide NPs"
Huseen, Rania Hasan, Ali A. Taha, Ihab Q. Ali, Oday Mahmmod Abdulhusein et Selma M. H. Al-Jawad. « Biological activity of gum Arabic-coated ferrous oxide nanoparticles ». Modern Physics Letters B 35, no 24 (28 juillet 2021) : 2150411. http://dx.doi.org/10.1142/s021798492150411x.
Texte intégralBatool, Sadaf, et Zakir Hussain. « Diospyros lotus-mediated Synthesis of Iron Oxide Nanoparticles and Their Application as a Catalyst in Fenton Reaction ». Current Nanoscience 16, no 1 (22 janvier 2020) : 91–100. http://dx.doi.org/10.2174/1573413715666191023103729.
Texte intégralCurcio, Alberto, Aurore Van de Walle, Christine Péchoux, Ali Abou-Hassan et Claire Wilhelm. « In Vivo Assimilation of CuS, Iron Oxide and Iron Oxide@CuS Nanoparticles in Mice : A 6-Month Follow-Up Study ». Pharmaceutics 14, no 1 (13 janvier 2022) : 179. http://dx.doi.org/10.3390/pharmaceutics14010179.
Texte intégralSabry, Raad S., Muslim A. Abid et Sarah Q. Hussein. « Effects of Change PH on The Structural and Optical Properties of Iron Oxide Nanoparticles ». Al-Mustansiriyah Journal of Science 32, no 3 (24 juin 2021) : 58. http://dx.doi.org/10.23851/mjs.v32i3.967.
Texte intégralSuryawanshi, Prashant L., Shirish H. Sonawane, Bharat A. Bhanvase, Muthupandian Ashokkumar, Makarand S. Pimplapure et Parag R. Gogate. « Synthesis of iron oxide nanoparticles in a continuous flow spiral microreactor and Corning® advanced flow™ reactor ». Green Processing and Synthesis 7, no 1 (23 février 2018) : 1–11. http://dx.doi.org/10.1515/gps-2016-0138.
Texte intégralSnoderly, Hunter T., Kasey A. Freshwater, Celia Martinez de la Torre, Dhruvi M. Panchal, Jenna N. Vito et Margaret F. Bennewitz. « PEGylation of Metal Oxide Nanoparticles Modulates Neutrophil Extracellular Trap Formation ». Biosensors 12, no 2 (16 février 2022) : 123. http://dx.doi.org/10.3390/bios12020123.
Texte intégralHafeez, M., R. Shaheen, S. Ali, H. A. Shakir, M. Irfan, T. A. Mughal, A. Hassan, M. A. Khan et S. Mumtaz. « Populus ciliata conjugated of iron oxide nanoparticles and their potential antibacterial activities against human bacterial pathogens ». Digest Journal of Nanomaterials and Biostructures 16, no 3 (juillet 2021) : 899–906. http://dx.doi.org/10.15251/djnb.2021.163.899.
Texte intégralMokhosi, Seipati Rosemary, Wendy Mdlalose, Amos Nhlapo et Moganavelli Singh. « Advances in the Synthesis and Application of Magnetic Ferrite Nanoparticles for Cancer Therapy ». Pharmaceutics 14, no 5 (26 avril 2022) : 937. http://dx.doi.org/10.3390/pharmaceutics14050937.
Texte intégralSutunkova, Marina P. « EXPERIMENTAL STUDIES OF TOXIC EFFECTS’ OF METALLIC NANOPARTICLES AT IRON AND NONFERROUS INDUSTRIES AND RISK ASSESSMENT FOR WORKERS` HEALTH ». Hygiene and sanitation 96, no 12 (27 mars 2019) : 1182–87. http://dx.doi.org/10.18821/0016-9900-2017-96-12-1182-1187.
Texte intégralTuri, Muhammad Tahir, Ma Wei, Ittehad Hussain et Javid Hussain. « Arsenic (v) Adsorption by Using Synthesized Iron Oxide Nanoparticles (Fe2O3-NPs) and Aluminum Oxide Nanoparticles (Al2O3-NPs) ». Vol 4 Issue 4 4, no 4 (30 octobre 2022) : 1023–41. http://dx.doi.org/10.33411/ijist/2022040408.
Texte intégralThèses sur le sujet "Iron oxide NPs"
Kumar, Rajender. « Development and potential applications of nanomaterials for arsenic removal from contaminated groundwater ». Thesis, KTH, Miljögeokemi och ekoteknik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-96106.
Texte intégralKhalid, Muhammad Kamran [Verfasser]. « Processing and characterization of tailor-made superparamagnetic iron oxide nanoparticles (SPIO-NPs) for pharmaceutical applications / Muhammad Kamran Khalid ». Magdeburg : Universitätsbibliothek Otto-von-Guericke-Universität, 2019. http://d-nb.info/1219965340/34.
Texte intégralLETTIERO, BARBARA. « Uptake and intracellular trafficking of nanoparticles for potential medical use ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2011. http://hdl.handle.net/10281/20247.
Texte intégralMonteiro, Ana Paula de Melo. « Influência do método de preparação nas propriedades do óxido de ferro suportado ». Programa de Pós-Graduação em Química da UFBA, 2005. http://www.repositorio.ufba.br/ri/handle/ri/9950.
Texte intégralMade available in DSpace on 2013-04-22T14:27:39Z (GMT). No. of bitstreams: 1 Ana Paula Monteiro.pdf: 956595 bytes, checksum: 5e950a1fe60917822320be861db1043f (MD5) Previous issue date: 2005
O estireno é uma das substâncias químicas básicas mais importantes para produção de valiosos artigos como poliestireno, acrilonitrila-butadieno-estireno e estireno-butadieno-estireno. É produzido comercialmente pela desidrogenação do etilbenzeno com excesso de vapor d’água a temperaturas altas de 600-700ºC. Este processo é termodinamicamente limitado e consome energia. O uso de um oxidante, tal como oxigênio, permite superar as limitações termodinâmicas e por conseguinte operar a temperaturas mais baixas com reação exotérmica. Porém, há uma perda significantiva de seletividade a estireno, assim se buscou outro oxidante por muito tempo. O uso de gás carbônico surge como um potencial oxidante, além da conveniência do uso do gás causador do efeito estufa. Na busca de um catalisador alternativo para esta reação, neste trabalho estudou-se o efeito do método de preparação nas propriedades de óxido de ferro. As amostras foram preparadas incorporando óxido de ferro em lantânia, nióbia, titânia, magnésia e zircônia através de dois métodos: a impregnação de nitrato férrico e a deposição de nanoparticulas de óxido de ferro previamente preparadas. Os sólidos foram calcinados a 600ºC por 4 h e caracterizados por análise química, termogravimetria, análise térmica diferencial, difração de raios X, área de superfície específica e medidas de porosidade e redução a temperatura-programada. Os catalisadores foram avaliados na desidrogenação do etilbenzeno na presença de dióxido de carbono, usando um microreator que opera a 1 atm e a 600ºC e uma relação molar gás carbônico/etilbenzeno de 10. Depois dos testes, as amostras foram caracterizadas por difração de raios X e área de superfície específica. Observou-se que a concentração do óxido de ferro incorporado depende do tipo do suporte e do método de preparação. A hematita foi observada nos catalisadores novos. Durante a desidrogenação do etilbenzeno, os suportes não se alteraram, mas a hematita se transformou em magnetita. Os suportes e os catalisadores são sólidos macroporosos com pequena contribuição de mesoporos. A área específica mudou devido à adição de óxido de ferro e foi influenciada pelo método de preparação. A incorporação das nanoparticulas conduziu a um aumento da área superficial específica, indiferentemente do tipo do suporte, fato que foi atribuído ao tamanho pequeno das partículas. As áreas específicas não se alteraram durante a reação. Os sólidos mostraram diferentes resistência contra redução que se deve ao suporte e ao método de incorporação do óxido de ferro. A impregnação de nitrato férrico produziu sólidos menos redutíveis. Os suportes foram cataliticamente ativos na desidrogenação do etilbenzeno na presença de gás carbônico e também eram seletivos a estireno. A adição de compostos de ferro melhorou estas propriedades e a deposição de nanoparticulas melhoraram ainda mais. O óxido ferro suportado em magnésia, preparado pela deposição de nanoparticulas, foi o mais ativo (2,8 x 10-3 mol.g-1.h-1) e catalisador seletivo a estireno (96%) na desidrogenação do etilbenzeno na presença de gás carbônico. A atividade e a seletividade foram mais altos do que um catalisador comercial à base de óxido de ferro, cromo e potássio (a=1,2 x 10-3 mol. g-1. h-1 e S=90%) , sendo o catalisador promissor na reação.
Salvador
RIBEIRO, THATIANA G. D. « Sintese e caracterizacao de nanoparticulas magneticas de oxidos mistos de MnFesub(2)Osub(4) recobertas comm quitosona. Estudos da influencia na dopagem com Gdsup(3+) nas propriedades estruturais e magneticas ». reponame:Repositório Institucional do IPEN, 2008. http://repositorio.ipen.br:8080/xmlui/handle/123456789/11515.
Texte intégralMade available in DSpace on 2014-10-09T14:02:48Z (GMT). No. of bitstreams: 0
Dissertacao (Mestrado)
IPEN/D
Instituto de Pesquisas Energeticas e Nucleares - IPEN-CNEN/SP
Bonfleur, Eloana Janice. « Matéria orgânica e a sorção de herbicidas em solos sob plantio direto nas regiões tropical e subtropical do Brasil ». Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/11/11140/tde-15092014-122141/.
Texte intégralNo-tillage System (NT) is widely used in Brazil due to improve soil quality and reduce production costs compared to conventional tillage. Different climatic conditions and the adoption of different cultures in the offseason suggest differences in the distribution and quality of soil organic matter (SOM) due to the resilience time of straw in coverage in NT. Interactions between SOM and pesticides has been widely studied, but only partially elucidated. In most of studies, the MOS as a homogeneous compartment and there is not the knowledge about the role of its various molecular components. Therefore, the aim of this work is to evaluate the effect of the composition, distribution and interaction with the mineral phase of SOM on sorption of herbicides applied to soybean and corn under no-tillage in tropical (Central-west) and subtropical (South Region) soils. Alachlor, bentazon and imazethapyr herbicides were selected because of its large use in these cultures and different physicochemical properties. For this, it was sampled 12 soils at 0-5 cm layer excluding the straw surface, six representing the Paraná State (subtropical) and six representative of Mato Grosso de Sul State (tropical). Physical and chemical attributes, iron and aluminum forms, study of quality of SOM by Nuclear Magnetic Resonance Spectroscopy of 13C and soil physical fractionation methods were used for this purpose. Greater accumulation of organic carbon (OC) was observed in subtropical soils due to higher low crystalline aluminum oxides contents, in addition to lower temperatures and higher moisture in this region. For soils of both regions, the SOM stabilization occurs through the formation of complexes in the clay fraction (~ 50 % of the OC content). Regarding interactions with the mineral phase, it was observed that aluminum oxides are related to physical protection of SOM while iron oxides appear to participate in the decomposition and humification reactions by forming complexes with carboxylic groups. For alachlor, low crystallinity aluminum forms decreased its MOS sorption but sorption of this herbicide was not correlated with any functional group. For bentazon, positive correlation was observed between sorption and more decomposed organic material and with the complexed aluminum in MOS. For imazethapyr, there were positive correlations with iron and aluminum forms and carboxyl functional group. For the three herbicides better sorption was observed in the silt size fractions (53-2 ?m) and in general, sorption in tropical was higher than in subtropical soils. The effect of charge sites exposure after soil physical fractionation was evident for imazethapyr increasing its sorption compared to the whole soil which shows the greatest amount of blocked sites in tropical soils.
Pirani, Parisa. « Surface-Engineered Magnetic Nanoparticles for Sample Preparation and Analysis of Proteins and Peptides ». ScholarWorks@UNO, 2015. http://scholarworks.uno.edu/td/2012.
Texte intégralVerdugo, Ihl Max Robert. « Mineralogy and geochemistry of iron-oxides in the Olympic Dam IOCG-deposit and adjacent prospects, South Australia ». Thesis, 2020. http://hdl.handle.net/2440/129081.
Texte intégralThesis (Ph.D.) -- University of Adelaide, School of Chemical Engineering and Advanced Materials, 2020
Chapitres de livres sur le sujet "Iron oxide NPs"
Zoppellaro, Giorgio. « Iron Oxide Magnetic Nanoparticles (NPs) Tailored for Biomedical Applications ». Dans Magnetic Nanoheterostructures, 57–102. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39923-8_2.
Texte intégralNadaroglu, Hayrunnisa, Semra Cicek, Hicran Onem et Azize Alayli Gungor. « The Investigation of Removing Direct Blue 15 Dye from Wastewater Using Magnetic Luffa sponge NPs ». Dans Iron Ores and Iron Oxide Materials. InTech, 2018. http://dx.doi.org/10.5772/intechopen.73216.
Texte intégralJahan, Israt. « Phyto-Nanofabrication ». Dans Handbook of Research on Green Synthesis and Applications of Nanomaterials, 51–76. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-7998-8936-6.ch003.
Texte intégralPullar, R. C. « Applications of Magnetic Oxide Nanoparticles in Hyperthermia ». Dans Magnetic Nanoparticles for Biomedical Applications, 76–101. Materials Research Forum LLC, 2023. http://dx.doi.org/10.21741/9781644902335-3.
Texte intégralGárate-Vélez, Lorena, Claudia Escudero-Lourdes, Daniela Salado-Leza, Armando González-Sánchez, Ildemar Alvarado-Morales, Daniel Bahena, Gladis Judith Labrada-Delgado et José Luis Rodríguez-López. « Anthropogenic Iron Oxide Nanoparticles Induce Damage to Brain Microvascular Endothelial Cells Forming the Blood-Brain Barrier ». Dans Advances in Alzheimer’s Disease. IOS Press, 2021. http://dx.doi.org/10.3233/aiad210010.
Texte intégralKarataş, Ebru, et Fehiman Çimer. « Green Synthesis of Nanoparticles and Their Applications ». Dans Versatile Approaches to Engineering and Applied Sciences : Materials and Methods. Özgür Yayınları, 2023. http://dx.doi.org/10.58830/ozgur.pub50.c70.
Texte intégralLatha, Subbiah, Palanisamy Selvamani, Suresh Babu Palanisamy, Deepak B. Thimiri Govindaraj et Prabha Thangavelu. « Magnetic Nanoparticles ». Dans Handbook of Research on Nano-Strategies for Combatting Antimicrobial Resistance and Cancer, 337–69. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-5049-6.ch017.
Texte intégralChakrabartty, Shubhro, AlaaDdin Al-Shidaifat, Ramadan Al-Shdefat, M. I. Alam et Hanjung Song. « Drug and gene delivery by nanocarriers : Drug delivery process, in brief, using different oxides such as zinc, iron, calcium, polymeric, peptides, and in-vitro drug delivery process by silicon oxide (SiOx) and titanium dioxide (TiO2) nanodots (NDs) ». Dans Advances in Nanotechnology-Based Drug Delivery Systems, 281–320. Elsevier, 2022. http://dx.doi.org/10.1016/b978-0-323-88450-1.00022-3.
Texte intégralActes de conférences sur le sujet "Iron oxide NPs"
Alvi, Muhammad Awais Ashfaq, Mesfin Belayneh, Kjell Kåre Fjelde, Arild Saasen et Sulalit Bandyopadhyay. « Effect of Hydrophobic Iron Oxide Nanoparticles on the Properties of Oil Based Drilling Fluid ». Dans ASME 2020 39th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/omae2020-18215.
Texte intégralKalambur, Venkat S., Ellen Longmire et John C. Bischof. « Characterization of Cell Association and Heat Treatment Using Iron Oxide Magnetic Nanoparticles ». Dans ASME 2007 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2007. http://dx.doi.org/10.1115/sbc2007-176216.
Texte intégralBalezin, M. E., et S. Yu Sokovnin. « Production of iron oxide nanopowders by radiation-chemical method ». Dans 8th International Congress on Energy Fluxes and Radiation Effects. Crossref, 2022. http://dx.doi.org/10.56761/efre2022.s4-p-042405.
Texte intégralAltayeb, Yousra Bashir Fathalrhman, et Ecir Yılmaz. « Oral Squamous Cell Carcinoma (OSCC) Treatment by Magneti Nanoparticles (Hyperthermia Method) : A Review ». Dans 6th International Students Science Congress. Izmir International Guest Student Association, 2022. http://dx.doi.org/10.52460/issc.2022.020.
Texte intégralAlsakkaf, Sarah, Sahar Al-Dosary, Hesham El-Komy et Mona Al. Ahmadi. « Effect of Different Nanoparticles Silver, Iron Oxide and Titanium Oxide to Control Corrosion by Desulfovibrio Sp.Isolated from Oil Fields ». Dans International Petroleum Technology Conference. IPTC, 2022. http://dx.doi.org/10.2523/iptc-22588-ms.
Texte intégralAlvi, Muhammad Awais Ashfaq, Mesfin Belayneh, Arild Saasen et Sulalit Bandyopadhyay. « Impact of Various Nanoparticles on the Viscous Properties of Water Based Drilling Fluids ». Dans ASME 2021 40th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/omae2021-62612.
Texte intégralIslam, Nazmul, Davood Askari et Tarek Trad. « Biocompatible Nanocomposite for Lab-on-a-Chip Application ». Dans ASME 2011 International Mechanical Engineering Congress and Exposition. ASMEDC, 2011. http://dx.doi.org/10.1115/imece2011-64119.
Texte intégralKachoyan, Soroush, Shaikh Nihaal, Jeffrey Oseh, Mohd Noorul Anam, Afeez Gbadamosi, Augustine Agi et Radzuan Junin. « Enhanced Rheological and Filtration Properties of Water-Based Mud Using Iron Oxide and Polyanionic Cellulose Nanoparticles ». Dans SPE Nigeria Annual International Conference and Exhibition. SPE, 2022. http://dx.doi.org/10.2118/211924-ms.
Texte intégralAlJabri, Nouf, Hussain Shatteb, Mustafa Saffar et Amr AbdelFattah. « Magnetically Labelled Hybrid Nanosurfactant MLHNS for Upstream Oil and Gas Operations ». Dans SPE Middle East Oil & Gas Show and Conference. SPE, 2021. http://dx.doi.org/10.2118/204843-ms.
Texte intégralRapports d'organisations sur le sujet "Iron oxide NPs"
Jackson, G. D. Bedrock geology, northwest part of Nuluujaak Mountain, Baffin Island, Nunavut, part of NTS 37-G/5. Natural Resources Canada/CMSS/Information Management, 2021. http://dx.doi.org/10.4095/314670.
Texte intégral