Littérature scientifique sur le sujet « Ion multivalent »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Ion multivalent ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Ion multivalent"
Iton, Zachery W. B., et Kimberly A. See. « Multivalent Ion Conduction in Inorganic Solids ». Chemistry of Materials 34, no 3 (27 janvier 2022) : 881–98. http://dx.doi.org/10.1021/acs.chemmater.1c04178.
Texte intégralProffit, Danielle L., Albert L. Lipson, Baofei Pan, Sang-Don Han, Timothy T. Fister, Zhenxing Feng, Brian J. Ingram, Anthony K. Burrell et John T. Vaughey. « Reducing Side Reactions Using PF6-based Electrolytes in Multivalent Hybrid Cells ». MRS Proceedings 1773 (2015) : 27–32. http://dx.doi.org/10.1557/opl.2015.590.
Texte intégralRutt, Ann, et Kristin A. Persson. « Expanding the Materials Search Space for Multivalent Cathodes ». ECS Meeting Abstracts MA2022-02, no 4 (9 octobre 2022) : 446. http://dx.doi.org/10.1149/ma2022-024446mtgabs.
Texte intégralDong, Liubing, Wang Yang, Wu Yang, Yang Li, Wenjian Wu et Guoxiu Wang. « Multivalent metal ion hybrid capacitors : a review with a focus on zinc-ion hybrid capacitors ». Journal of Materials Chemistry A 7, no 23 (2019) : 13810–32. http://dx.doi.org/10.1039/c9ta02678a.
Texte intégralSchauser, Nicole S., Ram Seshadri et Rachel A. Segalman. « Multivalent ion conduction in solid polymer systems ». Molecular Systems Design & ; Engineering 4, no 2 (2019) : 263–79. http://dx.doi.org/10.1039/c8me00096d.
Texte intégralHasnat, Abul, et Vinay A. Juvekar. « Dynamics of ion-exchange involving multivalent cations ». Chemical Engineering Science 52, no 14 (juillet 1997) : 2439–42. http://dx.doi.org/10.1016/s0009-2509(97)00047-x.
Texte intégralKC, Bilash, Jinglong Guo, Robert Klie, D. Bruce Buchholz, Guennadi Evmenenko, Jae Jin Kim, Timothy Fister et Brian Ingram. « TEM Analysis of Multivalent Ion Battery Cathode ». Microscopy and Microanalysis 26, S2 (30 juillet 2020) : 3170–72. http://dx.doi.org/10.1017/s1431927620024058.
Texte intégralImanaka, Nobuhito, et Shinji Tamura. « Development of Multivalent Ion Conducting Solid Electrolytes ». Bulletin of the Chemical Society of Japan 84, no 4 (15 avril 2011) : 353–62. http://dx.doi.org/10.1246/bcsj.20100178.
Texte intégralLi, Zhong-Qiu, Yang Wang, Zeng-Qiang Wu, Ming-Yang Wu et Xing-Hua Xia. « Bioinspired Multivalent Ion Responsive Nanopore with Ultrahigh Ion Current Rectification ». Journal of Physical Chemistry C 123, no 22 (13 mai 2019) : 13687–92. http://dx.doi.org/10.1021/acs.jpcc.9b02279.
Texte intégralGates, Leslie, et Niya Sa. « Investigation of Suitability of Electrolytes in a Trivalent System ». ECS Meeting Abstracts MA2023-01, no 1 (28 août 2023) : 425. http://dx.doi.org/10.1149/ma2023-011425mtgabs.
Texte intégralThèses sur le sujet "Ion multivalent"
Keyzer, Evan. « Development of electrolyte salts for multivalent ion batteries ». Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/288431.
Texte intégralLi, Na. « Aluminum intercalation behaviours of Molecular Materials ». Electronic Thesis or Diss., Sorbonne université, 2024. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2024SORUS222.pdf.
Texte intégralThe first chapter introduces the concept and fundamental characteristics of molecular materials. It highlights their broad applications and the advantages they offer in electrochemical devices, along with an overview of their development in this field. Then, molecular materials are classified in three distinct ways based on different criteria. Each classification's subcategories are systematically explained, highlighting different aspects of molecular materials according to the classification method.Starting from multivalent ion batteries, the second chapter introduces the emerging aluminum ion battery as a storage system with great potential. The advantages of developing aluminum ion batteries are shown from the objective advantages of the natural abundance and price of aluminum itself, and the theoretical electrochemical potential of aluminum. Then, from the two aspects of electrolyte and electrode materials, aluminum ion batteries and their development status are summarized through detailed classification and examples.Therefore, based on our understanding of molecular materials and aluminum ion batteries, we conducted the following two projects:In a seminal work, we reported the lithium-ion storage capabilities of the iron-nickel bimetallic one-dimensional (1D) coordination polymer, {[FeIII(Tp)(CN)3]2[NiII(H2O)2]}n. The result first confirmed the reversible Li+ (de)intercalation in the 1D cyanide-bridged molecular material. This successful attempt in lithium-ion batteries aroused our interest in further exploring the possible insertion of aluminium ions into such one-dimensional cyano-bridge. In this work, we selected ([EMIm]Cl-AlCl3 ionic liquid with the ratio of 1.1:1(AlCl3 : ([EMIm]Cl) as electrolyte, and developed a series of one-dimensional (1D) material with the formula{[FeIII(Tp)(CN)3]2[MII(H2O)2]}n (M=Ni, Co, Mn, Zn, Cu). We expected the lower dimensionality and open framework of these compounds could permit easier ion (de)intercalation and a better Al-ion host capability. We can also hypothesize that the presence of organic shell (Tp ligands) in the chains could favor weaker electrostatic interactions between the inserted multivalent cation and the framework, and thus a better diffusion. Furthermore, comparisons between compounds bridged different divalent metals, including inactive zinc, are intended to help understand the multifaceted effects of bridged metals on compounds.Then, we conducted the second topic based on chloranilic acid. It is a series of 2D frameworks, as we would like to take advantage of the high stability of 2D structure and rely on the potential carbonyl groups to realize the intercalation and deintercation. As a result, the preliminary tests prove the stability of this series of frameworks. Since this is an ongoing project and we have only reported the data so far, further investigation of this series is needed
Wu-Tiu-Yen, Jenny. « Valorisation de la vinasse de canne à sucre : étude d'un procédé d'extraction d'un acide organique multivalent ». Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLA008.
Texte intégralCane stillage or vinasse, a byproduct of cane industry, contains from 5 to 7 g/L of aconitic acid, a valuable trivalent carboxylic acid belonging to the second class of building block chemicals. Vinasse also contains a variety of organic compounds (organic acids, amino-acids, colouring matters) and minerals (chlorides, sulphates), which makes purification not straightforward. The objective of this work is to develop the extraction of aconitic acid from stillage, with anion exchange as the heart of the process. In order to improve performances, the main characteristics of the selected anion-exchange resin (Lewatit S4528) are studied. Acid-base dosage and ion-exchange equilibrium experiments allow the total capacity of this support and the ion-exchange coefficients for the major competing anions (aconitate, chloride and sulfate) to be obtained. Separation performances in column are studied for different pH, different solutions (aconitic acid alone, synthetic and industrial stillage) and different resin forms (sulfate, chloride and free- base) in order to elucidate the separation mechanisms.Elution step is also investigated. Best conditions are for stillage at its natural pH (pH 4.5) on the resin under chloride form and HCl 0,5N as the eluant. A 28% DM purity and a 61% global recovery are achieved for aconitic acid in the eluate. Main impurities still remaining are chlorides or sulfates and coloring matter. Homopolar electrodialysis proves successful for removing nearly 100% chlorides from aconitic acid with a limited loss of the acid (< 15%). Adsorption step on a polystyrenic resin (XAD16) of an acidic eluate leads to the retention of 80% of the colorants, with only 12% of the acid lost. At last, the most interesting process combination associates microfiltration, anion-exchange, electrodialysis and adsorption. Purity is 37% MS, namely 3.6 higher than the original vinasse. This work enables aconitic acid purity to be improved by a factor of 2.6 compared with prior studies and to have a better comprehension of the mechanisms involved in its purification on weak anionic resin
Padigi, Sudhaprasanna Kumar. « Multivalent Rechargeable Batteries ». PDXScholar, 2015. https://pdxscholar.library.pdx.edu/open_access_etds/2464.
Texte intégralMehta, Mary Anne. « Multivalent ions in polymer electrolytes ». Thesis, University of St Andrews, 1993. http://hdl.handle.net/10023/15517.
Texte intégralMatsarskaia, Olga [Verfasser]. « Multivalent ions for tuning the phase behaviour of protein solutions / Olga Matsarskaia ». Tübingen : Universitätsbibliothek Tübingen, 2020. http://d-nb.info/1223451739/34.
Texte intégralLouisfrema, Wilfired. « Caractérisation des oxydes nanoporeux contenant des ions lourds en milieu aqueux ». Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLEE055/document.
Texte intégralPorous crystalline aluminosilicates such as cationic zeolites, are widely studied because of their adsorption, ion exchange and catalytic properties, which explain their use in many industrial applications. Examples of the latter, which involve in particular multivalent cations, include detergents/softeners, catalytic cracking, or decontamination. Such industrial applications of zeolites all exploit their adsorption properties, which vary as a function of the pore size, comparable to the adsorbing molecules, or chemical composition, which results in charges within the framework, and in turn strong binding or repulsive sites. Importantly, in such applications zeolites are hydrated. Water is involved in the microscopic processes and thus influences all properties of the material. Molecular modeling is a weapon of choice to predict and understand the microscopic properties of the hydrated material, which are difficult to access experimentally. More precisely, the present modeling work deals with the behavior of multivalent cations in hydrated zeolites, in collaboration with experimentalists. Our study on zeolite Y faujasite first allowed us to clarify the migration of sodium cations upon dehydration and to predict the cation localisation in the hydrated material in the presence of divalent cations. Furthermore, we rationalized the coupled migration of cations and deformation of the framework upon water adsorption. To this end, we have developed a new method for the analysis of cation localization. The good performance of a polarizable force field demonstrated here paves the way for the study of the dynamics of the whole system, following in particular the simultaneous migration of cations and deformation of the framework. Such an approach could be later extended to other multivalent ions of industrial interest (rare Earths, f-block elements, ...)
Ritt, Marie-Claude. « Thermodynamics of interaction of macrocyclic ligands with multivalent ions and organic molecules of biological importance ». Thesis, University of Surrey, 1991. http://epubs.surrey.ac.uk/843105/.
Texte intégralGrawe, Thomas. « Multivalente Rezeptoren auf Phosphonatbasis molekulare Erkennung und Selbstorganisation in Wasser / ». [S.l.] : [s.n.], 2001. http://deposit.ddb.de/cgi-bin/dokserv?idn=963938290.
Texte intégralWolf, Marcell Verfasser], et Frank [Akademischer Betreuer] [Schreiber. « Effective interactions in liquid-liquid phase separated protein solutions induced by multivalent ions / Marcell Wolf ; Betreuer : Frank Schreiber ». Tübingen : Universitätsbibliothek Tübingen, 2015. http://d-nb.info/1197057757/34.
Texte intégralLivres sur le sujet "Ion multivalent"
Conference, Society for Emblem Studies International. Polyvalenz und Multifunktionalität der Emblematik = : Multivalence and multifunctionality of the emblem : proceedings of the 5th International Conference of the Society for Emblem Studies. Frankfurt am Main : Oxford, 2002.
Trouver le texte intégralSociety for Emblem Studies. International Conference. Polyvalenz und Multifunktionalität der Emblematik = : Multivalence and multifunctionality of the emblem : proceedings of the 5th International Conference of the Society for Emblem Studies. Frankfurt am Main : Oxford, 2002.
Trouver le texte intégralNorris, Robin, Rebecca Stephenson et Renée R. Trilling. Feminist Approaches to Early Medieval English Studies. Nieuwe Prinsengracht 89 1018 VR Amsterdam Nederland : Amsterdam University Press, 2022. http://dx.doi.org/10.5117/9789463721462.
Texte intégralSociety for Emblem Studies. International Conference. Polyvalenz und Multifunktionalität der Emblematik : Akten des 5. Internationalen Kongresses der Society for Emblem Studies = Multivalence and multifunctionality of the emblem : proceedings of the 5th International Conference of the Society for Emblem Studies. New York : P. Lang, 2002.
Trouver le texte intégral1941-, Hag Kari, et Broch Ole Jacob, dir. The ubiquitous quasidisk. Providence, Rhode Island : American Mathematical Society, 2012.
Trouver le texte intégralCulver, Annika A., et Norman Smith, dir. Manchukuo Perspectives. Hong Kong University Press, 2020. http://dx.doi.org/10.5790/hongkong/9789888528134.001.0001.
Texte intégralMuller, Hannah Weiss. The Laws of Subjecthood. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780190465810.003.0002.
Texte intégralgerm Society for Emblem Studies International Conference 1999 Munich. Polyvalenz Und Multifunktionalitat Der Emblematik : Akten Des 5. Internationalen Kongresses Der Society For Emblem Studies = Multivalence And Multifunctionality ... (Frankfurt Am Main, Germany), Bd. 65.). Peter Lang Publishing, 2002.
Trouver le texte intégralDavison, Claire. Cross-Channel Modernisms. Sous la direction de Derek Ryan et Jane A. Goldman. Edinburgh University Press, 2020. http://dx.doi.org/10.3366/edinburgh/9781474441872.001.0001.
Texte intégralEdwards, Leigh H. Country Music and Class. Sous la direction de Travis D. Stimeling. Oxford University Press, 2017. http://dx.doi.org/10.1093/oxfordhb/9780190248178.013.19.
Texte intégralChapitres de livres sur le sujet "Ion multivalent"
Dubinin, Vladimir N. « Multivalent Functions ». Dans Condenser Capacities and Symmetrization in Geometric Function Theory, 277–304. Basel : Springer Basel, 2014. http://dx.doi.org/10.1007/978-3-0348-0843-9_8.
Texte intégralRocchi, Paolo. « Bivalent and Multivalent Logic ». Dans Series in Computer Science, 121–29. Boston, MA : Springer US, 2003. http://dx.doi.org/10.1007/978-1-4615-0109-1_13.
Texte intégralHayman, Walter K., et Eleanor F. Lingham. « Univalent and Multivalent Functions ». Dans Problem Books in Mathematics, 133–84. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25165-9_6.
Texte intégralRichards, Sarah-Jane, Caroline I. Biggs et Matthew I. Gibson. « Multivalent Glycopolymer-Coated Gold Nanoparticles ». Dans Methods in Molecular Biology, 169–79. New York, NY : Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3130-9_14.
Texte intégralPannier, Nadine, Valerie Humblet, Preeti Misra, John Frangioni V. et Wolfgang Maison. « Multivalent peptidomimetics for tumor targeting ». Dans Advances in Experimental Medicine and Biology, 403–4. New York, NY : Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-73657-0_174.
Texte intégralBrown, Steven D. « Multivalent Display Using Hybrid Virus Nanoparticles ». Dans Methods in Molecular Biology, 119–40. New York, NY : Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7893-9_10.
Texte intégralLiu, Cassie J., et Jennifer R. Cochran. « Engineering Multivalent and Multispecific Protein Therapeutics ». Dans Engineering in Translational Medicine, 365–96. London : Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-4372-7_14.
Texte intégralChinarev, Alexander A., Oxana E. Galanina et Nicolai V. Bovin. « Biotinylated Multivalent Glycoconjugates for Surface Coating ». Dans Methods in Molecular Biology, 67–78. Totowa, NJ : Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60761-454-8_5.
Texte intégralHuynh, Kim, et Marie-Pierre Merlateau. « Uncertainty, Multivalence and Growth ». Dans Human Capital Creation in an Economic Perspective, 196–213. Heidelberg : Physica-Verlag HD, 1994. http://dx.doi.org/10.1007/978-3-642-99776-1_10.
Texte intégralYamini, Goli, et Ekaterina M. Nestorovich. « Multivalent Inhibitors of Channel-Forming Bacterial Toxins ». Dans Current Topics in Microbiology and Immunology, 199–227. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/82_2016_20.
Texte intégralActes de conférences sur le sujet "Ion multivalent"
Tan, Qiyan, Weichuan Guo, Gutian Zhao, Yajing Kan, Yinghua Qiu et Yunfei Chen. « Charge Inversion of Mica Surface in Multivalent Electrolytes ». Dans ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-62356.
Texte intégralOh, K., U. C. Paek et T. F. Morse. « Photosensitivity in multi-valent rare earth ion doped aluminosilicate glass optical fiber ». Dans Bragg Gratings, Photosensitivity, and Poling in Glass Fibers and Waveguides. Washington, D.C. : Optica Publishing Group, 1997. http://dx.doi.org/10.1364/bgppf.1997.jsue.18.
Texte intégralLapitsky, Yakov, Sabrina Alam, Udaka de Silva, Jennifer Brown, Carolina Mather et Youngwoo Seo. « Surfactant-loaded Polyelectrolyte/multivalent Ion Coacervates for the Multi-month Release of Antibacterial and Therapeutic Payloads ». Dans Virtual 2021 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2021. http://dx.doi.org/10.21748/am21.267.
Texte intégralFeldmann, Felix, Emad W. Al-Shalabi et Waleed AlAmeri. « Carbonate Mineral Effect on Surface Charge Change During Low-Salinity Imbibition ». Dans SPE Annual Technical Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/206013-ms.
Texte intégralVaclavikova, Barbora. « INFLUENCE�OF�MULTIVALENT�IONS�FOR�ELECTROKINETIC�POTENTIAL�OF�QUARZ�AND�FELDSPAR ». Dans SGEM2012 12th International Multidisciplinary Scientific GeoConference and EXPO. Stef92 Technology, 2012. http://dx.doi.org/10.5593/sgem2012/s04.v2005.
Texte intégralMcKenna, Nick, Liane Guillou, Mohammad Javad Hosseini, Sander Bijl de Vroe, Mark Johnson et Mark Steedman. « Multivalent Entailment Graphs for Question Answering ». Dans Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. Stroudsburg, PA, USA : Association for Computational Linguistics, 2021. http://dx.doi.org/10.18653/v1/2021.emnlp-main.840.
Texte intégralDatta, Subhra, et Albert Conlisk. « Role of multivalent ions and electrical double layer overlap in electroosmotic nanoflows ». Dans 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. Reston, Virigina : American Institute of Aeronautics and Astronautics, 2009. http://dx.doi.org/10.2514/6.2009-1120.
Texte intégralMcClary, Scott, Daniel Long, Kathryn Small, Alan Landers, Ana Sanz-Matias, Paul Kotula, David Prendergast, Katherine Jungjohann et Kevin Zavadil. « Electrolyte Design for Stable Multivalent Metal Anodes. » Dans Proposed for presentation at the 32nd Annual Rio Grande Symposium on Advanced Materials held October 24-24, 2022 in Albuquerque, NM United States. US DOE, 2022. http://dx.doi.org/10.2172/2005914.
Texte intégralKwak, Hyung Tae, Ali A. Yousef et Salah Al-Saleh. « New Insights on the Role of Multivalent Ions in Water-Carbonate Rock Interactions ». Dans SPE Improved Oil Recovery Symposium. Society of Petroleum Engineers, 2014. http://dx.doi.org/10.2118/169112-ms.
Texte intégralMcClary, Scott, Daniel Long, Ana Sanz-Matias, Alan Landers, Kathryn Small, Paul Kotula, David Prendergast, Katherine Jungjohann et Kevin Zavadil. « Identifying multivalent metal anode interphases using cryogenic electron microscopy. » Dans Proposed for presentation at the 2022 Fall American Chemical Society Meeting held August 21-25, 2022 in Chicago, IL. US DOE, 2022. http://dx.doi.org/10.2172/2004460.
Texte intégralRapports d'organisations sur le sujet "Ion multivalent"
Conlisk, A. T., et Minami Yoda. Transport of Multivalent Electrolyte Mixtures in Micro- and Nanochannels. Fort Belvoir, VA : Defense Technical Information Center, novembre 2013. http://dx.doi.org/10.21236/ada607255.
Texte intégralPalmer, Guy H., Eugene Pipano, Terry F. McElwain, Varda Shkap et Donald P. Knowles, Jr. Development of a Multivalent ISCOM Vaccine against Anaplasmosis. United States Department of Agriculture, juillet 1993. http://dx.doi.org/10.32747/1993.7568763.bard.
Texte intégralSchwarz, Haiqing L. Tunable Graphitic Carbon Nano-Onions Development in Carbon Nanofibers for Multivalent Energy Storage. Office of Scientific and Technical Information (OSTI), janvier 2016. http://dx.doi.org/10.2172/1235990.
Texte intégralCetinkaya, Asena. Multivalent Functions Involving Srivastava–Tomovski Generalization of the Mittag-Leffler Function Defined in the Nephroid Domain. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, février 2021. http://dx.doi.org/10.7546/crabs.2021.02.02.
Texte intégralSchmidt, Piet. Origins of Effective Charge of Multivalent Ions at a Membrane/Water Interface and Distribution of 2,3,4,5-Tetrachlorophenol in a Membrane Model System. Portland State University Library, janvier 2000. http://dx.doi.org/10.15760/etd.6925.
Texte intégral