Articles de revues sur le sujet « Ion mobility separation-mass spectrometry »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Ion mobility separation-mass spectrometry.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Ion mobility separation-mass spectrometry ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

R Swetha Sri, B Aishwarya, D Vaishnavi et M Sumakanth. « A review on ion mobility mass spectrometry ». Open Access Research Journal of Biology and Pharmacy 6, no 2 (30 novembre 2022) : 013–23. http://dx.doi.org/10.53022/oarjbp.2022.6.2.0067.

Texte intégral
Résumé :
Mass Spectrometry can be coupled with ion mobility to get results that cannot be obtained by alone mass spectrometry. This coupled instrument can be used for knowing the separation of isomers, isobars, and conformers, the reduction of chemical noise, and the measurement of ion size. It divides ions into families of ions as well as ions with the same charge and similar structural properties. The four ion mobility separation techniques currently applied to mass spectrometry are described in this article. Low-resolution mobility separation is demonstrated by AIMS. Offering continuous ion monitorings are DMS and FAIMS. TWIMS is a novel IMS technique that has good sensitivity and is well integrated into a commercial mass spectrometer while having modest resolving power. In this review it includes that Many researches has used this technique has it gives results in millisecond and its low cost operation.it has major drawback of contamination of compounds due to atmospheric pressure, complex spectra and interferences aredue to wide spread of ionization.it is not suitable for Non-volatile compound and the repoducubility is1-2%.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Garcia, Xavier, Maria Sabaté, Jorge Aubets, Josep Jansat et Sonia Sentellas. « Ion Mobility–Mass Spectrometry for Bioanalysis ». Separations 8, no 3 (16 mars 2021) : 33. http://dx.doi.org/10.3390/separations8030033.

Texte intégral
Résumé :
This paper aims to cover the main strategies based on ion mobility spectrometry (IMS) for the analysis of biological samples. The determination of endogenous and exogenous compounds in such samples is important for the understanding of the health status of individuals. For this reason, the development of new approaches that can be complementary to the ones already established (mainly based on liquid chromatography coupled to mass spectrometry) is welcomed. In this regard, ion mobility spectrometry has appeared in the analytical scenario as a powerful technique for the separation and characterization of compounds based on their mobility. IMS has been used in several areas taking advantage of its orthogonality with other analytical separation techniques, such as liquid chromatography, gas chromatography, capillary electrophoresis, or supercritical fluid chromatography. Bioanalysis is not one of the areas where IMS has been more extensively applied. However, over the last years, the interest in using this approach for the analysis of biological samples has clearly increased. This paper introduces the reader to the principles controlling the separation in IMS and reviews recent applications using this technique in the field of bioanalysis.
Styles APA, Harvard, Vancouver, ISO, etc.
3

Domalain, Virginie, Marie Hubert-Roux, Laurence Quéguiner, Dany JD Fouque, Eric Arnoult, David Speybrouck, Jérôme Guillemont et Carlos Afonso. « Ion mobility-mass spectrometry analysis of diarylquinoline diastereomers : Drugs used for tuberculosis treatment ». European Journal of Mass Spectrometry 25, no 3 (5 décembre 2018) : 291–99. http://dx.doi.org/10.1177/1469066718813226.

Texte intégral
Résumé :
Mycobacterium tuberculosis infection results in more than two million deaths per year and is the leading cause of mortality in people infected with HIV. A new structural class of antimycobacterials, the diarylquinolines, has been synthesized and is being highly effective against both M. tuberculosis and multidrug-resistant tuberculosis. As diarylquinolines are biologically active only under their ( R,S) stereoisomeric form, it is essential to differentiate the stereoisomers ( R,S) and ( R,R). To achieve this, tandem mass spectrometry and ion mobility spectrometry-mass spectrometry have been performed with 10 diarylquinoline diastereomers couples. In this study, we investigated cationization with alkali metal cations and several ion mobility drift gases in order to obtain diastereomer differentiations. We have shown that diastereomers of the diarylquinolines family can be differentiated separately by tandem mass spectrometry and in mixture by ion mobility spectrometry-mass spectrometry. However, although the structure of each diastereomer is close, several behaviors could be observed concerning the cationization and the ion mobility spectrometry separation. The ion mobility spectrometry isomer separation efficiency is not easily predictable; it was however observed for all diastereomeric couples with a significant improvement of separation using alkali adducts compared to protonated molecules. With the use of drift gas with higher polarizability only an improvement of separation was obtained in a few cases. Finally, a good correlation of the experimental collision cross section (relative to three-dimensional structure of ions) and the theoretical collision cross section has been shown.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Pollard, Matthew J., Christopher K. Hilton, Hongli Li, Kimberly Kaplan, Richard A. Yost et Herbert H. Hill. « Ion mobility spectrometer—field asymmetric ion mobility spectrometer-mass spectrometry ». International Journal for Ion Mobility Spectrometry 14, no 1 (9 mars 2011) : 15–22. http://dx.doi.org/10.1007/s12127-011-0058-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Ahonen, Linda, Maíra Fasciotti, Gustav Boije af Gennäs, Tapio Kotiaho, Romeu J. Daroda, Marcos Eberlin et Risto Kostiainen. « Separation of steroid isomers by ion mobility mass spectrometry ». Journal of Chromatography A 1310 (octobre 2013) : 133–37. http://dx.doi.org/10.1016/j.chroma.2013.08.056.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Matz, Laura M., et Herbert H. Hill. « Separation of benzodiazepines by electrospray ionization ion mobility spectrometry–mass spectrometry ». Analytica Chimica Acta 457, no 2 (avril 2002) : 235–45. http://dx.doi.org/10.1016/s0003-2670(02)00021-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Lawrence, A. H., et A. A. Nanji. « Ion mobility spectrometry and ion mobility spectrometry/mass spectrometric characterization of dimenhydrinate ». Biological Mass Spectrometry 16, no 1-12 (octobre 1988) : 345–47. http://dx.doi.org/10.1002/bms.1200160167.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Hayashi, Akio, Nobutake Sato, Haruo Hosoda et Ushio Takeda. « Ion Mobility Mass Spectrometry ». Japanese Journal of Pesticide Science 42, no 1 (2017) : 187–96. http://dx.doi.org/10.1584/jpestics.w17-55.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Kanu, Abu B., Prabha Dwivedi, Maggie Tam, Laura Matz et Herbert H. Hill. « Ion mobility-mass spectrometry ». Journal of Mass Spectrometry 43, no 1 (16 janvier 2008) : 1–22. http://dx.doi.org/10.1002/jms.1383.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Ewing, Michael A., Matthew S. Glover et David E. Clemmer. « Hybrid ion mobility and mass spectrometry as a separation tool ». Journal of Chromatography A 1439 (mars 2016) : 3–25. http://dx.doi.org/10.1016/j.chroma.2015.10.080.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

McKenna, Kristin R., Li Li, Andrew G. Baker, Jakub Ujma, Ramanarayanan Krishnamurthy, Charles L. Liotta et Facundo M. Fernández. « Carbohydrate isomer resolution via multi-site derivatization cyclic ion mobility-mass spectrometry ». Analyst 144, no 24 (2019) : 7220–26. http://dx.doi.org/10.1039/c9an01584a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Tose, Lilian V., Paolo Benigni, Dennys Leyva, Abigail Sundberg, César E. Ramírez, Mark E. Ridgeway, Melvin A. Park, Wanderson Romão, Rudolf Jaffé et Francisco Fernandez-Lima. « Coupling trapped ion mobility spectrometry to mass spectrometry : trapped ion mobility spectrometry-time-of-flight mass spectrometry versus trapped ion mobility spectrometry-Fourier transform ion cyclotron resonance mass spectrometry ». Rapid Communications in Mass Spectrometry 32, no 15 (5 juillet 2018) : 1287–95. http://dx.doi.org/10.1002/rcm.8165.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Xiao, Peng, Hong-Mei Li, Ming Li, De-Wei Song, Xiao-Min Li, Xin-Hua Dai et Zhi-Shang Hu. « Structural characterization and thermally induced isomerization investigation of cis- and trans-vitamin K1using ion mobility mass spectrometry ». Analytical Methods 7, no 19 (2015) : 8432–38. http://dx.doi.org/10.1039/c5ay01495f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Chouinard, Christopher D., Michael S. Wei, Christopher R. Beekman, Robin H. J. Kemperman et Richard A. Yost. « Ion Mobility in Clinical Analysis : Current Progress and Future Perspectives ». Clinical Chemistry 62, no 1 (1 janvier 2016) : 124–33. http://dx.doi.org/10.1373/clinchem.2015.238840.

Texte intégral
Résumé :
Abstract BACKGROUND Ion mobility spectrometry (IMS) is a rapid separation tool that can be coupled with several sampling/ionization methods, other separation techniques (e.g., chromatography), and various detectors (e.g., mass spectrometry). This technique has become increasingly used in the last 2 decades for applications ranging from illicit drug and chemical warfare agent detection to structural characterization of biological macromolecules such as proteins. Because of its rapid speed of analysis, IMS has recently been investigated for its potential use in clinical laboratories. CONTENT This review article first provides a brief introduction to ion mobility operating principles and instrumentation. Several current applications will then be detailed, including investigation of rapid ambient sampling from exhaled breath and other volatile compounds and mass spectrometric imaging for localization of target compounds. Additionally, current ion mobility research in relevant fields (i.e., metabolomics) will be discussed as it pertains to potential future application in clinical settings. SUMMARY This review article provides the authors' perspective on the future of ion mobility implementation in the clinical setting, with a focus on ambient sampling methods that allow IMS to be used as a “bedside” standalone technique for rapid disease screening and methods for improving the analysis of complex biological samples such as blood plasma and urine.
Styles APA, Harvard, Vancouver, ISO, etc.
15

Hernández-Mesa, Maykel, David Ropartz, Ana M. García-Campaña, Hélène Rogniaux, Gaud Dervilly-Pinel et Bruno Le Bizec. « Ion Mobility Spectrometry in Food Analysis : Principles, Current Applications and Future Trends ». Molecules 24, no 15 (25 juillet 2019) : 2706. http://dx.doi.org/10.3390/molecules24152706.

Texte intégral
Résumé :
In the last decade, ion mobility spectrometry (IMS) has reemerged as an analytical separation technique, especially due to the commercialization of ion mobility mass spectrometers. Its applicability has been extended beyond classical applications such as the determination of chemical warfare agents and nowadays it is widely used for the characterization of biomolecules (e.g., proteins, glycans, lipids, etc.) and, more recently, of small molecules (e.g., metabolites, xenobiotics, etc.). Following this trend, the interest in this technique is growing among researchers from different fields including food science. Several advantages are attributed to IMS when integrated in traditional liquid chromatography (LC) and gas chromatography (GC) mass spectrometry (MS) workflows: (1) it improves method selectivity by providing an additional separation dimension that allows the separation of isobaric and isomeric compounds; (2) it increases method sensitivity by isolating the compounds of interest from background noise; (3) and it provides complementary information to mass spectra and retention time, the so-called collision cross section (CCS), so compounds can be identified with more confidence, either in targeted or non-targeted approaches. In this context, the number of applications focused on food analysis has increased exponentially in the last few years. This review provides an overview of the current status of IMS technology and its applicability in different areas of food analysis (i.e., food composition, process control, authentication, adulteration and safety).
Styles APA, Harvard, Vancouver, ISO, etc.
16

Zimnicka, Magdalena M. « Crown ethers as shift reagents in peptide epimer differentiation –conclusions from examination of ac-(H)FRW-NH2 petide sequences ». International Journal for Ion Mobility Spectrometry 23, no 2 (octobre 2020) : 177–88. http://dx.doi.org/10.1007/s12127-020-00271-2.

Texte intégral
Résumé :
Abstract Crown ethers with different ring sizes and substituents (18-crown-6, dibenzo-18-crown-6, dicyclohexano-18-crown-6, a chiral tetracarboxylic acid-18-crown-6 ether, dibenzo-21-crown-7, and dibenzo-30-crown-10) were evaluated as shift reagents to differentiate epimeric model peptides (tri-and tetrapeptides) using ion mobility mass spectrometry (IM-MS). The stable associates of peptide epimers with crown ethers were detected and examined using traveling-wave ion mobility time-of-flight mass spectrometer (Synapt G2-S HDMS) equipped with an electrospray ion source. The overall decrease of the epimer separation upon crown ether complexation was observed. The increase of the effectiveness of the microsolvation of a basic moiety - guanidine or ammonium group in the peptide had no or little effect on the epimer discrimination. Any increase of the epimer separation, which referred to the specific association mode between crown substituents and a given peptide sequence, was drastically reduced for the longer peptide sequence (tetrapeptide). The obtained results suggest that the application of the crown ethers as shift reagents in ion mobility mass spectrometry is limited to the formation of complexes differing in stoichiometry rather than it refers to a specific coordination mode between a crown ether and a peptide molecule.
Styles APA, Harvard, Vancouver, ISO, etc.
17

Sugiyama, Eiji, Hajime Mizuno et Kenichiro Todoroki. « Enantio-Separation by Ion-Mobility Spectrometry ». Journal of the Mass Spectrometry Society of Japan 70, no 1 (1 mars 2022) : 74–76. http://dx.doi.org/10.5702/massspec.s22-14.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Jackson, Shelley N., Damon Barbacci, Thomas Egan, Ernest K. Lewis, J. Albert Schultz et Amina S. Woods. « MALDI-ion mobility mass spectrometry of lipids in negative ion mode ». Anal. Methods 6, no 14 (2014) : 5001–7. http://dx.doi.org/10.1039/c4ay00320a.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Li, Xiaopeng, Yi-Tsu Chan, Madalis Casiano-Maldonado, Jing Yu, Gustavo A. Carri, George R. Newkome et Chrys Wesdemiotis. « Separation and Characterization of Metallosupramolecular Libraries by Ion Mobility Mass Spectrometry ». Analytical Chemistry 83, no 17 (septembre 2011) : 6667–74. http://dx.doi.org/10.1021/ac201161u.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Troć, Anna, Magdalena Zimnicka et Witold Danikiewicz. « Separation of catechin epimers by complexation using ion mobility mass spectrometry ». Journal of Mass Spectrometry 50, no 3 (20 février 2015) : 542–48. http://dx.doi.org/10.1002/jms.3560.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Rue, Emily A., Jan A. Glinski, Vitold B. Glinski et Richard B. van Breemen. « Ion mobility-mass spectrometry for the separation and analysis of procyanidins ». Journal of Mass Spectrometry 55, no 2 (18 juin 2019) : e4377. http://dx.doi.org/10.1002/jms.4377.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Chouinard, Christopher D., Christopher R. Beekman, Robin H. J. Kemperman, Harrison M. King et Richard A. Yost. « Ion mobility-mass spectrometry separation of steroid structural isomers and epimers ». International Journal for Ion Mobility Spectrometry 20, no 1-2 (20 décembre 2016) : 31–39. http://dx.doi.org/10.1007/s12127-016-0213-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Collins, D., et M. Lee. « Developments in ion mobility spectrometry–mass spectrometry ». Analytical and Bioanalytical Chemistry 372, no 1 (12 décembre 2001) : 66–73. http://dx.doi.org/10.1007/s00216-001-1195-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Glazyrin, Yury E., Gleb G. Mironov, Anna S. Kichkailo et Maxim V. Berezovski. « Separation Abilities of Capillary Electrophoresis Coupled with Ion Mobility Mass Spectrometry for the Discrete Detection of Sequence Isomeric Peptides ». Separations 9, no 5 (25 avril 2022) : 106. http://dx.doi.org/10.3390/separations9050106.

Texte intégral
Résumé :
The separation and discrete detection of isomeric sequence peptides with similar properties are important tasks for analytical science. Three different peptide isomers of 12 amino-acid residues long, containing direct and reverse regions of the alanine-valine-proline-isoleucine (AVPI) motif, were partially separated and discretely detected from their mixture using two approaches. Capillary electrophoresis enabled the separation and optical detection of the peptide sequence isomers close to the baseline. The ability to separate these sequence isomers from the mixture and discretely identify them from mass spectra has also been demonstrated by ion-mobility tandem mass spectrometry. Moreover, for the first time, capillary electrophoresis and ion-mobility mass spectrometry connected online have shown their ability for a discrete detection of the multidirectional sequence isomers.
Styles APA, Harvard, Vancouver, ISO, etc.
25

Glazyrin, Yury E., Gleb G. Mironov, Anna S. Kichkailo et Maxim V. Berezovski. « Separation Abilities of Capillary Electrophoresis Coupled with Ion Mobility Mass Spectrometry for the Discrete Detection of Sequence Isomeric Peptides ». Separations 9, no 5 (25 avril 2022) : 106. http://dx.doi.org/10.3390/separations9050106.

Texte intégral
Résumé :
The separation and discrete detection of isomeric sequence peptides with similar properties are important tasks for analytical science. Three different peptide isomers of 12 amino-acid residues long, containing direct and reverse regions of the alanine-valine-proline-isoleucine (AVPI) motif, were partially separated and discretely detected from their mixture using two approaches. Capillary electrophoresis enabled the separation and optical detection of the peptide sequence isomers close to the baseline. The ability to separate these sequence isomers from the mixture and discretely identify them from mass spectra has also been demonstrated by ion-mobility tandem mass spectrometry. Moreover, for the first time, capillary electrophoresis and ion-mobility mass spectrometry connected online have shown their ability for a discrete detection of the multidirectional sequence isomers.
Styles APA, Harvard, Vancouver, ISO, etc.
26

Schröder, Detlef. « Ion-mobility mass spectrometry of complexes of nickel and acetonitrile ». Collection of Czechoslovak Chemical Communications 76, no 5 (2011) : 351–69. http://dx.doi.org/10.1135/cccc2011020.

Texte intégral
Résumé :
Mono- and dications of microsolvated nickel complexes of acetonitrile are probed by means of ion-mobility mass spectrometry. Specifically, the complexes [(CH3CN)nNi]+, [(CH3CN)nNi]2+, [(CH3CN)nNiOH]+, and [(CH3CN)nNiCl]+ (n = 0–6) are compared to each other and their reactions with background water are probed. In general, the arrival times of the ions in the ion-mobility experiment linearly increase with the mass-to-charge ratio, but for the smaller, more reactive complexes, the arrival times are notably larger than expected from their mass. This effect is attributed to the markedly larger reactivity of these particular ions, as reflected in both charge-separation processes as well as adduct formation upon interaction with background water.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Matz, Laura M., et Herbert H. Hill. « Evaluation of Opiate Separation by High-Resolution Electrospray Ionization-Ion Mobility Spectrometry/Mass Spectrometry ». Analytical Chemistry 73, no 8 (avril 2001) : 1664–69. http://dx.doi.org/10.1021/ac001147b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Jeanne Dit Fouque, Kevin, Cesar E. Ramirez, Russell L. Lewis, Jeremy P. Koelmel, Timothy J. Garrett, Richard A. Yost et Francisco Fernandez-Lima. « Effective Liquid Chromatography–Trapped Ion Mobility Spectrometry–Mass Spectrometry Separation of Isomeric Lipid Species ». Analytical Chemistry 91, no 8 (21 mars 2019) : 5021–27. http://dx.doi.org/10.1021/acs.analchem.8b04979.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Hollerbach, Adam, Patrick W. Fedick et R. Graham Cooks. « Ion Mobility–Mass Spectrometry Using a Dual-Gated 3D Printed Ion Mobility Spectrometer ». Analytical Chemistry 90, no 22 (3 octobre 2018) : 13265–72. http://dx.doi.org/10.1021/acs.analchem.8b02209.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Laakia, Jaakko, Alexey Adamov, Matti Jussila, Christian S. Pedersen, Alexey A. Sysoev et Tapio Kotiaho. « Separation of different ion structures in atmospheric pressure photoionization-ion mobility spectrometry-mass spectrometry (APPI-IMS-MS) ». Journal of the American Society for Mass Spectrometry 21, no 9 (septembre 2010) : 1565–72. http://dx.doi.org/10.1016/j.jasms.2010.04.018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Ohshimo, Keijiro, Tatsuya Komukai, Ryoichi Moriyama et Fuminori Misaizu. « Isomer Separation of Iron Oxide Cluster Cations by Ion Mobility Mass Spectrometry ». Journal of Physical Chemistry A 118, no 22 (22 mai 2014) : 3899–905. http://dx.doi.org/10.1021/jp5015687.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Lalli, Priscila M., Bernardo A. Iglesias, Henrique E. Toma, Gilberto F. Sa, Romeu J. Daroda, Juvenal C. Silva Filho, Jan E. Szulejko, Koiti Araki et Marcos N. Eberlin. « Protomers : formation, separation and characterization via travelling wave ion mobility mass spectrometry ». Journal of Mass Spectrometry 47, no 6 (juin 2012) : 712–19. http://dx.doi.org/10.1002/jms.2999.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Liu, Longchan, Ziying Wang, Qian Zhang, Yuqi Mei, Linnan Li, Huwei Liu, Zhengtao Wang et Li Yang. « Ion Mobility Mass Spectrometry for the Separation and Characterization of Small Molecules ». Analytical Chemistry 95, no 1 (10 janvier 2023) : 134–51. http://dx.doi.org/10.1021/acs.analchem.2c02866.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Mesa Sanchez, Daniela, Steve Creger, Veerupaksh Singla, Ruwan T. Kurulugama, John Fjeldsted et Julia Laskin. « Ion Mobility-Mass Spectrometry Imaging Workflow ». Journal of the American Society for Mass Spectrometry 31, no 12 (4 août 2020) : 2437–42. http://dx.doi.org/10.1021/jasms.0c00142.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Yang, Liu, Qiang Han, Shuya Cao, Junchao Yang, Jiang Zhao et Mingyu Ding. « Hyphenated differential mobility spectrometry for rapid separation and detection ». Reviews in Analytical Chemistry 35, no 1 (1 avril 2016) : 29–40. http://dx.doi.org/10.1515/revac-2015-0017.

Texte intégral
Résumé :
AbstractThis paper reviews hyphenated differential mobility spectrometry (DMS) technology. DMS is a type of ion mobility spectrometry (IMS) also called high-field asymmetric waveform IMS. It is widely used in the detection of chemical warfare agents, explosives, drugs, and volatile organic compounds. Stand-alone DMS analysis of complex mixtures in real-field applications is challenging. Hyphenated DMS can improve resolution for rapid separation and detection. This review focuses on hyphenated DMS, including gas chromatography-DMS, DMS-mass spectrometry (MS), DMS-IMS, IMS-DMS, and DMS-DMS, as well as their associated principles, applications, and research procedures. Key problems in hyphenated DMS are considered.
Styles APA, Harvard, Vancouver, ISO, etc.
36

Groessl, M., S. Graf et R. Knochenmuss. « High resolution ion mobility-mass spectrometry for separation and identification of isomeric lipids ». Analyst 140, no 20 (2015) : 6904–11. http://dx.doi.org/10.1039/c5an00838g.

Texte intégral
Résumé :
Separation and identification of isomeric species is a major challenge in lipidomics. Herein, we demonstrate that lipid isomers that differ only in position of the acyl chain, position of the double bond or double bond geometry can be distinguished using drift-tube ion mobility-mass spectrometry, even in complex biological samples.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Purves, Randy W., David A. Barnett et Roger Guevremont. « Separation of protein conformers using electrospray-high field asymmetric waveform ion mobility spectrometry-mass spectrometry ». International Journal of Mass Spectrometry 197, no 1-3 (février 2000) : 163–77. http://dx.doi.org/10.1016/s1387-3806(99)00240-7.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Phillips, Shawn T., James N. Dodds, Berkley M. Ellis, Jody C. May et John A. McLean. « Chiral separation of diastereomers of the cyclic nonapeptides vasopressin and desmopressin by uniform field ion mobility mass spectrometry ». Chemical Communications 54, no 68 (2018) : 9398–401. http://dx.doi.org/10.1039/c8cc03790f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Xie, Chengyi, Qidi Wu, Shulei Zhang, Chenlu Wang, Wenqing Gao, Jiancheng Yu et Keqi Tang. « Improving glycan isomeric separation via metal ion incorporation for drift tube ion mobility-mass spectrometry ». Talanta 211 (mai 2020) : 120719. http://dx.doi.org/10.1016/j.talanta.2020.120719.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Witting, Michael, Ulrike Schmidt et Hans-Joachim Knölker. « UHPLC-IM-Q-ToFMS analysis of maradolipids, found exclusively in Caenorhabditis elegans dauer larvae ». Analytical and Bioanalytical Chemistry 413, no 8 (11 février 2021) : 2091–102. http://dx.doi.org/10.1007/s00216-021-03172-3.

Texte intégral
Résumé :
AbstractLipid identification is one of the current bottlenecks in lipidomics and lipid profiling, especially for novel lipid classes, and requires multidimensional data for correct annotation. We used the combination of chromatographic and ion mobility separation together with data-independent acquisition (DIA) of tandem mass spectrometric data for the analysis of lipids in the biomedical model organism Caenorhabditis elegans. C. elegans reacts to harsh environmental conditions by interrupting its normal life cycle and entering an alternative developmental stage called dauer stage. Dauer larvae show distinct changes in metabolism and morphology to survive unfavorable environmental conditions and are able to survive for a long time without feeding. Only at this developmental stage, dauer larvae produce a specific class of glycolipids called maradolipids. We performed an analysis of maradolipids using ultrahigh performance liquid chromatography-ion mobility spectrometry-quadrupole-time of flight-mass spectrometry (UHPLC-IM-Q-ToFMS) using drift tube ion mobility to showcase how the integration of retention times, collisional cross sections, and DIA fragmentation data can be used for lipid identification. The obtained results show that combination of UHPLC and IM separation together with DIA represents a valuable tool for initial lipid identification. Using this analytical tool, a total of 45 marado- and lysomaradolipids have been putatively identified and 10 confirmed by authentic standards directly from C. elegans dauer larvae lipid extracts without the further need for further purification of glycolipids. Furthermore, we putatively identified two isomers of a lysomaradolipid not known so far. Graphical abstract
Styles APA, Harvard, Vancouver, ISO, etc.
41

Kim, S. H., et G. E. Spangler. « Ion Mobility Spectrometry/Mass Spectromentry of Two Structurally Different Ions Having Identical Ion Mass ». Analytical Chemistry 57, no 2 (février 1985) : 567–69. http://dx.doi.org/10.1021/ac50001a056.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Demelenne, Alice, Gwenael Nys, Cindy Nix, John C. Fjeldsted, Jacques Crommen et Marianne Fillet. « Separation of phosphorothioated oligonucleotide diastereomers using multiplexed drift tube ion mobility mass spectrometry ». Analytica Chimica Acta 1191 (janvier 2022) : 339297. http://dx.doi.org/10.1016/j.aca.2021.339297.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Jeanne Dit Fouque, Kevin, Alyssa Garabedian, Jacob Porter, Matthew Baird, Xueqin Pang, Todd D. Williams, Lingjun Li, Alexandre Shvartsburg et Francisco Fernandez-Lima. « Fast and Effective Ion Mobility–Mass Spectrometry Separation ofd-Amino-Acid-Containing Peptides ». Analytical Chemistry 89, no 21 (19 octobre 2017) : 11787–94. http://dx.doi.org/10.1021/acs.analchem.7b03401.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Steiner, Wes E., Brian H. Clowers et Herbert H. Hill. « Rapid separation of phenylthiohydantoin amino acids : ambient pressure ion-mobility mass spectrometry (IMMS) ». Analytical and Bioanalytical Chemistry 375, no 1 (janvier 2003) : 99–102. http://dx.doi.org/10.1007/s00216-002-1622-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Fu, Tingting, Janina Oetjen, Manuel Chapelle, Alexandre Verdu, Matthias Szesny, Arnaud Chaumot, Davide Degli-Esposti et al. « In situ isobaric lipid mapping by MALDI-ion mobility separation-mass spectrometry imaging ». Journal of Mass Spectrometry 55, no 9 (21 juin 2020) : e4531. http://dx.doi.org/10.1002/jms.4531.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Jin, Chunsheng, David J. Harvey, Weston B. Struwe et Niclas G. Karlsson. « Separation of Isomeric O-Glycans by Ion Mobility and Liquid Chromatography–Mass Spectrometry ». Analytical Chemistry 91, no 16 (12 juillet 2019) : 10604–13. http://dx.doi.org/10.1021/acs.analchem.9b01772.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Varesio, Emmanuel, J. C. Yves Le Blanc et Gérard Hopfgartner. « Real-time 2D separation by LC × differential ion mobility hyphenated to mass spectrometry ». Analytical and Bioanalytical Chemistry 402, no 8 (18 octobre 2011) : 2555–64. http://dx.doi.org/10.1007/s00216-011-5444-y.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Mu, Yuqing, Benjamin Schulz et Vito Ferro. « Applications of Ion Mobility-Mass Spectrometry in Carbohydrate Chemistry and Glycobiology ». Molecules 23, no 10 (7 octobre 2018) : 2557. http://dx.doi.org/10.3390/molecules23102557.

Texte intégral
Résumé :
Carbohydrate analyses are often challenging due to the structural complexity of these molecules, as well as the lack of suitable analytical tools for distinguishing the vast number of possible isomers. The coupled technique, ion mobility-mass spectrometry (IM-MS), has been in use for two decades for the analysis of complex biomolecules, and in recent years it has emerged as a powerful technique for the analysis of carbohydrates. For carbohydrates, most studies have focused on the separation and characterization of isomers in biological samples. IM-MS is capable of separating isomeric ions by drift time, and further characterizing them by mass analysis. Applications of IM-MS in carbohydrate analysis are extremely useful and important for understanding many biological mechanisms and for the determination of disease states, although efforts are still needed for higher sensitivity and resolution.
Styles APA, Harvard, Vancouver, ISO, etc.
49

Wu, Ching, William F. Siems, G. Reid Asbury et Herbert H. Hill. « Electrospray Ionization High-Resolution Ion Mobility Spectrometry−Mass Spectrometry ». Analytical Chemistry 70, no 23 (décembre 1998) : 4929–38. http://dx.doi.org/10.1021/ac980414z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Inutan, Ellen, et Sarah Trimpin. « Laserspray ionization (LSI) ion mobility spectrometry (IMS) mass spectrometry ». Journal of the American Society for Mass Spectrometry 21, no 7 (juillet 2010) : 1260–64. http://dx.doi.org/10.1016/j.jasms.2010.03.039.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie