Articles de revues sur le sujet « Ion Conducting Glasses »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Ion Conducting Glasses.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Ion Conducting Glasses ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Mehrer, Helmut. « Diffusion and Ion Conduction in Cation-Conducting Oxide Glasses ». Diffusion Foundations 6 (février 2016) : 59–106. http://dx.doi.org/10.4028/www.scientific.net/df.6.59.

Texte intégral
Résumé :
In this Chapter we review knowledge about diffusion and cation conduction in oxide glasses. We first remind the reader in Section 1 of major aspects of the glassy state and recall in Section 2 the more common glass families. The diffusive motion in ion-conducting oxide glasses can be studied by several techniques – measurements of radiotracer diffusion, studies of the ionic conductivity by impedance spectroscopy, viscosity studies and pressure dependent studies of tracer diffusion and ion conduction. These methods are briefly reviewed in Section 3. Radiotracer diffusion is element-specific, whereas ionic conduction is not. A comparison of both types of experiments can throw considerable light on the question which type of ions are carriers of ionic conduction. For ionic conductors Haven ratios can be obtained from the tracer diffusivity and the ionic conductivity for those ions which dominate the conductivity.In the following sections we review the diffusive motion of cations in soda-lime silicate glass and in several alkali-oxide glasses based mainly on results from our laboratory published in detail elsewhere, but we also take into account literature data.Section 4 is devoted to two soda-lime silicate glasses, materials which are commonly used for window glass and glass containers. A comparison between ionic conductivity and tracer diffusion of Na and Ca isotopes, using the Nernst-Einstein relation to deduce charge diffusivities, reveals that sodium ions are the carriers of ionic conduction in soda-lime glasses. A comparison with viscosity data on the basis of the Stokes-Einstein relation shows that the SiO2 network is many orders of magnitude less mobile than the relatively fast diffusing modifier cations Na. The Ca ions are less mobile than the Na ions but nevertheless Ca is considerably more mobile than the network.Section 5 summarizes results of ion conduction and tracer diffusion for single Na and single Rb borate glasses. Tracer diffusion and ionic conduction have been studied in single alkali-borate glasses as functions of temperature and pressure. The smaller ion is the faster diffusing species in its own glass. This is a common feature of all alkali oxide glasses. The Haven ratio of Na in Na borate glass is temperature independent whereas the Haven ratio of Rb diffusion in Rb borate glass decreases with decreasing temperature.Section 6 reviews major facts of alkali-oxide glasses with two different alkali ions. Such glasses reveal the so-called mixed-alkali effect. Its major feature is a deep minimum of the conductivity near some middle composition for the ratio of the two alkali ions. Tracer diffusion shows a crossover of the two tracer diffusivities as functions of the relative alkali content near the conductivity minimum. The values of the tracer diffusivities also reveal in which composition range which ions dominate ionic conduction. Tracer diffusion is faster for those alkali ions which dominate the composition of the mixed glass.Section 7 considers the pressure dependence of tracer diffusion and ionic conduction. Activation volumes of tracer diffusion and of charge diffusion are reviewed. By comparison of tracer and charge diffusion the so-called Haven ratios are obtained as functions of temperature, pressure and composition. The Haven ratio of Rb in Rb borate glass decreases with temperature and pressure whereas that of Na in Na borate glass is almost constant.Section 8 summarizes additional common features of alkali-oxide glasses. Activation enthalpies of charge diffusion decrease with decreasing average ion-ion distance. The Haven ratio is unity for large ion-ion distances and decreases with increasing alkali content and hence with decreasing ion-ion distance.Conclusions about the mechanism of diffusion are discussed in Section 9. The Haven ratio near unity at low alkali concentrations can be attributed to interstitial-like diffusion similar to interstitial diffusion in crystals. At higher alkali contents collective, chain-like motions of several ions prevail and lead to a decrease of the Haven ratio. The tracer diffusivities have a pressure dependence which is stronger than that of ionic conductivity. This entails a pressure-dependent Haven ratio, which can be attributed to an increasing degree of collectivity of the ionic jump process with increasing pressure. Monte Carlo simulations showed that the number of ions which participate in collective jump events increases with increasing ion content – i.e. with decreasing average ion-ion distance. For the highest alkali contents up to four ions can be involved in collective motion. Common aspects of the motion process of ions in glasses and of atoms in glassy metals are pointed out. Diffusion in glassy metals also occurs by collective motion of several atoms.Section 10 summarizes the major features of ionic conduction and tracer diffusion and its temperature and pressure dependence of oxide glasses.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Jacob, Sarah, John Javornizky, George H. Wolf et C. Austen Angell. « Oxide ion conducting glasses ». International Journal of Inorganic Materials 3, no 3 (juin 2001) : 241–51. http://dx.doi.org/10.1016/s1466-6049(01)00024-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Minami, Tsutomu. « Fast ion conducting glasses ». Journal of Non-Crystalline Solids 73, no 1-3 (août 1985) : 273–84. http://dx.doi.org/10.1016/0022-3093(85)90353-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Burckhardt, W., B. Rudolph et U. Schütze. « New Li+-ion conducting glasses ». Solid State Ionics 28-30 (septembre 1988) : 739–42. http://dx.doi.org/10.1016/s0167-2738(88)80137-1.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Burckhardt, W. « New Li+-ion conducting glasses ». Solid State Ionics 36, no 3-4 (novembre 1989) : 153–54. http://dx.doi.org/10.1016/0167-2738(89)90160-4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

KADONO, K., K. MITANI, M. YAMASHITA et H. TANAKA. « New lithium ion-conducting glasses ». Solid State Ionics 47, no 3-4 (septembre 1991) : 227–30. http://dx.doi.org/10.1016/0167-2738(91)90243-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Pradel, A., et M. Ribes. « Ion transport in superionic conducting glasses ». Journal of Non-Crystalline Solids 172-174 (septembre 1994) : 1315–23. http://dx.doi.org/10.1016/0022-3093(94)90658-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Weitzel, Karl Michael. « Bombardment Induced Ion Transport through Ion Conducting Glasses ». Diffusion Foundations 6 (février 2016) : 107–43. http://dx.doi.org/10.4028/www.scientific.net/df.6.107.

Texte intégral
Résumé :
The recently developed bombardment induced ion transport (BIIT) technique is reviewed. BIIT is based on shining an energy-selected alkali ion beam at the surface of a sample of interest. Attachment of these ions leads to the build-up of a surface potential and a surface particle density. This in turn generates the corresponding gradients which induce ion transport towards a single metal electrode connected to the backside of the sample where it is detected as a neutralization current. Two different versions of BIIT are presented, i.) the native ion BIIT and ii.) the foreign ion BIIT. The former is demonstrated to provide access to absolute ionic conductivities and activation energies, the latter leads to the generation of electrodiffusion profiles. Theoretical modelling of these concentration profiles by means of the Nernst-Planck-Poisson theory allows to deduce the concentration dependence of diffusion coefficients.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Pietrzak, Tomasz K., Marek Wasiucionek et Jerzy E. Garbarczyk. « Towards Higher Electric Conductivity and Wider Phase Stability Range via Nanostructured Glass-Ceramics Processing ». Nanomaterials 11, no 5 (17 mai 2021) : 1321. http://dx.doi.org/10.3390/nano11051321.

Texte intégral
Résumé :
This review article presents recent studies on nanostructured glass-ceramic materials with substantially improved electrical (ionic or electronic) conductivity or with an extended temperature stability range of highly conducting high-temperature crystalline phases. Such materials were synthesized by the thermal nanocrystallization of selected electrically conducting oxide glasses. Various nanostructured systems have been described, including glass-ceramics based on ion conductive glasses (silver iodate and bismuth oxide ones) and electronic conductive glasses (vanadate-phosphate and olivine-like ones). Most systems under consideration have been studied with the practical aim of using them as electrode or solid electrolyte materials for rechargeable Li-ion, Na-ion, all-solid batteries, or solid oxide fuel cells. It has been shown that the conductivity enhancement of glass-ceramics is closely correlated with their dual microstructure, consisting of nanocrystallites (5–100 nm) confined in the glassy matrix. The disordered interfacial regions in those materials form “easy conduction” paths. It has also been shown that the glassy matrices may be a suitable environment for phases, which in bulk form are stable at high temperatures, and may exist when confined in nanograins embedded in the glassy matrix even at room temperature. Many complementary experimental techniques probing the electrical conductivity, long- and short-range structure, microstructure at the nanometer scale, or thermal transitions have been used to characterize the glass-ceramic systems under consideration. Their results have helped to explain the correlations between the microstructure and the properties of these systems.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Bhattacharya, S., et A. Ghosh. « Electrical properties of ion conducting molybdate glasses ». Journal of Applied Physics 100, no 11 (2006) : 114119. http://dx.doi.org/10.1063/1.2400116.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Doi, Akira. « Free volumes in several ion-conducting glasses ». Journal of Non-Crystalline Solids 246, no 1-2 (avril 1999) : 155–58. http://dx.doi.org/10.1016/s0022-3093(99)00056-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

KUWANO, J. « Silver ion conducting glasses and some applications ». Solid State Ionics 40-41 (août 1990) : 696–99. http://dx.doi.org/10.1016/0167-2738(90)90101-v.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

CHOWDARI, B., R. GOPALAKRISHNAN et K. TAN. « ESCA studies of fast ion conducting glasses ». Solid State Ionics 40-41 (août 1990) : 709–13. http://dx.doi.org/10.1016/0167-2738(90)90105-z.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Swenson, J., et St Adams. « Structure-conductivity relations in ion conducting glasses ». Ionics 9, no 1-2 (janvier 2003) : 28–35. http://dx.doi.org/10.1007/bf02376533.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Frechero, M. A., L. Padilla, H. O. Mártin et J. L. Iguain. « Intermediate-range structure in ion-conducting tellurite glasses ». EPL (Europhysics Letters) 103, no 3 (1 août 2013) : 36002. http://dx.doi.org/10.1209/0295-5075/103/36002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Bychkov, E. « Tracer diffusion studies of ion-conducting chalcogenide glasses ». Solid State Ionics 136-137, no 1-2 (2 novembre 2000) : 1111–18. http://dx.doi.org/10.1016/s0167-2738(00)00516-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Luo, Zhiwei, Jing Zhang, Jianlei Liu, Jun Song et Anxian Lu. « La2O3-added lithium-ion conducting silicate oxynitride glasses ». Solid State Ionics 317 (avril 2018) : 76–82. http://dx.doi.org/10.1016/j.ssi.2018.01.008.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Usuki, T., K. Nakajima, T. Furukawa, M. Sakurai, S. Kohara, T. Nasu, Y. Amo et Y. Kameda. « Structure of fast ion conducting AgI–As2Se3 glasses ». Journal of Non-Crystalline Solids 353, no 32-40 (octobre 2007) : 3040–44. http://dx.doi.org/10.1016/j.jnoncrysol.2007.05.036.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Roling, B., et M. D. Ingram. « Mixed alkaline–earth effects in ion conducting glasses ». Journal of Non-Crystalline Solids 265, no 1-2 (mars 2000) : 113–19. http://dx.doi.org/10.1016/s0022-3093(99)00899-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Saha, S. K., et D. Chakravorty. « Inhomogeneous conductor model and fast ion conducting glasses ». Journal of Non-Crystalline Solids 167, no 1-2 (janvier 1994) : 89–91. http://dx.doi.org/10.1016/0022-3093(94)90371-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Balkanski, M., R. F. Wallis, J. Deppe et M. Massot. « Dynamical properties of fast-ion-conducting borate glasses ». Materials Science and Engineering : B 12, no 3 (février 1992) : 281–98. http://dx.doi.org/10.1016/0921-5107(92)90300-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Tatsumisago, M., et T. Minami. « Lithium ion conducting glasses prepared by rapid quenching ». Materials Chemistry and Physics 18, no 1-2 (octobre 1987) : 1–17. http://dx.doi.org/10.1016/0254-0584(87)90107-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Jamnický, Miroslav, Jaroslav Sedláček et Peter Znášik. « The Structure and Properties of Cuprous Ion Conducting Glasses ». Solid State Phenomena 90-91 (avril 2003) : 221–26. http://dx.doi.org/10.4028/www.scientific.net/ssp.90-91.221.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Sidebottom, D. L., et J. Zhang. « Scaling of the ac permittivity in ion-conducting glasses ». Physical Review B 62, no 9 (1 septembre 2000) : 5503–7. http://dx.doi.org/10.1103/physrevb.62.5503.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Herczog, Andrew. « Sodium Ion Conducting Glasses for the Sodium‐Sulfur Battery ». Journal of The Electrochemical Society 132, no 7 (1 juillet 1985) : 1539–45. http://dx.doi.org/10.1149/1.2114161.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Börjesson, L., L. M. Torell et W. S. Howells. « Brillouin scattering and neutron diffraction in ion-conducting glasses ». Philosophical Magazine B 59, no 1 (janvier 1989) : 105–23. http://dx.doi.org/10.1080/13642818908208450.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Minami, T. « Preparation and characterization of lithium ion-conducting oxysulfide glasses ». Solid State Ionics 136-137, no 1-2 (2 novembre 2000) : 1015–23. http://dx.doi.org/10.1016/s0167-2738(00)00555-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

BANHATTI, R. « Dielectric function and localized diffusion in ion conducting glasses ». Solid State Ionics 175, no 1-4 (novembre 2004) : 661–63. http://dx.doi.org/10.1016/j.ssi.2004.09.063.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Deshpande, V. K., Megha A. Salorkar et Nalini Nagpure. « Study of lithium ion conducting glasses with Li2SO4 addition ». Journal of Non-Crystalline Solids 527 (janvier 2020) : 119737. http://dx.doi.org/10.1016/j.jnoncrysol.2019.119737.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Swenson, J., L. Börjesson, R. L. McGreevy et W. S. Howells. « Structure and conductivity of fast ion-conducting borate glasses ». Physica B : Condensed Matter 234-236 (juin 1997) : 386–87. http://dx.doi.org/10.1016/s0921-4526(96)01037-x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Staesche, Halgard, Sevi Murugavel et Bernhard Roling. « Nonlinear Conductivity and Permittivity Spectra of Ion Conducting Glasses ». Zeitschrift für Physikalische Chemie 223, no 10-11 (décembre 2009) : 1229–38. http://dx.doi.org/10.1524/zpch.2009.6076.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

DALBA, G., P. FORNASINI, F. ROCCA et E. BURATTINI. « XANES IN FAST ION CONDUCTING GLASSES AgI : Ag2O : B2O3 ». Le Journal de Physique Colloques 47, no C8 (décembre 1986) : C8–749—C8–752. http://dx.doi.org/10.1051/jphyscol:19868142.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Kowada, Y., M. Tatsumisago, T. Minami et H. Adachi. « Electronic state of sulfide-based lithium ion conducting glasses ». Journal of Non-Crystalline Solids 354, no 2-9 (janvier 2008) : 360–64. http://dx.doi.org/10.1016/j.jnoncrysol.2007.07.085.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Price, David Long, et Adam J. G. Ellison. « Atomic structure and dynamics of fast-ion conducting glasses ». Journal of Non-Crystalline Solids 177 (novembre 1994) : 293–98. http://dx.doi.org/10.1016/0022-3093(94)90543-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Pan, A., et A. Ghosh. « Structural and optical properties of lithium bismuthate glasses ». Journal of Materials Research 17, no 8 (août 2002) : 1941–44. http://dx.doi.org/10.1557/jmr.2002.0287.

Texte intégral
Résumé :
Structural and optical properties of ion - conducting lithium bismuthate glasses are reported here. The structure of these glasses has been explored from the compositional variation of the density, molar volume, and glass transition temperature. The optical study in the visible and infrared region indicates a large transmission window for these glasses. The BiO6 octahedra were identified as the main structural unit from the Raman spectra of these bismuthate glasses.
Styles APA, Harvard, Vancouver, ISO, etc.
36

Jun, Liu, J. Portier, B. Tanguy, J. J. Videau, M. Ait Allal, J. Morcos et J. Salardenne. « Application of Silver Conducting Glasses to Solid State Batteries and Sensors ». Active and Passive Electronic Components 14, no 2 (1990) : 81–94. http://dx.doi.org/10.1155/1990/82403.

Texte intégral
Résumé :
Fast silver ion conducting glasses as electrochemical devices have been tested. A silver iodine battery using a silver ionic conducting glass (AgPO3-Ag2S-AgI) has been studied. The interaction of some gases (O2CI2, H2S) with the electrochemical chains: Pt/Sb2S3-AgI (glass)/Ag and Pt/AgCl (thin film)/Sb2S3- AgI (glass)/Ag has been investigated. Finally, the behavior of thin films of Ag2S3-Ag2S-CdS glasses as sensitive membranes for Cd detection in solution has been tested on MIS structures Au/Si/SiO2/ Membrane/Cd in solution/Reference electrode.
Styles APA, Harvard, Vancouver, ISO, etc.
37

Salorkar, Megha A., et V. K. Deshpande. « Study of lithium ion conducting glasses for solid electrolyte application ». Physica B : Condensed Matter 627 (février 2022) : 413590. http://dx.doi.org/10.1016/j.physb.2021.413590.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Shastry, M. C. R., et K. J. Rao. « Physico chemical investigation of fast ion conducting AgI−Ag2SeO4 glasses ». Proceedings / Indian Academy of Sciences 102, no 4 (août 1990) : 541–53. http://dx.doi.org/10.1007/bf02867833.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Mori, Kazuhiro. « Structure Studies of Lithium Ion Conducting Glasses Using Neutron Diffraction ». Materia Japan 56, no 7 (2017) : 443–47. http://dx.doi.org/10.2320/materia.56.443.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Ohto, M., et K. Tanaka. « Scanning tunneling spectroscopy of Ag–As–Se ion-conducting glasses ». Applied Physics Letters 71, no 23 (8 décembre 1997) : 3409–11. http://dx.doi.org/10.1063/1.120350.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Roling, B., et C. Martiny. « Nonuniversal Features of the ac Conductivity in Ion Conducting Glasses ». Physical Review Letters 85, no 6 (7 août 2000) : 1274–77. http://dx.doi.org/10.1103/physrevlett.85.1274.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Bokova, M., I. Alekseev et E. Bychkov. « Tl+ ion Conducting Glasses in the Tl-Ge-S System ». Physics Procedia 44 (2013) : 35–44. http://dx.doi.org/10.1016/j.phpro.2013.04.005.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Swenson, J. « Relations between structure and conductivity in fast ion conducting glasses ». Solid State Ionics 105, no 1-4 (1 janvier 1998) : 55–65. http://dx.doi.org/10.1016/s0167-2738(97)00449-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

BHATTACHARYA, S., et A. GHOSH. « Relaxation of silver ions in fast ion conducting molybdate glasses ». Solid State Ionics 176, no 13-14 (29 avril 2005) : 1243–47. http://dx.doi.org/10.1016/j.ssi.2005.03.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Dyre, Jeppe C. « Is there a ‘native’ band gap in ion conducting glasses ? » Journal of Non-Crystalline Solids 324, no 1-2 (août 2003) : 192–95. http://dx.doi.org/10.1016/s0022-3093(03)00237-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Gowda, V. C. Veeranna, R. V. Anavekar et K. J. Rao. « Elastic properties of fast ion conducting lithium based borate glasses ». Journal of Non-Crystalline Solids 351, no 43-45 (novembre 2005) : 3421–29. http://dx.doi.org/10.1016/j.jnoncrysol.2005.09.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Doi, Akira. « Simulation and scaling of ac conductivities in ion-conducting glasses ». Journal of Non-Crystalline Solids 352, no 8 (juin 2006) : 777–82. http://dx.doi.org/10.1016/j.jnoncrysol.2006.02.031.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Julien, C. « Annealing studies of fast ion conducting glasses by FTIR microscopy ». Solid State Ionics 34, no 4 (juin 1989) : 269–73. http://dx.doi.org/10.1016/0167-2738(89)90454-2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Swenson, J., A. Matic, C. Karlsson, L. Börjesson et W. S. Howells. « Free volume and dissociation effects in fast ion conducting glasses ». Journal of Non-Crystalline Solids 263-264 (mars 2000) : 73–81. http://dx.doi.org/10.1016/s0022-3093(99)00670-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Mehrer, Helmut. « Diffusion in Ion-conducting Oxide Glasses and in Glassy Metals ». Zeitschrift für Physikalische Chemie 223, no 10-11 (décembre 2009) : 1143–60. http://dx.doi.org/10.1524/zpch.2009.6070.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie