Articles de revues sur le sujet « Investigation - Electronic Structure »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Investigation - Electronic Structure.

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Investigation - Electronic Structure ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Szade, J., et M. Neumann. « Electronic structure investigation of Gd intermetallics ». Journal of Physics : Condensed Matter 11, no 19 (1 janvier 1999) : 3887–96. http://dx.doi.org/10.1088/0953-8984/11/19/308.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Del Nero, J., D. S. Galvão et B. Laks. « Electronic structure investigation of biosensor polymer ». Optical Materials 21, no 1-3 (janvier 2003) : 461–66. http://dx.doi.org/10.1016/s0925-3467(02)00183-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Totani, R., C. Grazioli, T. Zhang, I. Bidermane, J. Lüder, M. de Simone, M. Coreno, B. Brena, L. Lozzi et C. Puglia. « Electronic structure investigation of biphenylene films ». Journal of Chemical Physics 146, no 5 (7 février 2017) : 054705. http://dx.doi.org/10.1063/1.4975104.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Nishya, N., M. Ramachandran, Sivaji Chinnasami, S. Sowmiya et Sriram Soniya. « Investigation of Various Honey comb Structure and Its Application ». Construction and Engineering Structures 1, no 1 (1 mai 2022) : 1–8. http://dx.doi.org/10.46632/ces/1/1/1.

Texte intégral
Résumé :
This paper provides comprehensive test results. Preliminary studies on paper honeycomb machine modelling structures always focus on static conditions; some random innovative honeycomb based paper honeycomb structures have their best mechanical performance And have received considerable attention in recent years due to specific activities. Inspired by bee hive, architecture, transportation, mechanical engineering, found wide applications in various fields including chemistry and using the first-principles of two-dimensional hive structures Explored the electronic properties of molybdenum disulfide. In this study, a new broadband microwave-absorbing honeycomb system was designed and fabricated using a new concept. Based on past studies of beetle front wing structures, we have developed an approach to creating honeycomb plates in an integrated body shape. Honeycomb structures widely used in vehicle and aerospace applications due to its high strength and low weight. Sample and we calculated first-principles within the density-function Theory for the study of structural, electronic and magnetic properties of boron-nitride honeycomb structure. Focusing on future electronics technologies and their potential impact on the attractive phenomena exposed in these integrated aluminium hives is considered a promising framework. The formation of a two-dimensional triangular finite element, including additional freedom, was derived based on Eringen's principle of micro polar elasticity. The structural, electronic, optical and vibration properties of zinc antimonate monolayer and their functional structures are explored. Due to the increasing technological development in various industries and the combined need for energy absorption, we have created honeycomb structural images of different diameters with light shock absorbers such as honeycomb structure
Styles APA, Harvard, Vancouver, ISO, etc.
5

Bisti, F., G. Anemone, M. Donarelli, S. Penna, A. Reale et L. Ottaviano. « Tetrakis erbium quinolinate complexes, electronic structure investigation ». Organic Electronics 15, no 8 (août 2014) : 1810–14. http://dx.doi.org/10.1016/j.orgel.2014.05.012.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Bertini, Simone, Alessia Coletti, Barbara Floris, Valeria Conte et Pierluca Galloni. « Investigation of VO–salophen complexes electronic structure ». Journal of Inorganic Biochemistry 147 (juin 2015) : 44–53. http://dx.doi.org/10.1016/j.jinorgbio.2015.03.003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Bulusheva, L. G., A. V. Okotrub et N. F. Yudanov. « Investigation of the Electronic Structure of C60F24 ». Journal of Physical Chemistry A 101, no 51 (décembre 1997) : 10018–28. http://dx.doi.org/10.1021/jp9715538.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Chang, Ch, A. B. C. Patzer, E. Sedlmayr, T. Steinke et D. Sülzle. « Electronic structure investigation of the Al4O4 molecule ». Chemical Physics Letters 324, no 1-3 (juin 2000) : 108–14. http://dx.doi.org/10.1016/s0009-2614(00)00579-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Ehrenberg, Helmut, Sonja Laubach, P. C. Schmidt, R. McSweeney, M. Knapp et K. C. Mishra. « Investigation of crystal structure and associated electronic structure of Sr6BP5O20 ». Journal of Solid State Chemistry 179, no 4 (avril 2006) : 968–73. http://dx.doi.org/10.1016/j.jssc.2005.12.033.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Pereira Gomes, André Severo, Florent Réal, Nicolas Galland, Celestino Angeli, Renzo Cimiraglia et Valérie Vallet. « Electronic structure investigation of the evanescent AtO+ion ». Phys. Chem. Chem. Phys. 16, no 20 (2014) : 9238–48. http://dx.doi.org/10.1039/c3cp55294b.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Harel, S., J. M. Mariot, E. Beauprez et C. F. Hague. « Electronic structure investigation at a zirconia-nickel interface ». Surface and Coatings Technology 45, no 1-3 (mai 1991) : 309–15. http://dx.doi.org/10.1016/0257-8972(91)90237-q.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

M. Dezhkam, M. Dezhkam, et A. Zakery A. Zakery. « Exact investigation of the electronic structure and the linear and nonlinear optical properties of conical quantum dots ». Chinese Optics Letters 10, no 12 (2012) : 121901–4. http://dx.doi.org/10.3788/col201210.121901.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Bernardini, F., Stefano Ossicini et A. Fasolino. « First-principles investigation of the electronic structure of Si-based layered structures ». Surface Science 307-309 (avril 1994) : 984–88. http://dx.doi.org/10.1016/0039-6028(94)91528-8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Stadnyk, Yu V., V. V. Romaka, V. A. Romaka, A. M. Нoryn, L. P. Romaka, V. Ya Krayovskyy et І. М. Romaniv. « Investigation of Electronic Structure of Zr1-xVxNiSn Semiconductive Solid Solution ». Фізика і хімія твердого тіла 20, no 2 (10 juillet 2019) : 127–32. http://dx.doi.org/10.15330/pcss.20.2.127-132.

Texte intégral
Résumé :
The peculiarities of electronic and crystal structures of Zr1-xVxNiSn (x = 0 - 0.10) semiconductive solid solution were investigated. To predict Fermi level εF behavior, band gap εg and electrokinetic characteristics of Zr1-xVxNiSn, the distribution of density of electronic states (DOS) was calculated. The mechanism of simultaneous generation of structural defects of donor and acceptor nature was determined based on the results of calculations of electronic structure and measurement of electrical properties of Zr1-xVxNiSn semiconductive solid solution. It was established that in the band gap of Zr1-xVxNiSn the energy states of the impurity donor εD2 and acceptor εA1 levels (donor-acceptor pairs) appear, which determine the mechanisms of conduction of semiconductor.
Styles APA, Harvard, Vancouver, ISO, etc.
15

Chen, Bo Wei, Guan Jun Chang et Lin Zhang. « Properties of Fluorene Derivatives : DFT Investigation ». Advanced Materials Research 532-533 (juin 2012) : 97–100. http://dx.doi.org/10.4028/www.scientific.net/amr.532-533.97.

Texte intégral
Résumé :
Fluorene derivatives are typical semiconductor materials. The electronic structures of Fluorene derivatives were successfully investigated by density functions theory (DFT). Furthermore, the HOMO and LUMO energy levels will be changed owing to the introduction of some aliphatic chains in the fluorene. So through theoretical investigation of electronic structure and molecule orbit by the DFT method, the variational UV-vis absorption spectra of fluorene derivatives due to variational levels were explained.
Styles APA, Harvard, Vancouver, ISO, etc.
16

Jeong, K. S., Ch Chang, E. Sedlmayr et D. Sülzle. « Electronic structure investigation of neutral titanium oxide molecules TixOy ». Journal of Physics B : Atomic, Molecular and Optical Physics 33, no 17 (23 août 2000) : 3417–30. http://dx.doi.org/10.1088/0953-4075/33/17/319.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Zaoui, A., M. Ferhat et J. Hugel. « Ab initio investigation of the electronic structure of AgCl ». Superlattices and Microstructures 38, no 1 (juillet 2005) : 57–68. http://dx.doi.org/10.1016/j.spmi.2005.05.001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Hoogmartens, I., P. Adriaensens, R. Carleer, D. Vanderzande, H. Martens et J. Gelan. « An investigation into the electronic structure of poly(isothianaphthene) ». Synthetic Metals 51, no 1-3 (septembre 1992) : 219–28. http://dx.doi.org/10.1016/0379-6779(92)90274-m.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

El-Taher, Sabry, K. M. El-sawy et Rifaat Hilal. « Electronic Structure of Some Adenosine Receptor Antagonists. VQSAR Investigation ». Journal of Chemical Information and Computer Sciences 42, no 2 (mars 2002) : 386–92. http://dx.doi.org/10.1021/ci010307x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Matar, Samir F., Bernard Chevalier et Rainer Pöttgen. « Ab initio investigation of the electronic structure of CeRh2Sb2 ». Chemical Physics Letters 537 (juin 2012) : 48–52. http://dx.doi.org/10.1016/j.cplett.2012.04.004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Jordan, R. G., D. M. Zehner, N. M. Harrison, P. J. Durham et W. M. Temmerman. « An XPS investigation of the electronic structure in AgZn ». Zeitschrift f�r Physik B Condensed Matter 75, no 3 (septembre 1989) : 291–95. http://dx.doi.org/10.1007/bf01321816.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Jordan, R. G., et P. J. Durham. « Experimental Investigation of the Electronic Structure in Metallic Solids ». Molecular Simulation 4, no 1-3 (octobre 1989) : 95–112. http://dx.doi.org/10.1080/08927028908021967.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Chernova, E. M., V. N. Sitnikov, V. V. Turovtsev et Yu D. Orlov. « Investigation of the Electronic Structure of Alkyl Allyl Radicals ». Journal of Structural Chemistry 59, no 6 (novembre 2018) : 1265–70. http://dx.doi.org/10.1134/s0022476618060033.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Matar, Samir F., et Jean Etourneau. « Investigation of the electronic structure of carbon-containing TiAl ». Journal of Alloys and Compounds 233, no 1-2 (janvier 1996) : 112–20. http://dx.doi.org/10.1016/0925-8388(96)80042-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Audzijonis, A., L. Žigas, J. Siroic, A. Pauliukas, R. Žaltauskas, A. Čerškus et J. Narušis. « Investigation of the electronic structure of the SbSeI cluster ». physica status solidi (b) 243, no 3 (mars 2006) : 610–17. http://dx.doi.org/10.1002/pssb.200541376.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Ojo, Oluwagbemiga P., Winnie Wong-Ng, Tieyan Chang, Yu-Sheng Chen et George S. Nolas. « Structural and Electronic Properties of Cu3InSe4 ». Crystals 12, no 9 (17 septembre 2022) : 1310. http://dx.doi.org/10.3390/cryst12091310.

Texte intégral
Résumé :
Single crystals of a new ternary chalcogenide Cu3InSe4 were obtained by induction melting, allowing for a complete investigation of the crystal structure by employing high-resolution single-crystal synchrotron X-ray diffraction. Cu3InSe4 crystallizes in a cubic structure, space group P4¯3m, with lattice constant 5.7504(2) Å and a density of 5.426 g/cm3. There are three unique crystallographic sites in the unit cell, with each cation bonded to four Se atoms in a tetrahedral geometry. Electron localization function calculations were employed in investigating the chemical bonding nature and first-principle electronic structure calculations are also presented. The results are discussed in light of the ongoing interest in exploring the structural and electronic properties of new chalcogenide materials.
Styles APA, Harvard, Vancouver, ISO, etc.
27

Maryam Darvishpour, Maryam Darvishpour, et Mohammad Hossein Fekri Mohammad Hossein Fekri. « Investigation of the Magnetic and Electronic Properties of Copper Nanocluster Cu14 Contaminated with Fe, Ni and Co ». Journal of the chemical society of pakistan 42, no 3 (2020) : 399. http://dx.doi.org/10.52568/000647.

Texte intégral
Résumé :
We have presented density functional calculations of the electronic structures and magnetic properties of bimetallics nanoclusters Cu14-nMn (n=1-3) (M=Fe, Ni and Co) in the FCC crystal structure. For the calculations of the physical properties of the compounds, we have used the full potential linearized augmented plane wave method. The magnetic nature, semiconducting, half metallicity and metalloid of transition metals clusters in the FCC crystal structure are investigated. Results show that studied systems have ferromagnetic properties against Cu14Cluster. It is found that band gap of the clusters decreases with doping of atoms compared to pure cluster Cu14, Particularly for Fe. These calculations show that Cu14 and Cu12Co2 are metals, while Cu13Fe, Cu12Fe2, Cu13Co, Cu11Co3 and Cu11Ni3 are half-metals and Cu11Fe3 and Cu12Ni2 are metalloid. Between these clusters, Cu13Ni is semiconductor. The spin polarization and the magnetic moment of the systems are dependent on number and type of the host transition metal atoms. The Cu13Ni has maximum spin polarization and stability. These results provide a new candidate for applications this series of compounds as dilute magnetic clusters and half-metal in spintronic devices.
Styles APA, Harvard, Vancouver, ISO, etc.
28

Maryam Darvishpour, Maryam Darvishpour, et Mohammad Hossein Fekri Mohammad Hossein Fekri. « Investigation of the Magnetic and Electronic Properties of Copper Nanocluster Cu14 Contaminated with Fe, Ni and Co ». Journal of the chemical society of pakistan 42, no 3 (2020) : 399. http://dx.doi.org/10.52568/000647/jcsp/42.03.2020.

Texte intégral
Résumé :
We have presented density functional calculations of the electronic structures and magnetic properties of bimetallics nanoclusters Cu14-nMn (n=1-3) (M=Fe, Ni and Co) in the FCC crystal structure. For the calculations of the physical properties of the compounds, we have used the full potential linearized augmented plane wave method. The magnetic nature, semiconducting, half metallicity and metalloid of transition metals clusters in the FCC crystal structure are investigated. Results show that studied systems have ferromagnetic properties against Cu14Cluster. It is found that band gap of the clusters decreases with doping of atoms compared to pure cluster Cu14, Particularly for Fe. These calculations show that Cu14 and Cu12Co2 are metals, while Cu13Fe, Cu12Fe2, Cu13Co, Cu11Co3 and Cu11Ni3 are half-metals and Cu11Fe3 and Cu12Ni2 are metalloid. Between these clusters, Cu13Ni is semiconductor. The spin polarization and the magnetic moment of the systems are dependent on number and type of the host transition metal atoms. The Cu13Ni has maximum spin polarization and stability. These results provide a new candidate for applications this series of compounds as dilute magnetic clusters and half-metal in spintronic devices.
Styles APA, Harvard, Vancouver, ISO, etc.
29

Chrobak, D., et Edward Rówiński. « Investigation of Electronic Structures of Titanium Nitride Layers on TiNi Substrate ». Solid State Phenomena 163 (juin 2010) : 76–79. http://dx.doi.org/10.4028/www.scientific.net/ssp.163.76.

Texte intégral
Résumé :
The electronic structure of titanium nitride layers formed on the TiNi substrates is examined by Auger electron spectroscopy and electron emission distribution methods. Spectral analysis shows that the on-top carbon layer has a graphite structure and the neighbouring layer is constituted of titanium nitride. The shape of the main valence spectra was explained by the Hubbard model. From the comparison of experiment and theory the model parameters were estimated. Besides, the existence of surface and internal plasmons verifies the layered structures with average dielectric constants.
Styles APA, Harvard, Vancouver, ISO, etc.
30

Krzystek, J., Adam T. Fiedler, Jennifer J. Sokol, Andrew Ozarowski, S. A. Zvyagin, Thomas C. Brunold, Jeffrey R. Long, Louis-Claude Brunel et Joshua Telser. « Pseudooctahedral Complexes of Vanadium(III) : Electronic Structure Investigation by Magnetic and Electronic Spectroscopy ». Inorganic Chemistry 43, no 18 (septembre 2004) : 5645–58. http://dx.doi.org/10.1021/ic0493503.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Kholtobina, Anastasiia S., Evgenia A. Kovaleva, Julia Melchakova, Sergey G. Ovchinnikov et Alexander A. Kuzubov. « Theoretical Investigation of the Prospect to Tailor ZnO Electronic Properties with VP Thin Films ». Nanomaterials 11, no 6 (27 mai 2021) : 1412. http://dx.doi.org/10.3390/nano11061412.

Texte intégral
Résumé :
The atomic and electronic structure of vanadium phosphide one- to four-atomic-layer thin films and their composites with zinc oxide substrate are modelled by means of quantum chemistry. Favorable vanadium phosphide to ZnO orientation is defined and found to remain the same for all the structures under consideration. The electronic structure of the composites is analyzed in detail. The features of the charge and spin density distribution are discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
32

Chiromawa, Idris Muhammad, Amiruddin Shaari, Razif Razali, Summanuwa Timothy Ahams et Mikailu Abdullahi. « Ab initio Investigation of the Structure and Electronic Properties of Normal Spinel Fe2SiO4 ». Malaysian Journal of Fundamental and Applied Sciences 17, no 2 (29 avril 2021) : 195–201. http://dx.doi.org/10.11113/mjfas.v17n2.2018.

Texte intégral
Résumé :
Transition metal spinel oxides have recently been predicted to create efficient transparent conducting oxides for optoelectronic devices. These compounds can be easily tuned by doping or defect to adapt their electronic or magnetic properties. However, their cation distribution is very complex and band structures are still subject to controversy. We propose a complete density functional theory investigation of fayalite (Fe2SiO4) spinel, using Generalized Gradient Approximation (GGA) and Local Density Approximation (LDA) in order to explain the electronic and structural properties of this material. A detailed study of their crystal structure and electronic structure is given and compared with experimental data. The lattice parameters calculated are in agreement with the lattice obtained experimentally. The band structure of Fe2SiO4 spinel without Coulomb parameter U shows that the bands close to Fermi energy appear to be a band metal, with four iron d-bands crossing the Fermi level, in spite of the fact that from the experiment it is found to be an insulator.
Styles APA, Harvard, Vancouver, ISO, etc.
33

Breczko, T., V. Barkaline et J. Tamuliene. « INVESTIGATION OF GEOMETRIC AND ELECTRONIC STRUCTURES OF HEUSLER ALLOYS : CUBIC AND TETRAGONAL LATTICES ». EPH - International Journal of Applied Science 6, no 1 (27 mars 2020) : 1–5. http://dx.doi.org/10.53555/eijas.v6i1.102.

Texte intégral
Résumé :
Ni2MnGa and Co2MnGa compounds were investigated by using state-of-the-art computational ab-initio methods. The total energy calculations for the cubic and the tetrahedral structures, band structure together with suspensibility investigations were performed. The results of our investigations exhibited the dependence of magnetic properties of the compounds on their geometrical structure. The influence of Co and Ni on the magnetic properties of the compounds was disclosed, too.
Styles APA, Harvard, Vancouver, ISO, etc.
34

Li Chenggang, 李成刚, 张洁 Zhang Jie, 申梓刚 Shen Zigang, 崔颍琦 Cui Yingqi, 任保增 Ren Baozeng, 袁玉全 Yuan Yuquan et 胡燕飞 Hu Yanfei. « Investigation of Structure, Electronic and Spectral Properties of NiB20- Cluster ». Acta Optica Sinica 40, no 20 (2020) : 2016001. http://dx.doi.org/10.3788/aos202040.2016001.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
35

Qi-Yuan, Zhang, Yan Ji-Min et Zhang Da-Ren. « Investigation on the Structure of Electronic Energy Bands of Polydiacetylenes ». Acta Physico-Chimica Sinica 9, no 02 (1993) : 256–62. http://dx.doi.org/10.3866/pku.whxb19930222.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Modak, Pampa, et Brindaban Modak. « Electronic structure investigation of intrinsic and extrinsic defects in LiF ». Computational Materials Science 202 (février 2022) : 110977. http://dx.doi.org/10.1016/j.commatsci.2021.110977.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

SHUTKOVA, Svetlana Alexandrovna, et Mikhail Yuryevich DOLOMATOV. « Investigation of the electronic and supramolecular structure of petroleum asphaltenes ». Russian Electronic Scientific Journal, no 2 (2021) : 106–20. http://dx.doi.org/10.31563/2308-9644-2021-40-2-106-120.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Lebedev, Nikolay. « Quantum and Chemical Investigation of Electronic Structure of Carbon Nanobads ». Vestnik Volgogradskogo gosudarstvennogo universiteta. Serija 1. Mathematica. Physica, no 6 (22 décembre 2014) : 53–59. http://dx.doi.org/10.15688/jvolsu1.2014.6.5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Bhatt, Pramod, et S. M. Chaudhari. « Investigation of interface electronic structure of annealed Ti/Ni multilayers ». Journal of Physics : Condensed Matter 17, no 48 (11 novembre 2005) : 7465–88. http://dx.doi.org/10.1088/0953-8984/17/48/002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Pati, Ranjit, N. Sahoo, T. P. Das et S. N. Ray. « Electronic Structure Investigation and Nuclear Quadrupole Interactions in β-HMX ». Journal of Physical Chemistry A 101, no 44 (octobre 1997) : 8302–8. http://dx.doi.org/10.1021/jp970375f.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Vovchenko, V. V. « Optical investigation of the electronic structure of alloys Сu-Fе ». Semiconductor physics, quantum electronics and optoelectronics 10, no 3 (31 octobre 2007) : 58–60. http://dx.doi.org/10.15407/spqeo10.03.058.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Guillou, F., A. K. Pathak, T. A. Hackett, D. Paudyal, Y. Mudryk et V. K. Pecharsky. « Crystal, magnetic, calorimetric and electronic structure investigation of GdScGe1–xSbxcompounds ». Journal of Physics : Condensed Matter 29, no 48 (9 novembre 2017) : 485802. http://dx.doi.org/10.1088/1361-648x/aa93aa.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Klebanoff, L. E., S. W. Robey, G. Liu et D. A. Shirley. « Investigation of the near-surface electronic structure of Cr(001) ». Physical Review B 31, no 10 (15 mai 1985) : 6379–94. http://dx.doi.org/10.1103/physrevb.31.6379.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Thier, K. F., G. Zimmer, M. Mehring et F. Rachdi. « NMR investigation of the electronic structure of the RbC60polymer phase ». Physical Review B 53, no 2 (1 janvier 1996) : R496—R499. http://dx.doi.org/10.1103/physrevb.53.r496.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Warren, W. W., G. F. Brennert et U. El-Hanany. « NMR investigation of the electronic structure of expanded liquid cesium ». Physical Review B 39, no 7 (1 mars 1989) : 4038–50. http://dx.doi.org/10.1103/physrevb.39.4038.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Bhardwaj, Richa, Jitendra Pal Singh, Keun Hwa Chae, Navdeep Goyal et Sanjeev Gautam. « Electronic and magnetic structure investigation of vanadium doped ZnO nanostructure ». Vacuum 158 (décembre 2018) : 257–62. http://dx.doi.org/10.1016/j.vacuum.2018.09.053.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Su, Shujun. « An electronic structure investigation of the BNO-BON-NBO system ». Journal of Molecular Structure : THEOCHEM 430 (avril 1998) : 137–48. http://dx.doi.org/10.1016/s0166-1280(98)90229-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

La Mar, Gerd N., Nicolette L. Davis, Robert D. Johnson, Wanda S. Smith, Jon B. Hauksson, David L. Budd, Frank Dalichow, Kevin C. Langry, Ian K. Morris et Kevin M. Smith. « Nuclear magnetic resonance investigation of the electronic structure of deoxymyoglobin ». Journal of the American Chemical Society 115, no 10 (mai 1993) : 3869–76. http://dx.doi.org/10.1021/ja00063a003.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Ozawa, R., Y. Gunji, D. Sekiba, H. Nakamizo et H. Fukutani. « Electronic structure investigation of Ag(110)/1 × 2-O surface ». Journal of Electron Spectroscopy and Related Phenomena 88-91 (mars 1998) : 717–24. http://dx.doi.org/10.1016/s0368-2048(97)00209-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Eremeev, S. V., S. Schmauder, S. Hocker et S. E. Kulkova. « Investigation of the electronic structure of Me/Al2O3(0001) interfaces ». Physica B : Condensed Matter 404, no 14-15 (juillet 2009) : 2065–71. http://dx.doi.org/10.1016/j.physb.2009.03.043.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie