Littérature scientifique sur le sujet « Intracerebral monitoring »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Intracerebral monitoring ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Intracerebral monitoring"
Lee, Kevin R., Ivo Drury, Elizabeth Vitarbo et Julian T. Hoff. « Seizures induced by intracerebral injection of thrombin : a model of intracerebral hemorrhage ». Journal of Neurosurgery 87, no 1 (juillet 1997) : 73–78. http://dx.doi.org/10.3171/jns.1997.87.1.0073.
Texte intégralHemphill, J. Claude, Diane Morabito, Mary Farrant et Geoffrey T. Manley. « Brain Tissue Oxygen Monitoring in Intracerebral Hemorrhage ». Neurocritical Care 3, no 3 (2005) : 260–70. http://dx.doi.org/10.1385/ncc:3:3:260.
Texte intégralDemierre, Bertrand, Falko A. Stichnoth, Akira Hori et Otto Spoerri. « Intracerebral ganglioglioma ». Journal of Neurosurgery 65, no 2 (août 1986) : 177–82. http://dx.doi.org/10.3171/jns.1986.65.2.0177.
Texte intégralSantamarina Pérez, Estevo, Raquel Delgado-Mederos, Marta Rubiera, Pilar Delgado, Marc Ribó, Olga Maisterra, Gema Ortega, José Álvarez-Sabin et Carlos A. Molina. « Transcranial Duplex Sonography for Monitoring Hyperacute Intracerebral Hemorrhage ». Stroke 40, no 3 (mars 2009) : 987–90. http://dx.doi.org/10.1161/strokeaha.108.524249.
Texte intégralKapinos, G., et J. C. Hemphill. « Clinicoradiologic acute monitoring after intracerebral hemorrhage : Toward standards ? » Neurology 81, no 2 (5 juin 2013) : 102–3. http://dx.doi.org/10.1212/wnl.0b013e31829a3564.
Texte intégralMathru, M. « Transcranial Duplex Sonography for Monitoring Hyperacute Intracerebral Hemorrhage ». Yearbook of Anesthesiology and Pain Management 2010 (janvier 2010) : 171–73. http://dx.doi.org/10.1016/s1073-5437(09)79362-3.
Texte intégralVerlooy, J., L. Heytens, G. Veeckmans et P. Selosse. « Intracerebral temperature monitoring in severely head injured patients ». Acta Neurochirurgica 134, no 1-2 (mars 1995) : 76–78. http://dx.doi.org/10.1007/bf01428508.
Texte intégralHelbok, Raimund, Ravi Chandra Madineni, Michael J. Schmidt, Pedro Kurtz, Luis Fernandez, Sang-Bae Ko, Alex Choi et al. « Intracerebral Monitoring of Silent Infarcts After Subarachnoid Hemorrhage ». Neurocritical Care 14, no 2 (2 décembre 2010) : 162–67. http://dx.doi.org/10.1007/s12028-010-9472-9.
Texte intégralBauer, Richard, Michael Gabl, Alois Obwegeser, Klaus Galiano, Josef Barbach et Iradj Mohsenipour. « Neurochemical monitoring using intracerebral microdialysis during cardiac resuscitation ». Intensive Care Medicine 30, no 1 (janvier 2004) : 159–61. http://dx.doi.org/10.1007/s00134-003-2015-5.
Texte intégralMeybohm, P., E. Cavus, B. Bein, M. Steinfath, B. Weber, J. Scholz et V. Doerges. « Neurochemical monitoring using intracerebral microdialysis during systemic haemorrhage ». Acta Neurochirurgica 149, no 7 (juillet 2007) : 691–98. http://dx.doi.org/10.1007/s00701-007-1231-0.
Texte intégralThèses sur le sujet "Intracerebral monitoring"
Antonsson, Johan. « On optical methods for intracerebral measurements during stereotactic and functional neurosurgery : Experimental studies ». Doctoral thesis, Linköping : Linköping University, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-8081.
Texte intégralPatriota, Gustavo Cartaxo. « Avaliação da autorregulação cerebral dinâmica através da reatividade cerebrovascular em suíno com volume expansivo por balão simulando aumento de hematoma intracerebral ». Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/5/5138/tde-18122017-093809/.
Texte intégralINTRODUCTION: Cerebral autoregulation represents one of the uncertain pathophysiological mechanisms in spontaneous intracerebral hemorrhage, whose impairment may influence prognostic and therapeutic outcome. The aim of this study was to evaluate the dynamic cerebral autoregulation in the swine model of spontaneous intracerebral hemorrhage through the cerebrovascular reactivity index and to determine the efficacy of clinical and surgical interventions. METHODS: Twenty-one male hybrid pigs aged 3 months were studied. The experimental model simulated the expansive effect of a large intracerebral hemorrhage when compared to the human brain. Different volumes were evaluated, distributed in three groups with seven pigs each. Each experiment was divided in five phases. The anesthetic protocol included invasive hemodynamic monitoring associated with the preservation of cerebral autoregulation. Multimodallity monitoring was realised in all experiments. The cerebrovascular reactivity index estimated the cerebral autoregulation during all phases. The first three phases were without therapeutic interventions, and the last two phases were with therapeutic intervention of hypertonic saline solution and neurosurgery respectively. RESULTS: The evaluated groups were homogeneous and without statistical difference regarding the impairment of the cerebral autoregulation comparing different volumes and compression times during the first two hours of the intracranial volume expansion. CONCLUSIONS: Elevated expansive volumes may compromise dynamic cerebral autoregulation and have unfavorable therapeutic outcome. Clinical and surgical intervention had benefit in the experiments with preservation of cerebrovascular reactivity index
Chen, Shuting. « Évaluation en temps réel du recrutement des réserves énergétiques cérébrales en glycogène pendant une dépolarization corticale envahissante ou la potentialisation à long terme hippocampique ». Electronic Thesis or Diss., Lyon 1, 2024. http://www.theses.fr/2024LYO10203.
Texte intégralAstrocytic glycogen is the only form of brain energy stores, which is general considered to be mobilized through astrocyte-neuron lactate shuttle in conditions like ischemia or intense neuronal activity. Cortical spreading depolarization (SD) is a propagating wave of near-complete depolarization of neurons and glial cells, posing a metabolic challenge on brain tissue. Long-term potentiation (LTP) is recognized as the molecular mechanism of memory formation, following high frequency stimulation. We hypothesized that glycogen would be mobilized during CSDs and LTP induction, providing a model to study glycogen metabolism and its function in a normal brain. Glycogen stores were blocked by local administration of glycogen phosphorylase inhibitor 1,4-dideoxy-1,4-imino-D-arabinitol (DAB). SDs were recorded using eletrocorticalgraphy (ECoG) recordings. Extracellular lactate, glucose, and oxygen concentrations in cortex were monitored during SDs second by second using enzymatic microelectrode biosensors in presence or absence of DAB. Blocking glycogen stores increased the duration of tissue repolarization after depolarization. SDs induced a transient increase in cortical extracellular lactate concentration accompanied by glucose decrease and oxygen consumption. In the presence of DAB, the glucose decrease and elevated oxygen metabolic rate was not reduced but lasted longer, while lactate release was diminished with DAB treatment, indicating that glycogenolysis predominantly release lactate. Furthermore, in the presence of DAB, supplemental intravenous lactate administration rescued a normal duration of depolarization, suggesting that lactate released from glycogen stores provide a boost in energy supply required for tissue repolarization. Next, in the induction and maintenance of LTP, lactate is released during the stimulation and is probably released continuously during 75min after stimulation, however, DAB treatment blocked the potentiation throughout 1h recording of postsynaptic response. Therefore, glycogenolysis occurs within seconds to fuel energy metabolism through releasing lactate into extracellular space, which is then anaerobically metabolized as a supplemental energy source
Keli, Barcelos Gleicy. « Valeur pronostique du « monitoring » du métabolisme énergétique cérébral chez les patients victimes d’une hémorragie sous-arachnoïdienne grave ». Thesis, Lyon 1, 2012. http://www.theses.fr/2012LYO10300.
Texte intégralThe metabolic ratio (MR) is an index of the brain energetic metabolism. In our study, we have demonstrated its prognostic value for 68 poor grade patients aneurysmal subarachnoid hemorrhage (aSAH): a MR below the threshold value of 3.35 reflects a phenomenon of global cerebral hyperglycolysis which, if repeated, is predictive of a bad outcome. These results were made possible after validation step in an animal mode which allowed to control the critical pre-analytical factors. Our results pave the way for a clinical study aiming to determine if taking into account the MR will help to improve the functional outcome of the aSAH patients. In another approach, based on the use of cerebral microdialysis, we have studied, in an 18 patients cohort, and after an analytical validation of a new biochemical analysis, if such cerebral hyperglycolysis phenomenon was a encountered in this cohort, if these was a correlation with the patients’ outcome. In contrast with the previous 68 aSAH patients, this hyperglycolysis phenomenon appears linked to a good outcome. This apparent discrepancy may be due the difference in the anatomical giving a more localized information on the brain metabolism than the jugular approach used for the MR determination. The most interesting of our results is the correlation found between hyperglycolysis and cerebral vasospasm. If conformed with a larger cohort of aSAH patients, the use of MR could allow an earlier detection and treatment of cerebral vasospasm
Bonini, Francesca. « Le rôle du cortex frontal médian dans la supervision de l'action chez l'homme : études électrophysiologiques ». Thesis, Aix-Marseille, 2016. http://www.theses.fr/2016AIXM5023/document.
Texte intégralThe capacity to evaluate the outcome of our actions is fundamental for adapting and optimizing behaviour. This capability depends on an action monitoring system in charge of assessing ongoing actions, detecting errors, and evaluating outcomes.Electrical brain activity evoked by negative outcomes is thought to originate within the medial part of the frontal cortex. Nonetheless, the underlying neuronal network is incompletely characterised in humans.In the two first studies, we investigated the anatomical substrates of action monitoring in humans using intracerebral local field potential (LFP) recordings of cerebral cortex from epileptic patients. Response evoked LFPs sensitive to outcome were recorded from the Supplementary Motor Area proper (SMA), while LFPs evoked exclusively by errors were recorded later in the medial prefrontal cortex. High-gamma-frequency activity (60-180 Hz) was modulated as a function of action outcome in a vast frontal and extra-frontal network.In a third study using simultaneous recording of electroencephalography (EEG) and magnetoencephalography (MEG), we found that error related activity was detected by EEG (but not by MEG), while feedback-related activity was detected by MEG, indicating that the sources of these two forms of outcome-modulated brain activity are different.To conclude the SMA is much more involved in action monitoring than previously thought. SMA rapidly and continuously assesses ongoing actions and likely engages more rostral prefrontal structures in the case of error. Processing of action errors and of negative externally delivered feedback therefore appears to be supported by distinct cortical networks
Hübner, Felix. « Die intraoperative Messung des intracerebralen Sauerstoffpartialdrucks als adjuvanter Monitoring-Parameter der cerebralen Durchblutung bei der operativen Versorgung cerebraler Aneurysmen ». [S.l.] : [s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=962118842.
Texte intégralHübner, Felix [Verfasser]. « Die intraoperative Messung des intracerebralen Sauerstoffpartialdrucks als adjuvanter Monitoring-Parameter der cerebralen Durchblutung bei der operativen Versorgung cerebraler Aneurysmen / vorgelegt von Felix Hübner ». 2000. http://d-nb.info/962118842/34.
Texte intégralLivres sur le sujet "Intracerebral monitoring"
McDonald, Vickie, et Marie Scully. Anticoagulants and antithrombotics in critical illness. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0051.
Texte intégralProut, Jeremy, Tanya Jones et Daniel Martin. Nervous and musculoskeletal systems. Oxford University Press, 2014. http://dx.doi.org/10.1093/med/9780199609956.003.0006.
Texte intégralReich, David L., Stephan A. Mayer et Suzan Uysal, dir. Neuroprotection in Critical Care and Perioperative Medicine. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780190280253.001.0001.
Texte intégralChapitres de livres sur le sujet "Intracerebral monitoring"
Xi, Guohua, Y. Hua, R. F. Keep, J. G. Younger et J. T. Hoff. « Brain Edema after Intracerebral Hemorrhage : The Effects of Systemic Complement Depletion ». Dans Intracranial Pressure and Brain Biochemical Monitoring, 253–56. Vienna : Springer Vienna, 2002. http://dx.doi.org/10.1007/978-3-7091-6738-0_66.
Texte intégralWu, G., et F. P. Huang. « Effects of venom defibrase on brain edema after intracerebral hemorrhage in rats ». Dans Intracranial Pressure and Brain Monitoring XII, 381–87. Vienna : Springer Vienna, 2005. http://dx.doi.org/10.1007/3-211-32318-x_78.
Texte intégralKawai, Nobuyuki, T. Nakamura et S. Nagao. « Effects of Brain Hypothermia on Brain Edema Formation after Intracerebral Hemorrhage in Rats ». Dans Intracranial Pressure and Brain Biochemical Monitoring, 233–35. Vienna : Springer Vienna, 2002. http://dx.doi.org/10.1007/978-3-7091-6738-0_60.
Texte intégralBhasin, R. R., Gouhua Xi, Y. Hua, R. F. Keep et J. T. Hoff. « Experimental Intracerebral Hemorrhage Effect of Lysed Erythrocytes on Brain Edema and Blood-Brain Barrier Permeability ». Dans Intracranial Pressure and Brain Biochemical Monitoring, 249–51. Vienna : Springer Vienna, 2002. http://dx.doi.org/10.1007/978-3-7091-6738-0_65.
Texte intégralUnterberg, A., A. von Helden, G. H. Schneider et W. L. Lanksch. « Monitoring of Jugular Venous Oxygen Saturation in Patients with Intracerebral Hematomas ». Dans Advances in Neurosurgery, 29–33. Berlin, Heidelberg : Springer Berlin Heidelberg, 1993. http://dx.doi.org/10.1007/978-3-642-77997-8_6.
Texte intégralFrancis, Richard, Barbara A. Gregson et A. David Mendelow. « Attitudes in 2013 to Monitoring Intracranial Pressure for Traumatic Intracerebral Haemorrhage ». Dans Acta Neurochirurgica Supplement, 17–19. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-22533-3_3.
Texte intégralYang, Dixon, Marialaura Simonetto, Nelly Campo, Digna Cabral et Tatjana Rundek. « Intracerebral Venous System : Monitoring by Transcranial Color-Coded Duplex Sonography (TCCS) ». Dans Neurosonology in Critical Care, 483–94. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81419-9_28.
Texte intégralFerreira, Ana V., Isabel Maia et Celeste Dias. « Monitoring of Cerebrovascular Reactivity in Intracerebral Hemorrhage and Its Relation with Survival ». Dans Acta Neurochirurgica Supplement, 187–90. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-59436-7_37.
Texte intégralCamps-Renom, Pol. « Intracerebral Hemorrhage in ICU : Dynamic Monitoring by Transcranial Color-Coded Duplex Sonography (TCCS) ». Dans Neurosonology in Critical Care, 679–88. Cham : Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-81419-9_40.
Texte intégralHelden, A., G. H. Schneider, A. Unterberg et W. R. Lanksch. « Monitoring of Jugular Venous Oxygen Saturation in Comatose Patients with Subarachnoid Haemorrhage and Intracerebral Haematomas ». Dans Monitoring of Cerebral Blood Flow and Metabolism in Intensive Care, 102–6. Vienna : Springer Vienna, 1993. http://dx.doi.org/10.1007/978-3-7091-9302-0_18.
Texte intégralActes de conférences sur le sujet "Intracerebral monitoring"
Rejmstad, P., G. Akesson, J. Hillman et K. Wardell. « A laser Doppler system for monitoring of intracerebral microcirculation ». Dans 2012 34th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2012. http://dx.doi.org/10.1109/embc.2012.6346346.
Texte intégralSalam, Muhammad Tariqus, Dang Khoa Nguyen et Mohamad Sawan. « A multichannel intracerebral EEG monitoring system for epilepsy presurgical evaluation ». Dans 2011 24th IEEE Canadian Conference on Electrical and Computer Engineering (CCECE). IEEE, 2011. http://dx.doi.org/10.1109/ccece.2011.6030465.
Texte intégralMartínez-García, Jacqueline, Ana Aguilera-Simón, Pol Camps-Renom, Garbiñe Ezcurra, Carolina Fajardo-Vega, Jonas Fischer, Cristina Gallego-Fabrega et al. « Monitoring cerebral autoregulation and hemodynamics over the evolution of cerebral edema in patients with intracerebral hemorrhage ». Dans Clinical and Translational Biophotonics. Washington, D.C. : Optica Publishing Group, 2024. http://dx.doi.org/10.1364/translational.2024.tm3b.7.
Texte intégralChen, Yue, Isuru S. Godage, Saikat Sengupta, Cindy Lin Liu, Kyle D. Weaver, Eric J. Barth et Robert J. Webster. « An MRI-Compatible Robot for Intracerebral Hemorrhage Removal ». Dans 2017 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/dmd2017-3451.
Texte intégralAponte-Becerra, Laura, Rodrigo Quispe, Laura Mendez-Pino, Vera Novak, Magdy Selim et Vasileios-Arsenios Lioutas. « Continuous glucose monitoring in acute stroke ». Dans the 8th International Workshop on Innovative Simulation for Healthcare. CAL-TEK srl, 2019. http://dx.doi.org/10.46354/i3m.2019.iwish.016.
Texte intégralKohl-Bareis, Matthias, Hellmuth Obrig, Jens Steinbrink, Jasmin Malak, Kamil Uludag et Arno Villringer. « Noninvasive cerebral blood flow monitoring by a dye bolus method:separation of extra- and intracerebral absorption changes by frequency-domain spectroscopy ». Dans BiOS 2001 The International Symposium on Biomedical Optics, sous la direction de Britton Chance, Robert R. Alfano, Bruce J. Tromberg, Mamoru Tamura et Eva M. Sevick-Muraca. SPIE, 2001. http://dx.doi.org/10.1117/12.434501.
Texte intégral