Sommaire
Littérature scientifique sur le sujet « Interpretability of AI Models for Parkinson's Disease Detection »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Interpretability of AI Models for Parkinson's Disease Detection ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Interpretability of AI Models for Parkinson's Disease Detection"
Samuel Fanijo, Uyok Hanson, Taiwo Akindahunsi, Idris Abijo et Tinuade Bolutife Dawotola. « Artificial intelligence-powered analysis of medical images for early detection of neurodegenerative diseases ». World Journal of Advanced Research and Reviews 19, no 2 (30 août 2023) : 1578–87. http://dx.doi.org/10.30574/wjarr.2023.19.2.1432.
Texte intégralAdeniran, Opeyemi Taiwo, Blessing Ojeme, Temitope Ezekiel Ajibola, Ojonugwa Oluwafemi Ejiga Peter, Abiola Olayinka Ajala, Md Mahmudur Rahman et Fahmi Khalifa. « Explainable MRI-Based Ensemble Learnable Architecture for Alzheimer’s Disease Detection ». Algorithms 18, no 3 (13 mars 2025) : 163. https://doi.org/10.3390/a18030163.
Texte intégralHamza, Naeem, Nuaman Ahmed et Naeema Zainaba. « A Comparative Analysis of Traditional and AI-Driven Methods for Disease Detection : Novel Approaches, Methodologies, and Challenges ». Journal of Medical Health Research and Psychiatry 01, no 02 (2024) : 01–03. https://doi.org/10.70844/jmhrp.2024.1.2.28.
Texte intégralFatima, Shereen, Hidayatullah Shaikh, Attaullah Sahito et Asadullah Kehar. « A Review of Skin Disease Detection Using Deep Learning ». VFAST Transactions on Software Engineering 12, no 4 (31 décembre 2024) : 220–38. https://doi.org/10.21015/vtse.v12i4.2022.
Texte intégralHasan Saif, Fatima, Mohamed Nasser Al-Andoli et Wan Mohd Yaakob Wan Bejuri. « Explainable AI for Alzheimer Detection : A Review of Current Methods and Applications ». Applied Sciences 14, no 22 (5 novembre 2024) : 10121. http://dx.doi.org/10.3390/app142210121.
Texte intégralRakhi Raghukumar, Aswathi V Nair, Amrutha Raju, Aina S Dcruz et Susheel George Joseph. « AI Used to Predict Alzheimer’s Disease ». International Research Journal on Advanced Engineering and Management (IRJAEM) 2, no 12 (12 décembre 2024) : 3647–51. https://doi.org/10.47392/irjaem.2024.0541.
Texte intégralIsmail Y et Vijaya Kumar Voleti. « A Review on Usage of Artificial Intelligence for Early Detection and Management of Alzheimer's Disease ». Journal of Pharma Insights and Research 2, no 5 (4 octobre 2024) : 007–13. http://dx.doi.org/10.69613/06tz7453.
Texte intégralPaul, Tanmoy, Omiya Hassan, Christina S. McCrae, Syed Kamrul Islam et Abu Saleh Mohammad Mosa. « An Explainable Fusion of ECG and SpO2-Based Models for Real-Time Sleep Apnea Detection ». Bioengineering 12, no 4 (3 avril 2025) : 382. https://doi.org/10.3390/bioengineering12040382.
Texte intégralSarma Borah, Proyash Paban, Devraj Kashyap, Ruhini Aktar Laskar et Ankur Jyoti Sarmah. « A Comprehensive Study on Explainable AI Using YOLO and Post Hoc Method on Medical Diagnosis ». Journal of Physics : Conference Series 2919, no 1 (1 décembre 2024) : 012045. https://doi.org/10.1088/1742-6596/2919/1/012045.
Texte intégralGupta, Ayush, Jeya Mala D., Vishal Kumar Yadav et Mayank Arora. « Dissecting Retinal Disease : A Multi-Modal Deep Learning Approach with Explainable AI for Disease Classification across Various Classes ». International Journal of Online and Biomedical Engineering (iJOE) 21, no 02 (17 février 2025) : 38–51. https://doi.org/10.3991/ijoe.v21i02.51409.
Texte intégralThèses sur le sujet "Interpretability of AI Models for Parkinson's Disease Detection"
Filali, razzouki Anas. « Deep learning-based video face-based digital markers for early detection and analysis of Parkinson disease ». Electronic Thesis or Diss., Institut polytechnique de Paris, 2025. http://www.theses.fr/2025IPPAS002.
Texte intégralThis thesis aims to develop robust digital biomarkers for early detection of Parkinson's disease (PD) by analyzing facial videos to identify changes associated with hypomimia. In this context, we introduce new contributions to the state of the art: one based on shallow machine learning and the other on deep learning.The first method employs machine learning models that use manually extracted facial features, particularly derivatives of facial action units (AUs). These models incorporate interpretability mechanisms that explain their decision-making process for stakeholders, highlighting the most distinctive facial features for PD. We examine the influence of biological sex on these digital biomarkers, compare them against neuroimaging data and clinical scores, and use them to predict PD severity.The second method leverages deep learning to automatically extract features from raw facial videos and optical flow using foundational models based on Video Vision Transformers. To address the limited training data, we propose advanced adaptive transfer learning techniques, utilizing foundational models trained on large-scale video classification datasets. Additionally, we integrate interpretability mechanisms to clarify the relationship between automatically extracted features and manually extracted facial AUs, enhancing the comprehensibility of the model's decisions.Finally, our generated facial features are derived from both cross-sectional and longitudinal data, which provides a significant advantage over existing work. We use these recordings to analyze the progression of hypomimia over time with these digital markers, and its correlation with the progression of clinical scores.Combining these two approaches allows for a classification AUC (Area Under the Curve) of over 90%, demonstrating the efficacy of machine learning and deep learning models in detecting hypomimia in early-stage PD patients through facial videos. This research could enable continuous monitoring of hypomimia outside hospital settings via telemedicine
Chapitres de livres sur le sujet "Interpretability of AI Models for Parkinson's Disease Detection"
Mittal, Shashank, Priyank Kumar Singh, Saikat Gochhait et Shubham Kumar. « Explainable AI (XAI) for Green AI-Powered Disease Prognosis ». Dans Advances in Medical Diagnosis, Treatment, and Care, 141–60. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-1243-8.ch008.
Texte intégralDehankar, Pooja, et Susanta Das. « Detection of Heart Disease Using ANN ». Dans Future of AI in Biomedicine and Biotechnology, 182–96. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-3629-8.ch009.
Texte intégralBiswas, Neepa, Debarpita Santra, Bannishikha Banerjee et Sudarsan Biswas. « Harnessing the Power of Machine Learning for Parkinson's Disease Detection ». Dans AIoT and Smart Sensing Technologies for Smart Devices, 140–55. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-0786-1.ch008.
Texte intégralTripathi, Rati Kailash Prasad, et Shrikant Tiwari. « Unravelling the Enigma of Machine Learning Model Interpretability in Enhancing Disease Prediction ». Dans Advances in Systems Analysis, Software Engineering, and High Performance Computing, 125–53. IGI Global, 2023. http://dx.doi.org/10.4018/978-1-6684-8531-6.ch007.
Texte intégralKrishna Pasupuleti, Murali. « AI-Driven Mutation Detection : Transforming Genomic Data into Insights for Disease Prediction ». Dans AI in Genomic Data Analysis : Identifying Disease-Causing Mutations, 1–28. National Education Services, 2024. http://dx.doi.org/10.62311/nesx/46694.
Texte intégralTafadzwa Mpofu, Kelvin, et Patience Mthunzi-Kufa. « Recent Advances in Artificial Intelligence and Machine Learning Based Biosensing Technologies ». Dans Current Developments in Biosensor Applications and Smart Strategies [Working Title]. IntechOpen, 2025. https://doi.org/10.5772/intechopen.1009613.
Texte intégralSharma, Ajay, Devendra Babu Pesarlanka et Shamneesh Sharma. « Harnessing Machine Learning and Deep Learning in Healthcare From Early Diagnosis to Personalized Treatment ». Dans Advances in Healthcare Information Systems and Administration, 369–98. IGI Global, 2024. http://dx.doi.org/10.4018/979-8-3693-7277-7.ch012.
Texte intégralRaj, Sundeep, Arun Prakash Agarwal, Sandesh Tripathi et Nidhi Gupta. « Prediction and Analysis of Digital Health Records, Geonomics, and Radiology Using Machine Learning ». Dans Prediction in Medicine : The Impact of Machine Learning on Healthcare, 24–43. BENTHAM SCIENCE PUBLISHERS, 2024. http://dx.doi.org/10.2174/9789815305128124010005.
Texte intégral