Littérature scientifique sur le sujet « Interior lightning »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Interior lightning ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Interior lightning"
Kalashnikov, Dmitri A., Paul C. Loikith, Arielle J. Catalano, Duane E. Waliser, Huikyo Lee et John T. Abatzoglou. « A 30-Yr Climatology of Meteorological Conditions Associated with Lightning Days in the Interior Western United States ». Journal of Climate 33, no 9 (1 mai 2020) : 3771–85. http://dx.doi.org/10.1175/jcli-d-19-0564.1.
Texte intégralDissing, Dorte, et David L. Verbyla. « Spatial patterns of lightning strikes in interior Alaska and their relations to elevation and vegetation ». Canadian Journal of Forest Research 33, no 5 (1 mai 2003) : 770–82. http://dx.doi.org/10.1139/x02-214.
Texte intégralKalashnikov, Dmitri A., John T. Abatzoglou, Nicholas J. Nauslar, Daniel L. Swain, Danielle Touma et Deepti Singh. « Meteorological and geographical factors associated with dry lightning in central and northern California ». Environmental Research : Climate 1, no 2 (8 août 2022) : 025001. http://dx.doi.org/10.1088/2752-5295/ac84a0.
Texte intégralAbatzoglou, John T., et Timothy J. Brown. « Influence of the Madden–Julian Oscillation on Summertime Cloud-to-Ground Lightning Activity over the Continental United States ». Monthly Weather Review 137, no 10 (1 octobre 2009) : 3596–601. http://dx.doi.org/10.1175/2009mwr3019.1.
Texte intégralMurphy, Mark S., et Charles E. Konrad. « Spatial and Temporal Patterns of Thunderstorm Events that Produce Cloud-to-Ground Lightning in the Interior Southeastern United States ». Monthly Weather Review 133, no 6 (1 juin 2005) : 1417–30. http://dx.doi.org/10.1175/mwr2924.1.
Texte intégralLu, Ping, Wei He, Li Feng Ma et Ruo Yan Han. « Lightning Electromagnetic Field within the Building ». Advanced Materials Research 971-973 (juin 2014) : 1025–28. http://dx.doi.org/10.4028/www.scientific.net/amr.971-973.1025.
Texte intégralBieniek, Peter A., Uma S. Bhatt, Alison York, John E. Walsh, Rick Lader, Heidi Strader, Robert Ziel, Randi R. Jandt et Richard L. Thoman. « Lightning Variability in Dynamically Downscaled Simulations of Alaska’s Present and Future Summer Climate ». Journal of Applied Meteorology and Climatology 59, no 6 (juin 2020) : 1139–52. http://dx.doi.org/10.1175/jamc-d-19-0209.1.
Texte intégralHess, Jason C., Carven A. Scott, Gary L. Hufford et Michael D. Fleming. « El Niño and its impact on fire weather conditions in Alaska ». International Journal of Wildland Fire 10, no 1 (2001) : 1. http://dx.doi.org/10.1071/wf01007.
Texte intégralSodré, Giordani Rafael Conceição, Douglas Batista da Silva Ferreira, Juarez Oliveira Ventura, Cláudia Priscila Wanzeler Costa, Everaldo Barreiros Souza et Bergson Cavalcanti Moraes. « Relação Entre o Total de Raios e os Raios Nuvem-Solo Sobre o Leste da Amazônia ». Revista Brasileira de Geografia Física 13, no 2 (18 avril 2020) : 782. http://dx.doi.org/10.26848/rbgf.v13.2.p782-797.
Texte intégralMatsuura, Susumu, Taku Noda, Masatoshi Nakamura et Hiroshi Sakai. « Modeling of Service-Drop Wires and Interior-Wiring Cables for Lightning Overvoltage Studies ». IEEJ Transactions on Power and Energy 130, no 2 (2010) : 246–58. http://dx.doi.org/10.1541/ieejpes.130.246.
Texte intégralThèses sur le sujet "Interior lightning"
ROTA, LUCIANO. « Implementation and Validation Methods for Electronic Integrated Circuits and Devices ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2023. https://hdl.handle.net/10281/404776.
Texte intégralIn the last three decades Mobile Telecommunication (TLC) electronics has undergone a great improvement, this limited branch of electronics proved to be one of the major driving motor in the development of the new Complementary Metal-Oxide-Semiconductor (CMOS) technologies. People all around the world ask for extremely performing portable devices, faster, more reliable, low power consuming and with impressive memory capability. This situation has become extremely favorable for the development of high performance digital devices which are able to reach speed and memory capability previously unbelievable. Also analog building blocks must be integrated in deeply down-scaled node, in order to adapt with digital integrated circuits (ICs). First task of this thesis work was the implementation and measurement of different integrated circuits in two deep sub-micron technology nodes as 28nm bulk-CMOS and 16nm FinFET (Fin Field Effect Transistor). In particular the second one of these introduces novelty about the structure of transistor used to implement the circuits. Each circuit created faces various difficulties due to the particular behaviour of such advanced technologies, in particular in terms of low intrinsic gain and limited signal swing as consequence of low supply voltage. I worked in FinFET16 project with the main task to realize and validate the layout of a 4^th Order Fully-Differential Super-Source-Follower Analog Filter. After measurements the filter achieves 15.1 dBm in-band IIP3 at 10 MHz & 11 MHz input tones, with 968 µW power consumption from a single 1V supply voltage. In-band integrated noise is 85.78 µVrms for an overall Figure-of-Merit of 162.8 dB (j-1) which outperforms analog filters State-of-the-Art. I also collaborated as layoutist in other two projects realized with 28nm CMOS technology. The first one was the PRIN Brain28nm project that concerns the implementation of a neural signal acquisition chain. The goal of this work was the realization of a biosensor that uses the EOMOSFET structure with the 28nm CMOS technological node. The use of this technology makes this circuit more competitive when compared to the biosensors present in literature. The last one was Pignoletto project realized in collaboration with RedCat Devices. It concerns the implementation and theorical analysis of two different typologies of ICs measured under radiation: two digital cells and one Analog to Digital Converter. Under radiation measurements will be realize in January 2023. In the second part of my third year I started a work activity in Pavia site of AMS-Osram S.r.l as validation engineer. This company is a world leader in the field of optical sensors and the application of the latter in the automotive sector. The project I am carrying out involves the creation of a validation setup for an IC, in order to verify the correct performance of the multiple functions for which this chip is designed. A first analysis, useful for the preliminary study for the realization of the setup, was carried out through the use of an FPGA (Cyclone1000) on which the code that realizes the logic part of the IC was loaded using the Quartus software. Once the correct operation of the FPGA was validated, through the use of an STM32 micro-controller, various configurations and functions have been tested and correctly validated. The final purpose of this activity, which will continue in the coming months, is the validation of some communication methods between different devices, fundamental for the interface of the IC with automotive standards, and the creation of an updated version of the FPGA code and its subsequent verification. This activity appears to be a novelty in the field of integrated circuit design as it would allow to highlight problems and malfunctions of the circuit.
Livres sur le sujet "Interior lightning"
Fuentes, Omar, et Fernando de Haro. Areas with Light. AM Editores, 2010.
Trouver le texte intégralMuscle, Imagination. Journal : Haunted Castle Lined Journal, Dark Castle, Lightning Storm, Spooky Hallway Interior. Independently Published, 2021.
Trouver le texte intégralActes de conférences sur le sujet "Interior lightning"
Slanina, Zdenek, Pavel Valicek, Tomas Novak et Karel Sokansky. « Interior lightning system sensors placement optimization ». Dans Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2018, sous la direction de Ryszard S. Romaniuk et Maciej Linczuk. SPIE, 2018. http://dx.doi.org/10.1117/12.2501559.
Texte intégralShaw, Z., H. Spencer, J. Dickens, D. Friesen, D. Hattz, N. Koone, J. Stephens et A. Neuber. « Interior Electromagnetic Fields of Buildings Struck by Lightning ». Dans IEEE Pulsed Power Conference & Symposium on Fusion Engineering (PPC SOFE 2021), December 12-16, 2021. US DOE, 2021. http://dx.doi.org/10.2172/1845022.
Texte intégralMikes, J., J. Kuta[acute ]c, M. Efmertova et Z. Martinek. « Disturbance Caused by Penetration Surge in Interior Installations of Buildings ». Dans International Conference on Lightning [amp ] Static Electricity (ICOLSE 2015). Institution of Engineering and Technology, 2015. http://dx.doi.org/10.1049/ic.2015.0194.
Texte intégralBraun, Franziska, Fabian Edel et Antonio Ardilio. « Enhancing driver’s experience through emotion sensitive lighting interaction ». Dans 13th International Conference on Applied Human Factors and Ergonomics (AHFE 2022). AHFE International, 2022. http://dx.doi.org/10.54941/ahfe1001731.
Texte intégralTomasevich, Mirko Yanque. « Lightning Protection of Industrial Plants using the 3-D Rolling Sphere Method Part I - Air Terminals and Metal Masts ». Dans 2022 IEEE XXIX International Conference on Electronics, Electrical Engineering and Computing (INTERCON). IEEE, 2022. http://dx.doi.org/10.1109/intercon55795.2022.9870110.
Texte intégral