Littérature scientifique sur le sujet « Interaction of Dendrimers and Liposomes »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Interaction of Dendrimers and Liposomes ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Interaction of Dendrimers and Liposomes"

1

Efimova, Аnna А., Svetlana A. Sorokina, Kseniya S. Trosheva, Alexander A. Yaroslavov et Zinaida B. Shifrina. « Complexes of Cationic Pyridylphenylene Dendrimers with Anionic Liposomes : The Role of Dendrimer Composition in Membrane Structural Changes ». International Journal of Molecular Sciences 24, no 3 (22 janvier 2023) : 2225. http://dx.doi.org/10.3390/ijms24032225.

Texte intégral
Résumé :
In the last decades, dendrimers have received attention in biomedicine that requires detailed study on the mechanism of their interaction with cell membranes. In this article, we report on the role of dendrimer structure in their interaction with liposomes. Here, the interactions between cationic pyridylphenylene dendrimers of the first, second, and third generations with mixed or completely charged pyridyl periphery (D16+, D215+, D229+, and D350+) with cholesterol-containing (CL/Chol/DOPC) anionic liposomes were investigated by microelectrophoresis, dynamic light scattering, fluorescence spectroscopy, and conductometry. It was found that the architecture of the dendrimer, namely the generation, the amount of charged pyridynium groups, the hydrophobic phenylene units, and the rigidity of the spatial structure, determined the special features of the dendrimer–liposome interactions. The binding of D350+ and D229+ with almost fully charged peripheries to liposomes was due to electrostatic forces: the dendrimer molecules could be removed from the liposomal surfaces by NaCl addition. D350+ and D229+ did not display a disruptive effect toward membranes, did not penetrate into the hydrophobic lipid bilayer, and were able to migrate between liposomes. For D215+, a dendrimer with a mixed periphery, hydrophobic interactions of phenylene units with the hydrocarbon tails of lipids were observed, along with electrostatic complexation with liposomes. As a result, defects were formed in the bilayer, which led to irreversible interactions with lipid membranes wherein there was no migration of D215+ between liposomes. A first-generation dendrimer, D16+, which was characterized by small size, a high degree of hydrophobicity, and a rigid structure, when interacting with liposomes caused significant destruction of liposomal membranes. Evidently, this interaction was irreversible: the addition of salt did not lead to the dissociation of the complex.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Trosheva, K. S., S. A. Sorokina et A. A. Efimova. « Interaction Between Anionic Liposomes and Cationic Pyridylphenylene Dendrimers ». Moscow University Chemistry Bulletin 75, no 2 (mars 2020) : 101–5. http://dx.doi.org/10.3103/s0027131420020169.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Carloni, Riccardo, Natalia Sanz del Olmo, Paula Ortega, Alberto Fattori, Rafael Gómez, Maria Francesca Ottaviani, Sandra García-Gallego, Michela Cangiotti et F. Javier de la Mata. « Exploring the Interactions of Ruthenium (II) Carbosilane Metallodendrimers and Precursors with Model Cell Membranes through a Dual Spin-Label Spin-Probe Technique Using EPR ». Biomolecules 9, no 10 (27 septembre 2019) : 540. http://dx.doi.org/10.3390/biom9100540.

Texte intégral
Résumé :
Dendrimers exhibit unique interactions with cell membranes, arising from their nanometric size and high surface area. To a great extent, these interactions define their biological activity and can be reported in situ by spin-labelling techniques. Schiff-base carbosilane ruthenium (II) metallodendrimers are promising antitumor agents with a mechanism of action yet to explore. In order to study their in situ interactions with model cell membranes occurring at a molecular level, namely cetyltrimethylammonium bromide micelles (CTAB) and lecithin liposomes (LEC), electron paramagnetic resonance (EPR) was selected. Both a spin probe, 4-(N,N-dimethyl-N-dodecyl)ammonium-2,2,6,6-tetramethylpiperidine-1-oxyl bromide (CAT12), able to enter the model membranes, and a spin label, 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) covalently attached at newly synthesized heterofunctional dendrimers, were used to provide complementary information on the dendrimer–membrane interactions. The computer-aided EPR analysis demonstrated a good agreement between the results obtained for the spin probe and spin label experiments. Both points of view suggested the partial insertion of the dendrimer surface groups into the surfactant aggregates, mainly CTAB micelles, and the occurrence of both polar and hydrophobic interactions, while dendrimer–LEC interactions involved more polar interactions between surface groups. We found out that subtle changes in the dendrimer structure greatly modified their interacting abilities and, subsequently, their anticancer activity.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Dragomanova, Stela, et Velichka Andonova. « Adamantane-containing drug delivery systems ». Pharmacia 70, no 4 (11 octobre 2023) : 1057–66. http://dx.doi.org/10.3897/pharmacia.70.e111593.

Texte intégral
Résumé :
Adamantane is a weakly functional hydrocarbon widely used to develop new drug molecules to improve their pharmacokinetic and pharmacodynamic parameters. The compound has an affinity for the lipid bilayer of liposomes, enabling its application in targeted drug delivery and surface recognition of target structures. This review presents the available data on developed liposomes, cyclodextrin complexes, and adamantane-based dendrimers. Adamantane has been used in two ways – as a building block to which various functional groups are covalently attached (adamantane-based dendrimers) or as a part of self-aggregating supramolecular systems, where it is incorporated based on its lipophilicity (liposomes) and strong interaction with the host molecule (cyclodextrins). Adamantane represents a suitable structural basis for the development of drug delivery systems. The study of adamantane derivatives is a current topic in designing safe and selective drug delivery systems and molecular carriers.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Purohit, Gaurang, Thiagarajan Sakthivel et Alexander T. Florence. « Interaction of cationic partial dendrimers with charged and neutral liposomes ». International Journal of Pharmaceutics 214, no 1-2 (février 2001) : 71–76. http://dx.doi.org/10.1016/s0378-5173(00)00635-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Wrobel, Dominika, Maksim Ionov, Konstantinos Gardikis, Costas Demetzos, Jean-Pierre Majoral, Bartlomiej Palecz, Barbara Klajnert et Maria Bryszewska. « Interactions of phosphorus-containing dendrimers with liposomes ». Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 1811, no 3 (mars 2011) : 221–26. http://dx.doi.org/10.1016/j.bbalip.2010.11.007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Bacha, Katia, Catherine Chemotti, Jean-Claude Monboisse, Anthony Robert, Aurélien L. Furlan, Willy Smeralda, Christian Damblon et al. « Encapsulation of Vitamin C by Glycerol-Derived Dendrimers, Their Interaction with Biomimetic Models of Stratum corneum and Their Cytotoxicity ». Molecules 27, no 22 (18 novembre 2022) : 8022. http://dx.doi.org/10.3390/molecules27228022.

Texte intégral
Résumé :
Vitamin C is one of the most sensitive cosmetic active ingredients. To avoid its degradation, its encapsulation into biobased carriers such as dendrimers is one alternative of interest. In this work, we wanted to evaluate the potential of two biobased glycerodendrimer families (GlyceroDendrimers-Poly(AmidoAmine) (GD-PAMAMs) or GlyceroDendrimers-Poly(Propylene Imine) (GD-PPIs)) as a vitamin C carrier for topical application. The higher encapsulation capacity of GD-PAMAM-3 compared to commercial PAMAM-3 and different GD-PPIs, and its absence of cytotoxicity towards dermal cells, make it a good candidate. Investigation of its mechanism of action was done by using two kinds of biomimetic models of stratum corneum (SC), lipid monolayers and liposomes. GD-PAMAM-3 and VitC@GD-PAMAM-3 (GD-PAMAM-3 with encapsulated vitamin C) can both interact with the lipid representatives of the SC lipid matrix, whichever pH is considered. However, only pH 5.0 is suggested to be favorable to release vitamin C into the SC matrix. Their binding to SC-biomimetic liposomes revealed only a slight effect on membrane permeability in accordance with the absence of cytotoxicity but an increase in membrane rigidity, suggesting a reinforcement of the SC barrier property. Globally, our results suggest that the dendrimer GD-PAMAM-3 could be an efficient carrier for cosmetic applications.
Styles APA, Harvard, Vancouver, ISO, etc.
8

Falanga, Annarita, Rossella Tarallo, Thomas Carberry, Massimiliano Galdiero, Marcus Weck et Stefania Galdiero. « Elucidation of the Interaction Mechanism with Liposomes of gH625-Peptide Functionalized Dendrimers ». PLoS ONE 9, no 11 (25 novembre 2014) : e112128. http://dx.doi.org/10.1371/journal.pone.0112128.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Pantos, Alexandros, Dimitris Tsiourvas, George Nounesis et Constantinos M. Paleos. « Interaction of Functional Dendrimers with Multilamellar Liposomes : Design of a Model System for Studying Drug Delivery ». Langmuir 21, no 16 (août 2005) : 7483–90. http://dx.doi.org/10.1021/la0510331.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Brhane, Yonas, Tesfaye Gabriel, Tigist Adane, Yemisrach Negash, Henok Mulugeta et Mulugeta Ayele. « Recent Developments and Novel Drug Delivery Strategies for the Treatment of Tuberculosis ». International Journal of Pharmaceutical Sciences and Nanotechnology 12, no 3 (31 mai 2019) : 4524–30. http://dx.doi.org/10.37285/ijpsn.2019.12.3.2.

Texte intégral
Résumé :
Tuberculosis (TB) is a contagious infectious illness caused by species having a place with the Mycobacterium tuberculosis complex. The clinical management of tuberculosis still remains a difficult task. Treatment of TB with anti-tubercular drugs becomes the only option available. Hence, the goals of treatment are ensure cure without relapse, prevent death, impede transmission, and prevent emergence of drug resistant strains. This review describes the latest developments and innovative drug delivery strategies for treatment of TB in order to improve the therapeutic efficacy and reduce toxic effect of anti-tubercular agents and enhance patient compliance with concomitant decrease in drug interaction. Among different novel drug delivery systems Niosomes, Liposomes, Dendrimers, Cyclodextrins, Microencapsulation, Alginates and Hydrogels have been described as new drug delivery strategies of anti-tubercular agents.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Interaction of Dendrimers and Liposomes"

1

Roy, Biplab. « Interfacial kinetic and mechanistic studies on Dendrimer-liposome interactions ». Thesis, University of North Bengal, 2018. http://ir.nbu.ac.in/handle/123456789/2773.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

López-Amaya, Clara Inés. « Interaction of Candida rugosa lipase with DPPC liposomes ». Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp05/nq27441.pdf.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Ahmed, A. M. S. « Micellization of phenothiazines and their interaction with liposomes ». Thesis, Cardiff University, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.372325.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Tarasova, Anna Optometry UNSW. « Fabrication and characterisation of affinity-bound liposomes ». Awarded by:University of New South Wales. Optometry, 2007. http://handle.unsw.edu.au/1959.4/29114.

Texte intégral
Résumé :
In considering the concept of surface-immobilised liposomes as a drug release system, two factors need to addressed, the interfacial surface density of the liposomes for maximum drug loading and the stability of these liposomes to allow for controlled drug release. This thesis investigates a multilayer system for the affinity immobilisation of liposomes and their stability to various applied stresses. In the work presented here an allylamine monomer was used to create plasma coatings that were stable, thin and amine-rich. The aging studies using AFM showed these films to rapidly oxidise on exposure to water. The freshly deposited films were used for further surface modifications, by the covalent grafting of PEG layers of different interfacial densities under the conditions of varying polymer solvation. The AFM was used to measure the interaction forces between the grafted PEG layers and modified silica interfaces. It was found that the polydispersity of the PEG species resulted in bridging interactions of ???brush???-like PEG layers with the silica surface. These interactions were screened minimised by increasing the ionic strength of the solution. Although the densely grafted PEG layers were found to be highly protein-resistant by the XPS and QCM-D some minor protein-polymer adhesions were observed by the AFM. The densely anchored biotinylated PEG chains served as an optimum affinity platform for affinity-docking of NeutrAvidinTM molecules, which assembled in a rigid, 2-D layer as confirmed by the QCM-D. The submonolayer surface density of NeutrAvidin, as determined by Europium-labelling, was attributed to steric hindrance of the immobilised molecules. The final protein layer enabled specific binding of biotin-PEG-liposomes as a highly dissipative, dense and stable layer verified by tapping mode AFM and QCM-D. We found that these liposomes were also stable under a range of stresses induced by the shearing effects of water, silica probe and HSA layer at increased loads and velocities. The frictional response of the liposome layer also demonstrated the viscoelasticity and stability of these surface immobilised liposomes. Finally, the minimal adhesive interaction forces, as measured by the AFM, demonstrated the repellency of these liposomes to commonly found proteins, such as HSA.
Styles APA, Harvard, Vancouver, ISO, etc.
5

Fritz, Thomas [Verfasser]. « Multifunctional liposomes : Microscale formulation, modification and in vitro interaction / Thomas Fritz ». Mainz : Universitätsbibliothek Mainz, 2018. http://d-nb.info/1162645504/34.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Musgrove, Amanda. « Electrochemically controlled interaction of liposomes with a solid-supported octadecanol bilayer ». Thesis, University of British Columbia, 2013. http://hdl.handle.net/2429/45323.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Abu-Amero, Khaled Khader Salem. « Biochemical characterization of acholeplasma and mycoplasma and their interaction with liposomes ». Thesis, King's College London (University of London), 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.285178.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Lejoyeux, Pierre. « Interaction d'une série alkyloxazolopyridocarbazole avec des liposomes : étude thermodynamique et cinétique ». Paris 5, 1989. http://www.theses.fr/1989PA05P009.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Parmar, Rina. « The interaction of a model steroid with phospholipid structures ». Thesis, University College London (University of London), 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.265759.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Moufti, Abdullah. « Liposomes d'insuline : étude galénique, interactions physico-chimiques entre insuline et vésicules ». Paris 11, 1994. http://www.theses.fr/1994PA114840.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Interaction of Dendrimers and Liposomes"

1

Chandaroy, Parthapratim. Control of cell-liposome adhesion and liposome content release by thermally regulating polymer-lipid bilayer interaction. Buffalo, NY : State University of New York, 2003.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Sanderson, Neil Michael. Interaction of cationic liposomes with the skin-associated bacteria Staphylococcus epidermis for the delivery of antibacterial agents. Manchester : University of Manchester, 1996.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Arshady, Reza. Dendrimers, Assemblies, Nanocomposites (Microspheres, Microcapsules & Liposomes). Citus Books, 2002.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Gregoriadis. Liposome Technology : Volume III : Targeted Drug Delivery and Biological Interaction. Taylor & Francis Group, 2018.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Gregoriadis. Liposome Technology : Volume III : Targeted Drug Delivery and Biological Interaction. Taylor & Francis Group, 2018.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Gregoriadis. Liposome Technology : Volume III : Targeted Drug Delivery and Biological Interaction. Taylor & Francis Group, 2018.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Gregoriadis. Liposome Technology : Volume III : Targeted Drug Delivery and Biological Interaction. Taylor & Francis Group, 2018.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Interaction of Dendrimers and Liposomes"

1

Bhavana, Valamla, Thakor Pradip, Keerti Jain et Neelesh Kumar Mehra. « Dendrimer–Guest Interaction Chemistry and Mechanism ». Dans Dendrimers in Nanomedicine, 171–85. First edition. | Boca Raton : CRC Press, 2021. : CRC Press, 2021. http://dx.doi.org/10.1201/9781003029915-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Lee, Kyung-Dall, et Demetrios Papahadjopoulos. « Interaction of liposomes with cells in vitro ». Dans Trafficking of Intracellular Membranes :, 265–84. Berlin, Heidelberg : Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-79547-3_17.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Marčelja, S. « Interaction of Membranes in the Presence of Divalent Cations ». Dans Handbook of Nonmedical Applications of Liposomes, 247–53. Boca Raton : CRC Press, 2023. http://dx.doi.org/10.1201/9780429291449-12.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Fretz, Marjan M., et Gert Storm. « TAT-Peptide Modified Liposomes : Preparation, Characterization, and Cellular Interaction ». Dans Methods in Molecular Biology, 349–59. Totowa, NJ : Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60327-360-2_24.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Zawada, Zygmunt H. « Interaction of liposomes and gammaglobulins. Gel chromatography and fluorescence studies ». Dans Spectroscopy of Biological Molecules : New Directions, 391–92. Dordrecht : Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4479-7_175.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Gomez-Fernandez, Juan C., Francisco J. Aranda, Jose Villalain et Antonio Ortiz. « The Interaction of Coenzyme Q and Vitamin E with Multibilayer Liposomes ». Dans Advances in Experimental Medicine and Biology, 127–39. New York, NY : Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-7908-9_10.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Urbaneja, M. A., J. L. R. Arrondo, A. Alonso et F. M. Goñi. « On the Interaction of Triton X-100 with Multilamellar Phosphaticylcholine Liposomes ». Dans Surfactants in Solution, 759–71. Boston, MA : Springer US, 1986. http://dx.doi.org/10.1007/978-1-4615-7981-6_16.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Gardikis, Konstantinos, Sophia Hatziantoniou, Kyriakos Viras, Matthias Wagner et Costas Demetzos. « Interaction of Dendrimers with Model Lipid Membranes Assessed by DSC and Raman Spectroscopy ». Dans Nanocarrier Technologies, 207–20. Dordrecht : Springer Netherlands, 2006. http://dx.doi.org/10.1007/978-1-4020-5041-1_12.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Yamazaki, N., S. Kojima, S. Gabius et H. J. Gabius. « Preparation of neoglycoprotein-bearing liposomes and their interaction with cells and tissues ». Dans Lectins and Cancer, 251–61. Berlin, Heidelberg : Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76739-5_18.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Tadolini, Bruna, et Gabriele Hakim. « Interaction of Polyamines with Phospholipids : Spermine and Ca2+ Competition for Phosphatidylserine Containing Liposomes ». Dans Progress in Polyamine Research, 481–90. Boston, MA : Springer US, 1988. http://dx.doi.org/10.1007/978-1-4684-5637-0_42.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Interaction of Dendrimers and Liposomes"

1

Klebanov, Gennady I., Eugeny P. Stranadko, Y. O. Teselkin, Irina V. Babenkova et Tatyana V. Chichuk. « Interaction of photosensitizers with membranes of liposomes and of erythrocytes ». Dans BiOS Europe '96, sous la direction de Stanley B. Brown, Benjamin Ehrenberg et Johan Moan. SPIE, 1996. http://dx.doi.org/10.1117/12.260758.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Zhu, D., Z. Y. Wang, S. F. Zong, H. Chen, P. Chen, M. Y. Li, L. Wu et Y. P. Cui. « Gold nanoparticles decorated liposomes and their SERS performance in tumor cells ». Dans Third International Symposium on Laser Interaction with Matter, sous la direction de Yury M. Andreev, Zunqi Lin, Xiaowu Ni et Xisheng Ye. SPIE, 2015. http://dx.doi.org/10.1117/12.2182146.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Brunetaud, Jean Marc, Jean-Marie Devoisselle, G. Constantinides, Thomas Desmettre et Serge R. Mordon. « Laser-triggered releasing of fluorescein from thermosensible liposomes : a new method for quantification of laser-induced photocoagulation ». Dans Laser-Tissue Interaction V. SPIE, 1994. http://dx.doi.org/10.1117/12.182943.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Tehrani, Masoud H. H., M. Soltani et Farshad Moradi Kashkooli. « Numerical simulation of synergistic interaction of magnetic hyperthermia and intraperitoneal delivery of temperature-sensitive liposomes ». Dans 2020 27th National and 5th International Iranian Conference on Biomedical Engineering (ICBME). IEEE, 2020. http://dx.doi.org/10.1109/icbme51989.2020.9319411.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Sohgawa, Masayuki, Takashi Fujimoto, Keisuke Takada, Kaoru Yamashita et Minoru Noda. « Detection of interaction between biological proteins and immobilized liposomes by a micro-cantilever with NiCr thin film strain gauge ». Dans 2013 IEEE Sensors. IEEE, 2013. http://dx.doi.org/10.1109/icsens.2013.6688340.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Hamada, Jun, Nobuyuki Nakanishi, Fusako Takeuchi, Sam-yong Park et Motonari Tsubaki. « Interaction of Tail-anchored Proteins with Liposomes in Different Cholesterol Content : Initial Steps for the Fabrication of Artificial Neuroendocrine Vesicles ». Dans 2006 IEEE International Symposium on MicroNanoMechanical and Human Science. IEEE, 2006. http://dx.doi.org/10.1109/mhs.2006.320250.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Živanovic, Vesna, et Janina Kneipp. « Nano-bio interactions as characterized by SERS : The interaction of liposomes with gold nanostructures is highly dependent on lipid composition and charge ». Dans Plasmonics in Biology and Medicine XVI, sous la direction de Tuan Vo-Dinh, Ho-Pui A. Ho et Krishanu Ray. SPIE, 2019. http://dx.doi.org/10.1117/12.2508584.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Sakamoto, Yoichi, Fusako Takeuchi, Masahiro Miura, Sam-Yong Park et Motonari Tsubaki. « Preparation of cytochromes b5 with an extended COOH-terminal hydrophilic segment : Interaction of modified tail-anchored proteins with liposomes in different cholesterol content ». Dans 2009 International Symposium on Micro-NanoMechatronics and Human Science (MHS). IEEE, 2009. http://dx.doi.org/10.1109/mhs.2009.5352030.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

França, Erick Guimarães, Waleska Renata Pereira Costa, Eduardo de Faria Franca et Carlos Alberto de Oliveira. « COMPORTAMENTO DE FTALOCIANINA LIPOSSOMAL NO CONTEXTO DA DINÂMICA MOLECULAR ». Dans VIII Simpósio de Estrutura Eletrônica e Dinâmica Molecular. Universidade de Brasília, 2020. http://dx.doi.org/10.21826/viiiseedmol2020173.

Texte intégral
Résumé :
Since the early 1990s, hydrated phospholipid bilayers have been studied using computational modeling methods. In this context, the simulation of the behavior of lipid biomembranes is a promising area, not only for its applications in the understanding of cell membranes, but also for its application to several drug delivery systems widely used and studied during the last decades. Is this worj performed computational simulations of lipid membranes added or not with cholesterol and zinc phthalocyanine, to obtain membrane density values, zinc phthalocyanine side diffusion, system and drug atomic mobility and density maps of the system using GROMACS. Liposomes with suitable ratio between free cholesterol and esterified cholesterol and phospholipids showed encapsulation rates of approximately 80%. In conclusion, The interaction of photosensitizers with free cholesterol influences their spatial disposition in the bi-layers and is directly related to the cell mortality rate.
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Interaction of Dendrimers and Liposomes"

1

Montville, Thomas J., et Roni Shapira. Molecular Engineering of Pediocin A to Establish Structure/Function Relationships for Mechanistic Control of Foodborne Pathogens. United States Department of Agriculture, août 1993. http://dx.doi.org/10.32747/1993.7568088.bard.

Texte intégral
Résumé :
This project relates the structure of the bacteriocin molecule (which is genetically determined) to its antimicrobial function. We have sequenced the 19,542 bp pediocin plasmid pMD136 and developed a genetic transfer system for pediococci. The pediocin A operon is complex, containing putative structural, immunity, processing, and transport genes. The deduced sequence of the pediocin A molecule contains 44 amino acids and has a predicted PI of 9.45. Mechanistic studies compared the interaction of pediocin PA-1 and nisin with Listeria monocytgenes cells and model lipid systems. While significant nisin-induced intracellular ATP depletion is caused by efflux, pediocin-induced depletion is caused exclusively by hydrolysis. Liposomes derived from L. monocytogenes phospholipids were used to study the physical chemistry of pediocin and nisin interactions with lipids. Their different pH optima are the results of different specific ionizable amino acids. We generated a predicted 3-D structural model for pediocin PA-1 and used a variety of mutant pediocins to demonstrate that the "positive patch" at residues 11 and 12 (and not the YGNGV consensus sequence) is responsible for the binding step of pediocin action. This structure/function understanding gained here provides necessary prerequisites to the more efficacious use of bacteriocins to control foodborne pathogens.
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie