Littérature scientifique sur le sujet « Interacting particles systems »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Interacting particles systems ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Interacting particles systems"
Karmanov, Vladimir A. « Abnormal Bound Systems ». Universe 8, no 2 (3 février 2022) : 95. http://dx.doi.org/10.3390/universe8020095.
Texte intégralAbadi, Noam, et Franco Ruzzenenti. « Complex Networks and Interacting Particle Systems ». Entropy 25, no 11 (27 octobre 2023) : 1490. http://dx.doi.org/10.3390/e25111490.
Texte intégralSudbury, Aidan. « The survival of various interacting particle systems ». Advances in Applied Probability 25, no 4 (décembre 1993) : 1010–12. http://dx.doi.org/10.2307/1427804.
Texte intégralSudbury, Aidan. « The survival of various interacting particle systems ». Advances in Applied Probability 25, no 04 (décembre 1993) : 1010–12. http://dx.doi.org/10.1017/s0001867800025878.
Texte intégralItoh, Yoshiaki, Colin Mallows et Larry Shepp. « Explicit sufficient invariants for an interacting particle system ». Journal of Applied Probability 35, no 3 (septembre 1998) : 633–41. http://dx.doi.org/10.1239/jap/1032265211.
Texte intégralItoh, Yoshiaki, Colin Mallows et Larry Shepp. « Explicit sufficient invariants for an interacting particle system ». Journal of Applied Probability 35, no 03 (septembre 1998) : 633–41. http://dx.doi.org/10.1017/s0021900200016284.
Texte intégralMETZNER, WALTER, et CLAUDIO CASTELLANI. « TWO PARTICLE CORRELATIONS AND ORTHOGONALITY CATASTROPHE IN INTERACTING FERMI SYSTEMS ». International Journal of Modern Physics B 09, no 16 (20 juillet 1995) : 1959–83. http://dx.doi.org/10.1142/s021797929500080x.
Texte intégralMorvan, A., T. I. Andersen, X. Mi, C. Neill, A. Petukhov, K. Kechedzhi, D. A. Abanin et al. « Formation of robust bound states of interacting microwave photons ». Nature 612, no 7939 (7 décembre 2022) : 240–45. http://dx.doi.org/10.1038/s41586-022-05348-y.
Texte intégralSKOROHOD, A. V. « Infinite systems of randomly interacting particles ». Random Operators and Stochastic Equations 1, no 1 (1993) : 1–14. http://dx.doi.org/10.1515/rose.1993.1.1.1.
Texte intégralKarwowski, Jacek, et Kamil Szewc. « Quasi-Exactly Solvable Models in Quantum Chemistry ». Collection of Czechoslovak Chemical Communications 73, no 10 (2008) : 1372–90. http://dx.doi.org/10.1135/cccc20081372.
Texte intégralThèses sur le sujet "Interacting particles systems"
Glass, K. « Dynamics of systems of interacting particles ». Thesis, University of Cambridge, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.599435.
Texte intégralFranz, Benjamin. « Recent modelling frameworks for systems of interacting particles ». Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:ac76d159-4cdd-40c9-b378-6ea1faf48aed.
Texte intégralRomanovsky, Igor Alexandrovich. « Novel properties of interacting particles in small low-dimensional systems ». Diss., Available online, Georgia Institute of Technology, 2006, 2006. http://etd.gatech.edu/theses/available/etd-07102006-041659/.
Texte intégralLandman, Uzi, Committee Member ; Yannouleas, Constantine, Committee Member ; Bunimovich, Leonid, Committee Member ; Chou, Mei-Yin, Committee Member ; Pustilnik, Michael, Committee Member.
Jacquot, Stéphanie Mireille. « Large systems of interacting particles : the Marcus-Lushnikov process and the β-Laguerre ensemble ». Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610327.
Texte intégralGeiger, Benjamin [Verfasser], et Klaus [Akademischer Betreuer] Richter. « From few to many particles : Semiclassical approaches to interacting quantum systems / Benjamin Geiger ; Betreuer : Klaus Richter ». Regensburg : Universitätsbibliothek Regensburg, 2020. http://d-nb.info/1215906064/34.
Texte intégralLafleche, Laurent. « Dynamique de systèmes à grand nombre de particules et systèmes dynamiques ». Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLED010.
Texte intégralIn this thesis, we study the behavior of solutions of partial differential equations that arise from the modeling of systems with a large number of particles. The dynamic of all these systems is driven by interaction between the particles and external and internal forces. However, we will consider different scales and travel from the quantum level of atoms to the macroscopic level of stars. We will see that differences emerge from the associated dynamics even though the main properties are conserved. In this journey, we will cross the path of various applications of these equations such as astrophysics, plasma, semi-conductors, biology, economy. This work is divided in three parts.In the first one, we study the semi classical behavior of the quantum Hartree equation and its limit to the kinetic Vlasov equation. Properties such as the propagation of moments and weighted Lebesgue norms and dispersive estimates are quantified uniformly in the Planck constant and used to establish stability estimates in a semiclassical analogue of the Wasserstein distance between the solutions of these two equations.In the second part, we investigate the long time behavior of macroscopic and kinetic models where the collision operatoris linear and has a heavy-tailed local equilibrium, such as the Fokker-Planck operator, the fractional Laplacian with a driftor a Linear Boltzmann operator. This let appear two main techniques, the entropy method and the positivity method.In the third part, we are interested in macroscopic models inspired from the Keller-Segel equation, and we study therange of parameters under which the system collapses, disperses or stabilizes. The first effect is studied using appropriate weights, the second using Wasserstein distances and the third using Lebesgue norms
Gracar, Peter. « Random interacting particle systems ». Thesis, University of Bath, 2018. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.761028.
Texte intégralDeshayes, Aurélia. « Modèles de croissance aléatoire et théorèmes de forme asymptotique : les processus de contact ». Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0168/document.
Texte intégralThis thesis is a contribution to the mathematical study of interacting particles systems which include random growth models representing a spreading shape over time in the cubic lattice. These processes are used to model the crystal growth or the spread of an infection. In particular, Harris introduced in 1974 the contact process to represent such a spread. It is one of the simplest interacting particles systems which exhibits a critical phenomenon and today, its behaviour is well-Known on each phase. Many questions about its extensions remain open and motivated our work, especially the one on the asymptotic shape. After the presentation of the contact process and its extensions, we introduce a new one: the contact process with aging where each particle has an age age that influences its ability to give birth to its neighbours. We build a coupling between our process and a supercritical oriented percolation adapted from Bezuidenhout-Grimmett's construction and we establish the 'at most linear' growth of our process. In the last part of this work, we prove an asymptotic shape theorem for general random growth models thanks to subadditive techniques, which can be complicated in the case of non-Permanent models conditioned to survive. We conclude that the process with aging, the contact process in randomly evolving environment, the oriented percolation with hostile immigration and the bounded modified contact process satisfy asymptotic shape results
Wang, Hao Carleton University Dissertation Mathematics and Statistics. « Interacting branching particle systems and superprocesses ». Ottawa, 1995.
Trouver le texte intégralDeshayes, Aurélia. « Modèles de croissance aléatoire et théorèmes de forme asymptotique : les processus de contact ». Electronic Thesis or Diss., Université de Lorraine, 2014. http://www.theses.fr/2014LORR0168.
Texte intégralThis thesis is a contribution to the mathematical study of interacting particles systems which include random growth models representing a spreading shape over time in the cubic lattice. These processes are used to model the crystal growth or the spread of an infection. In particular, Harris introduced in 1974 the contact process to represent such a spread. It is one of the simplest interacting particles systems which exhibits a critical phenomenon and today, its behaviour is well-Known on each phase. Many questions about its extensions remain open and motivated our work, especially the one on the asymptotic shape. After the presentation of the contact process and its extensions, we introduce a new one: the contact process with aging where each particle has an age age that influences its ability to give birth to its neighbours. We build a coupling between our process and a supercritical oriented percolation adapted from Bezuidenhout-Grimmett's construction and we establish the 'at most linear' growth of our process. In the last part of this work, we prove an asymptotic shape theorem for general random growth models thanks to subadditive techniques, which can be complicated in the case of non-Permanent models conditioned to survive. We conclude that the process with aging, the contact process in randomly evolving environment, the oriented percolation with hostile immigration and the bounded modified contact process satisfy asymptotic shape results
Livres sur le sujet "Interacting particles systems"
Kipnis, Claude. Scaling limits of interacting particle systems. New York : Springer, 1999.
Trouver le texte intégralSalabura, Piotr. Vector mesons in strongly interacting systems. Kraków : Wydawn. Uniwersytetu Jagiellońskiego, 2003.
Trouver le texte intégralLiggett, Thomas M. Interacting particle systems. Berlin : Springer, 2005.
Trouver le texte intégralLiggett, Thomas M. Interacting Particle Systems. New York, NY : Springer New York, 1985. http://dx.doi.org/10.1007/978-1-4613-8542-4.
Texte intégralLiggett, Thomas M. Interacting Particle Systems. Berlin, Heidelberg : Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/b138374.
Texte intégralLiggett, Thomas M. Interacting Particle Systems. New York, NY : Springer New York, 1985.
Trouver le texte intégral1938-, Arenhövel H., dir. Many body structure of strongly interacting systems : Refereed and selected contributions of the symposium "20 years of physics at the Mainz Microtron MAMI," Mainz, Germany, October 19-22, 2005. Bologna, Italy : Societá italiana di fisica, 2006.
Trouver le texte intégralKipnis, Claude, et Claudio Landim. Scaling Limits of Interacting Particle Systems. Berlin, Heidelberg : Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/978-3-662-03752-2.
Texte intégralPapanicolaou, George, dir. Hydrodynamic Behavior and Interacting Particle Systems. New York, NY : Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-6347-7.
Texte intégralGeorge, Papanicolaou, et University of Minnesota. Institute for Mathematics and its Applications., dir. Hydrodynamic behavior and interacting particle systems. New York : Springer-Verlag, 1987.
Trouver le texte intégralChapitres de livres sur le sujet "Interacting particles systems"
Liverani, C. « Interacting Particles ». Dans Hard Ball Systems and the Lorentz Gas, 179–216. Berlin, Heidelberg : Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-662-04062-1_8.
Texte intégralNolting, Wolfgang, et William D. Brewer. « Systems of Interacting Particles ». Dans Fundamentals of Many-body Physics, 197–311. Berlin, Heidelberg : Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-71931-1_4.
Texte intégralNolting, Wolfgang. « Systems of Interacting Particles ». Dans Theoretical Physics 9, 205–319. Cham : Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-98326-4_4.
Texte intégralCichocki, B. « Interacting Brownian Particles ». Dans Dynamics : Models and Kinetic Methods for Non-equilibrium Many Body Systems, 65–71. Dordrecht : Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4365-3_5.
Texte intégralSkorohod, A. V. « Randomly Interacting Systems Of Particles ». Dans Stochastic Equations for Complex Systems, 67–169. Dordrecht : Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-3767-3_2.
Texte intégralGuo, M. Z., et G. Papanicolaou. « Bulk Diffusion for Interacting Brownian Particles ». Dans Statistical Physics and Dynamical Systems, 41–48. Boston, MA : Birkhäuser Boston, 1985. http://dx.doi.org/10.1007/978-1-4899-6653-7_3.
Texte intégralMikhailov, Alexander S., et Gerhard Ertl. « Systems with Interacting Particles and Soft Matter ». Dans Chemical Complexity, 159–80. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57377-9_11.
Texte intégralSpohn, Herbert. « Interacting Brownian Particles : A Study of Dyson’s Model ». Dans Hydrodynamic Behavior and Interacting Particle Systems, 151–79. New York, NY : Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-6347-7_13.
Texte intégralChaikin, P. M., W. D. Dozier et H. M. Lindsay. « Experiments on Suspensions of Interacting Particles in Fluids ». Dans Hydrodynamic Behavior and Interacting Particle Systems, 13–24. New York, NY : Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-6347-7_2.
Texte intégralSergeev, Y. A. « Nonlinear Concentration Waves in Fluidized Beds of Interacting Particles ». Dans Mobile Particulate Systems, 233–48. Dordrecht : Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8518-7_15.
Texte intégralActes de conférences sur le sujet "Interacting particles systems"
Izrailev, F. M. « Regular versus chaotic dynamics in closed systems of interacting Fermi particles ». Dans NUCLEI AND MESOSCOPIC PHYSICS : Workshop on Nuclei and Mesoscopic Physics : WNMP 2004. AIP, 2005. http://dx.doi.org/10.1063/1.1996878.
Texte intégralHerrera, Dianela, et Sergio Curilef. « Numerical study of a Vlasov equation for systems with interacting particles ». Dans PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014). AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4912388.
Texte intégralKim, Bongsoo, Kyozi Kawasaki, Michio Tokuyama, Irwin Oppenheim et Hideya Nishiyama. « A FDR-Preserving Field Theory for Interacting Brownian Particles : One-Loop Theory and MCT ». Dans COMPLEX SYSTEMS : 5th International Workshop on Complex Systems. AIP, 2008. http://dx.doi.org/10.1063/1.2897790.
Texte intégralCARMONA, J. M., N. MICHEL, J. RICHERT et P. WAGNER. « NUCLEAR FRAGMENTATION, PHASE TRANSITIONS AND THEIR CHARACTERIZATION IN FINITE SYSTEMS OF INTERACTING PARTICLES ». Dans Proceedings of the Conference “Bologna 2000 : Structure of the Nucleus at the Dawn of the Century”. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812810939_0023.
Texte intégralBriegel, Hans. « Entanglement in quantum many-body systems far away from thermodynamic equilibrium ». Dans Workshop on Entanglement and Quantum Decoherence. Washington, D.C. : Optica Publishing Group, 2008. http://dx.doi.org/10.1364/weqd.2008.eoqs1.
Texte intégralIzrailev, F. M. « Quantum-Classical Correspondence for Isolated Systems of Interacting Particles : Localization and Ergodicity in Energy Space ». Dans Proceedings of Nobel Symposium 116. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812811004_0014.
Texte intégralSzamel, Grzegorz, Michio Tokuyama, Irwin Oppenheim et Hideya Nishiyama. « Diagrammatic Approach to the Dynamics of Interacting Brownian Particles : Mode-Coupling Theory, Generalized Mode-Coupling Theory, and All That ». Dans COMPLEX SYSTEMS : 5th International Workshop on Complex Systems. AIP, 2008. http://dx.doi.org/10.1063/1.2897869.
Texte intégralOzyer, Baris, Ismet Erkmen et Aydan M. Erkmen. « Catching Continuum Between Preshape and Grasping Based on Fluidics ». Dans ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2010. http://dx.doi.org/10.1115/esda2010-24632.
Texte intégralAgarwal, Gaurav, Brian Lattimer, Srinath Ekkad et Uri Vandsburger. « Grid-Zone Particle Hydrodynamics and Solid Circulation in a Multiple Jet Fluidized Bed ». Dans ASME 2012 Fluids Engineering Division Summer Meeting collocated with the ASME 2012 Heat Transfer Summer Conference and the ASME 2012 10th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/fedsm2012-72066.
Texte intégralNavakas, Robertas, et Algis Džiugys. « A community detection method for network structure analysis of force chains in granular medium in a rotating drum ». Dans The 13th international scientific conference “Modern Building Materials, Structures and Techniques”. Vilnius Gediminas Technical University, 2019. http://dx.doi.org/10.3846/mbmst.2019.079.
Texte intégralRapports d'organisations sur le sujet "Interacting particles systems"
Pullammanappallil, Pratap, Haim Kalman et Jennifer Curtis. Investigation of particulate flow behavior in a continuous, high solids, leach-bed biogasification system. United States Department of Agriculture, janvier 2015. http://dx.doi.org/10.32747/2015.7600038.bard.
Texte intégralVaradhan, S. R. Interacting Particle Systems and Their Scaling Limits. Fort Belvoir, VA : Defense Technical Information Center, mars 1996. http://dx.doi.org/10.21236/ada308783.
Texte intégralZhang, Xingyu, Matteo Ciantia, Jonathan Knappett et Anthony Leung. Micromechanical study of potential scale effects in small-scale modelling of sinker tree roots. University of Dundee, décembre 2021. http://dx.doi.org/10.20933/100001235.
Texte intégralAnisimov, Petr Mikhaylovich. Quantum interaction of a few particle system mediated by photons. Office of Scientific and Technical Information (OSTI), avril 2017. http://dx.doi.org/10.2172/1356103.
Texte intégralPeter J. Mucha. Final Report : Model interacting particle systems for simulation and macroscopic description of particulate suspensions. Office of Scientific and Technical Information (OSTI), août 2007. http://dx.doi.org/10.2172/939459.
Texte intégralSviratcheva, K. D., et J. P. Draayer. Realistic Two-body Interactions in Many-nucleon Systems : Correlated Motion beyond Single-particle Behavior. Office of Scientific and Technical Information (OSTI), juin 2006. http://dx.doi.org/10.2172/885281.
Texte intégralGrabowski, Wojciech. Evolution of Precipitation Particle Size Distributions within MC3E Systems and its Impact on Aerosol-Cloud-Precipitation Interactions. Office of Scientific and Technical Information (OSTI), mars 2016. http://dx.doi.org/10.2172/1244254.
Texte intégralChefetz, Benny, et Jon Chorover. Sorption and Mobility of Pharmaceutical Compounds in Soils Irrigated with Treated Wastewater. United States Department of Agriculture, 2006. http://dx.doi.org/10.32747/2006.7592117.bard.
Texte intégralChefetz, Benny, et Jon Chorover. Sorption and Mobility of Pharmaceutical Compounds in Soils Irrigated with Treated Wastewater. United States Department of Agriculture, 2006. http://dx.doi.org/10.32747/2006.7709883.bard.
Texte intégralKollias, Pavlos. Evolution of Precipitation Particle Size Distributions within MC3E Systems and its Impact on Aerosol-Cloud-Precipitation Interactions : Final Report. Office of Scientific and Technical Information (OSTI), août 2017. http://dx.doi.org/10.2172/1374165.
Texte intégral