Littérature scientifique sur le sujet « Insulating polymer materials »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Insulating polymer materials ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Articles de revues sur le sujet "Insulating polymer materials"

1

Danikas, M., et S. Morsalin. « A Short Review on Polymer Nanocomposites for Enameled Wires : Possibilities and Perspectives ». Engineering, Technology & ; Applied Science Research 9, no 3 (8 juin 2019) : 4079–84. http://dx.doi.org/10.48084/etasr.2678.

Texte intégral
Résumé :
Polymer nanocomposites constitute a new generation of insulating materials, capable of offering better electrical, thermal and mechanical properties. Past research indicated that such materials may replace conventional polymers for a variety of industrial high voltage applications. In the present paper, polymer nanocomposites are investigated regarding the insulation of enameled wires. Possible nanocomposite candidates are discussed.
Styles APA, Harvard, Vancouver, ISO, etc.
2

Liu, Cong, Jian Hao, Yanqing Li et Ruijin Liao. « Fabrication of ZnO-Al2O3-PTFE Multilayer Nano-Structured Functional Film on Cellulose Insulation Polymer Surface and Its Effect on Moisture Inhibition and Dielectric Properties ». Polymers 11, no 8 (19 août 2019) : 1367. http://dx.doi.org/10.3390/polym11081367.

Texte intégral
Résumé :
After a century of practice, cellulose insulating polymer (insulating paper/pressboard) has been shown to be one of the best and most widely used insulating materials in power transformers. However, with the increased voltage level of the transformer, research has focused on improving the insulation performance of the transformer’s cellulose insulation polymer. Considering the complex environment of the transformer, it is not enough to improve the single performance of the insulating polymer. In this study, a nano-structured ZnO-Al2O3-PTFE (polytetrafluoroethylene) multifunctional film was deposited on the surface of insulating pressboard by radio frequency (RF) magnetron sputtering. The effect of the multilayered ZnO-Al2O3-PTFE functional film on the dielectric and water contact angle of the cellulose insulating polymer was investigated. The scanning electron microscopy/energy dispersive spectrometry (SEM/EDS) showed that the nano-structured ZnO-Al2O3-PTFE functional film was successfully deposited on the cellulose insulation pressboard surface. The functional film presented an obvious stratification phenomenon. By analyzing the result of the contact angle, it was found that the functional film shields the hydroxyl group of the inner cellulose and improves hydrophobicity. The AC breakdown field strength of the treated samples was obviously increased (by 12 to ~17%), which means that the modified samples had a better dielectric insulation performance. This study provides a surface modification method to comprehensively improve electrical properties and the ability to inhibit the moisture of the cellulose insulating polymer, used in a power transformer.
Styles APA, Harvard, Vancouver, ISO, etc.
3

BANACKA, Natalia, Dariusz SOKOŁOWSKI et Mirosław SZCZEPANIK. « TESTING PROPERTIES OF SELECTED POLYMER MATERIALS FOR ABLATIVE LAYERS IN ROCKET SOLID FUEL MOTORS ». PROBLEMY TECHNIKI UZBROJENIA 168, no 1 (16 avril 2024) : 113–31. http://dx.doi.org/10.5604/01.3001.0054.4796.

Texte intégral
Résumé :
The article presents basic information about using thermal insulation in rocket solid fuel motors. A breakdown of the insulating material is given with examples of polymers used to protect motor internal surface at combustion of fuel and its hightemperature products. Tests were carried out in the work for selected polymer materials used at production of rocket solid fuel motors, and the polymer was indicated with the best ablative properties. The method of testing consisted of physicochemical and mechanical tests. Performing DSC and TG measurements made it possible to observe the phase transformations of a given material under the influence of temperature changes.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Eze, A. H., et Á. Lakatos. « Applications of thermal insulation materials by aircraft ». Journal of Physics : Conference Series 2628, no 1 (1 octobre 2023) : 012018. http://dx.doi.org/10.1088/1742-6596/2628/1/012018.

Texte intégral
Résumé :
Abstract Lightweight materials such as microfiber insulation or polymer foam are typically used to insulate cars and aircraft. But here, too, the use of state-of-the-art “super-insulating” materials is a valid answer. Vacuum insulation panels also serve as reliable insulators for electric vehicles. In this study, we will analyze in depth the potential uses for aerogels, polymer foams, and microfiber insulation. In addition, their thermal properties are briefly outlined, with a special focus on thermal conductivity and compressibility. Finding the right solution for the aircraft industry is critical. To meet increasingly stringent requirements, aircraft materials must meet several criteria, including lightweight, minimal noise, and insulation from the heat.
Styles APA, Harvard, Vancouver, ISO, etc.
5

IMAI, Takahiro, et Toshikatsu TANAKA. « Advances in Polymer Nanocomposite Insulating Materials ». Journal of The Institute of Electrical Engineers of Japan 134, no 3 (2014) : 161–64. http://dx.doi.org/10.1541/ieejjournal.134.161.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Tanaka, Toshikatsu. « Polymer nanocomposite innovating on insulating materials ». IEEJ Transactions on Electrical and Electronic Engineering 4, no 1 (janvier 2009) : 8–9. http://dx.doi.org/10.1002/tee.20348.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Mackevich, J., et M. Shah. « Polymer outdoor insulating materials. Part I : Comparison of porcelain and polymer electrical insulation ». IEEE Electrical Insulation Magazine 13, no 3 (mai 1997) : 5–12. http://dx.doi.org/10.1109/57.591510.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Horbachova, Oleksandra, Yuriy Tsapko, Yelena Tsarenko, Serhii Mazurchuk et Ivan Kasianchuk. « Justification of the Wood Polymer Material Application Conditions ». Journal of Engineering Sciences 10, no 2 (2023) : C49—C55. http://dx.doi.org/10.21272/jes.2023.10(2).c6.

Texte intégral
Résumé :
The production of heat-insulating materials based on wood was analyzed in this paper. The expediency and efficiency of using wood waste were established. A study of the operational properties of the sample obtained from wood shavings polymerized with mixtures of polyester and epoxy resins was carried out. It was proven that the process’s primary regulator is the material’s density and porosity. Also, an increase in humidity and wetting reduces heat-insulating indicators. Based on thermophysical dependences, the thermal insulation properties of the samples were calculated. Moreover, it was established that the thermal conductivity does not exceed 0.21·10–6 m2/s, and the thermal conductivity of the sample – 2.85·10–3 W/(m·K). Therefore, these products can be classified as heat-insulating materials. A through-thickness compressive strength study showed that the wood shavings and polyester resin material are more fragile, and the strength limit was reduced by more than 1.2 times compared to the epoxy resin-based material. The moisture absorption results showed that a heat-insulating product made of shavings polymerized with polyester resin. Moisture absorption was 5 % after 90 days of exposure to water. On the other hand, the heat-insulating products made of shavings with epoxy resin of 4.41 % showed their resistance to moisture absorption.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Xu, M., G. C. Montanari, D. Fabiani, L. A. Dissado et A. Krivda. « A New Ultra Fast Conduction Mechanism in Insulating Polymer Nanocomposites ». Journal of Nanotechnology 2011 (2011) : 1–11. http://dx.doi.org/10.1155/2011/985801.

Texte intégral
Résumé :
A brand new phenomenon, namely, electrical conduction via soliton-like ultra fast space charge pulses, recently identified in unfilled cross-linked polyethylene, is shown for the first time to occur in insulating polymer nanocomposites and its characteristics correlated with the electromechanical properties of nanostructured materials. These charge pulses are observed to cross the insulation under low electrical field in epoxy-based nanocomposites containing nanosilica particles with relative weights of 1%, 5%, 10%, and 20% at speeds orders of magnitude higher than those expected for carriers in insulating polymers. The characteristics of mobility, magnitude and repetition rate for both positive and negative charge pulses are studied in relation to nanofiller concentration. The results show that the ultra fast charge pulses (packets) are affected significantly by the concentration of nanoparticles. An explanation is presented in terms of a new conduction mechanism where the mechanical properties of the polymer and movement of polymer chains play an important role in the injection and transport of charge in the form of pulses. Here, the charge transport is not controlled by traps. Instead, it is driven by the contribution of polarization and the resultant electromechanical compression, which is substantially affected by the introduction of nanoparticles into the base polymer.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Huang, Fang. « Technology of Heat-Resistant & ; High Voltage-Resistant Insulation Materials Based on Polymer Composite ». Advanced Materials Research 391-392 (décembre 2011) : 340–44. http://dx.doi.org/10.4028/www.scientific.net/amr.391-392.340.

Texte intégral
Résumé :
High voltage insulation of the heat-resistant polymer composite material mainly composed of synthetic resin matrix, reinforcing materials, inorganic fillers, pigments and other components. In addition, according to the technical and performance requirements will be added in the resin matrix curing agent, thickener, mold release agents, solvents and so on. By different proportions of the resin matrix and filler and other additives, under conditions in certain insulating polymer composites were prepared to explore the relationship between components, the best formula and the ideal insulation material.
Styles APA, Harvard, Vancouver, ISO, etc.

Thèses sur le sujet "Insulating polymer materials"

1

Sim, Alec. « Unified model of charge transport in insulating polymeric materials ». Thesis, Utah State University, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3606878.

Texte intégral
Résumé :

Presented here is a detailed study of electron transport in highly disordered insulating materials (HDIM). Since HDIMs do not lend themselves to a lattice construct, the question arises: How can we describe their electron transport behavior in a consistent theoretical framework? In this work, a large group of experiments, theories, and physical models are coalesced into a single formalism to better address this difficult question. We find that a simple set of macroscopic transport equations--cast in a new formalism--provides an excellent framework in which to consider a wide array of experimentally observed behaviors. It is shown that carrier transport in HDIMs is governed by the transport equations that relate the density of localized states (DOS) within the band gap and the occupation of these states through thermal and quantum interactions. The discussion is facilitated by considering a small set of simple DOS models. This microscopic picture gives rise to a clear understanding of the macroscopic carrier transport in HDIMs. We conclude with a discussion of the application of this theoretical formalism to four specific types of experimental measurements employed by the Utah State University space environments effects Materials Physics Group.

Styles APA, Harvard, Vancouver, ISO, etc.
2

Kashfipour, Marjan Alsadat. « Thermal Conductivity Enhancement Of Polymer Based Materials ». University of Akron / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=akron156415885613422.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Castrovilli, Matteo. « Characterization of the dipole processes of insulating materials used in aeronautical cables ». Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.

Trouver le texte intégral
Résumé :
The studies of this thesis are focused on aeronautic Polymers materials and their dielectric properties, in order to analyze the relaxation times for the materials of interest under an applied electric field, and in order to increase the work operations of the Novocontrol dielectric spectroscopy measurement machine available in the LAPLACE laboratory. In this context, the research team DSF in collaboration with MDCE, from LAPLACE laboratory, has developed in 2019 a numerical model taking into account the polar mechanisms of the polymer insulators used in the aeronautic industry. However, this theoretical model, is not yet validated. Therefore the aim of this thesis, is to make it possible to validate this theoretical model, then by a series of measurements with dielectric spectroscopy(D.S.) for different materials of interest, different frequencies and temperatures; the measurements consist on the measuration of the phase difference between current and voltage applied to the samples, in order to calculate the permittivity values under different working conditions. The permittivity trend is therefore analyzed to find the polar relaxation under thermoelectrical stresses, and the model will then have to calculate the current density (and from the current density is directly calculated the dissipated energy) of the measured data with dielectry spectroscopy, and the validation will be done if the future measurement values of the current density correspond to the calculated one by the model. For this reasons, the main part of the work for this thesis consist in measurements trought the dielectric spectroscopy (using the following polar materials: Polyimide(PI) and PTFE ) under different working conditions and analyze the results in order to evidence polarization phenomena, because the purpose of this part of the validation process is to have the better polar relaxation data for the future work.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Neumann, Andreas C. « Electronic transport in highly resistive materials in strong magnetic fields :nonlinear dynamics in semi-insulating GaAs and magnetoresistance of carbon-black polymer composites ». Doctoral thesis, Universite Libre de Bruxelles, 1997. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/212185.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Adetunji, Oludurotimi Oluwaseun. « The nature of electronic states in conducting polymer nano-networks ». Columbus, Ohio : Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1206218304.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Silva, Igor. « Propriétés des matériaux isolants pour application dans les appareillages moyenne tension à tension continue ». Electronic Thesis or Diss., Université Grenoble Alpes, 2024. http://www.theses.fr/2024GRALT043.

Texte intégral
Résumé :
Les récentes avancées dans la technologie du courant continu, du côté du transport à haute tension et de la consommation à basse tension, ont propulsé le courant continu de moyenne tension (MVDC) au premier plan. Cette thèse explore les propriétés isolantes en courant continu de deux matériaux couramment utilisés dans l'équipement de distribution : de l'époxy chargé en micro-silice et le silicone elastomère.Dans une configuration monocouche, chaque matériau a fait l'objet d'une enquête approfondie, mettant l'accent sur les caractéristiques de sorption d'eau et la conduction électrique. Des mesures de courant ont été effectuées pour analyser la conduction dans divers niveaux de champs, à différentes températures et conditions d'absorption d'eau. De plus, la méthode Laser Pressure Pulse (LIPP) a été utilisée pour des mesures de charge d'espace en tant que technique complémentaire. L'étude s'est étendue à une configuration bicouche, combinant les deux matériaux, nous permettant ainsi de confirmer un modèle prédisant les propriétés du multicouche et sa distribution de champs en fonction des valeurs des monocouches.La conduction en courant continu dans l'époxy a montré une forte dépendance à l'absorption d'eau, l'humidité influençant la non-linéarité et modifiant le mécanisme de conduction. À l'inverse, le silicone a démontré une conduction limitée par l'électrode, avec des variations de courant liées à la sorption d'eau par le biais d'un mécanisme limité par saturation. Dans une configuration bicouche hypothétique, où l'époxy représente un manchon et le silicone sert de terminaison de câble, le champ est censé se concentrer dans l'époxy dans des environnements secs, passant au silicone à mesure que l'humidité augmente. La thèse se conclut par des discussions sur les stratégies de sélection des matériaux et la conception de configurations multicouches
Recent advancements in direct-current technology from the high-voltage transport and low-voltage consumption have brought medium-voltage DC (MVDC) to the forefront. This thesis delves into the insulating DC properties of two commonly used materials in distribution equipment: epoxy filled with silica and silicone rubber.In a monolayer configuration, each material underwent extensive investigation, focusing on water sorption characteristics and electrical conduction. Current measurements were conducted to analyze conduction under various fields, temperatures, and water uptake conditions. Additionally, the Laser Pressure Pulse (LIPP) method was employed for space charge measurements as a complementary technique. The study extended to a bilayer configuration, combining both materials, with insights from monolayer experiments informing the properties of the bilayer and predicting field distribution.The DC conduction in epoxy exhibited high dependence on water absorption, with moisture influencing non-linearity and altering the conduction mechanism. Conversely, silicone demonstrated electrode-limited conduction, with current variations tied to water sorption through a saturation-limited mechanism. In a hypothetical bilayer configuration, where epoxy represents a type-C bushing and silicone serves as the cable termination, the field is expected to concentrate in the epoxy in dry environments, shifting to silicone as humidity increases. The thesis concludes with discussions on material selection strategies and the design of multi-layer configurations
Styles APA, Harvard, Vancouver, ISO, etc.
7

Gawryla, Matthew Daniel. « Low Density Materials through Freeze-Drying:Clay Aerogels and Beyond… ». Case Western Reserve University School of Graduate Studies / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=case1247013426.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Sim, Alec. « Unified Model of Charge Transport in Insulating Polymeric Materials ». DigitalCommons@USU, 2013. https://digitalcommons.usu.edu/etd/2044.

Texte intégral
Résumé :
Charge transport, charging, and subsequent electrostatic discharge due to interactions with the space environment are primary concerns of spacecraft designers. Developing a physical understanding of the interactions of charge with the multitude of materials that spacecraft are composed of is a critical step in understanding and mitigating both short-term and long-term spacecraft degradation. In particular, the study of charge transport in highly insulating materials is critical as they store charge longer, with higher capacity, and with greater destructive capability than other materials.The Utah State University Materials Physics Group, with the funding of the NASA James Webb Space Telescope project and Rocky Mountain Space Consortium, have developed a complete and consistent theoretical model that predicts short-term and long-term storage capabilities based on physical material parameters. This model is applicable across a wide range of experimental systems designed to test specific behaviors that characterize charging phenomena.Modeling and understanding the complex relationships between the spacecraft and its surroundings are fundamentally based on detailed knowledge of how individual materials store and transport charge. The ability to better understand these effects will help make exploring the edges of the universe more stable, reliable, and economic.
Styles APA, Harvard, Vancouver, ISO, etc.
9

Elbuzedi, Mohamed. « Material study and properties of polymers used in composite high voltage insulators ». Thesis, Stellenbosch : Stellenbosch University, 2007. http://hdl.handle.net/10019.1/17749.

Texte intégral
Résumé :
Thesis (MSc)--University of Stellenbosch, 2007.
ENGLISH ABSTRACT: Silicone rubber, particularly poly(dimethylsiloxane) (PDMS), has been increasingly used in the manufacture of outdoor high voltage insulators in the recent years. PDMS offers several advantages that make it suitable for outdoor use, such as low weight, a hydrophobic surface, stability, and excellent performance in heavily polluted environments. PDMS surfaces can, however, become progressively hydrophilic due to surface oxidation caused by corona discharge, UV radiation and acid rain. In this study, PDMS samples of controlled formulations as well as six commercial insulator materials four PDMS based and two ethylene propylene diene monomer (EPDM) based were exposed to various accelerated weathering conditions for various periods of time in order to track changes in the material over time. The ageing regimes developed and used to simulate the potential surface degradation that may occur during in-service usage included needle corona and French corona ageing, thermal ageing, UV-B irradiation (up to 8000 hours) and acid rain (up to 200 days). Both the chemical and physical changes in the materials were monitored using a wide range of analytical techniques, including: static contact angle measurements (SCA), optical microscopy (OM), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), gas chromatography (GC), gas chromatography/mass spectroscopy (GC/MS), size-exclusion chromatography (SEC), Fourier-transform infrared photoacoustic spectroscopy (FTIR-PAS) and slow positron beam techniques (PAS). A low molecular weight (LMW) uncrosslinked PDMS model compound was used to further study the chemical effects of corona exposure on PDMS materials. PDMS showed far better performance than EPDM, in terms of resistance to the various ageing regimes and “hydrophobicity recovery”.
AFRIKAANSE OPSOMMING: Silikoonrubber, spesifiek polidimetielsiloksaan (PDMS), is gedurende die afgelope paar jaar toenemend gebruik in die vervaardiging van buitelughoogspanningisolators. PDMS het baie voordele vir gebruik in elektriese isolators soos ‘n laer massa, ʼn hidrofobiese oppervlak, stabiliteit en uitstekende werking in hoogsbesoedelde omgewings. Die hidrofobiese oppervlakte kan egter gelydelik hidrofilies word weens oppervlakoksidasie as gevolg van korona-ontlading, UV-bestraling en suurreën. In hierdie studie is PDMS monsters van verskillende samestellings sowel as ses kommersiële isolators (vier PDMS en twee etileenpropileenrubber (EPDM)) blootgestel aan verskillende versnelde weersomstandighede vir verskillende periodes om die veranderinge in die materiale te monitor. Die verskillende materiale is gerangskik volgens hulle werking oor ‘n periode van tyd. Dit het ook ‘n geleentheid gebied om die eienskappe van die verskillende samestellings te bestudeer. Die tegnieke wat ontwikkel is om die moontlike oppervlakdegradasie te simuleer, het naald-korona, “French” korona, UVB-bestraling (tot 8000 uur) en suurreën (tot 200 dae) ingesluit. Beide die chemiese en die fisiese veranderinge in die materiale is gemonitor met behulp van verskeie tegnieke soos statiese kontakhoekbepaling, optiese mikroskopie, skandeerelektronmikroskopie, energieverspreidingsspektroskopie, gaschromatografie, grootte-uitsluitingschromatografie, foto-akoestiese Fouriertransforminfrarooi (PASFTIR) en stadige-positronspektroskopie (PAS). ʼn Lae molekulêre massa PDMS modelverbinding is gebruik om die chemiese effek van korona te bestudeer. Die PDMS materiale het baie beter vertoon teenoor die EPDM materiale in terme van hulle herstel van hidrofobisiteit.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Sokotun, Zh, et O. Koshelieva. « Evaluation durability of polymeric insulating material of electric cables ». Thesis, Київський національний університет технологій та дизайну, 2017. https://er.knutd.edu.ua/handle/123456789/6714.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Livres sur le sujet "Insulating polymer materials"

1

Nelson, J. Keith. Dielectric polymer nanocomposites. New York : Springer, 2010.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Neumann, Andreas. Electronic transport in highly resistive materials in strong magnetic fields : Nonlinear dynamics in semi-insulating GaAs and magnetoresistance of carbon-black polymer composites. Konstanz : Hartung-Gorre, 1997.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Stuetzer, Otmar M. Correlation of electrical reactor cable failure with materials degradation. Washington, DC : Electrical Engineering Instrumentation and Control Branch, Division of Engineering Technology, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1986.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Stuetzer, Otmar M. Correlation of electrical reactor cable failure with materials degradation. Washington, DC : Electrical Engineering Instrumentation and Control Branch, Division of Engineering Technology, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1986.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

IEEE Power Engineering Society. Insulated Conductors Committee., Institute of Electrical and Electronics Engineers. et IEEE Standards Board, dir. IEEE recommended practice for test methods for determination of compatibility of materials with conductive polymeric insulation shields and jackets. New York, N.Y., USA : Institute of Electrical and Electronics Engineers, 1996.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Nelson, J. Keith. Dielectric Polymer Nanocomposites. Springer, 2014.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Nelson, J. Keith. Dielectric Polymer Nanocomposites. Springer, 2010.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Johnson, D. I. The Effects of Radiation on the Mechanical Properties of Polymers Used as Electrical Cable Insulation and Jacketing Materials (Reports). AEA Technology Plc, 1989.

Trouver le texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Chapitres de livres sur le sujet "Insulating polymer materials"

1

Wang, Zhengzhou, Xiaoyan Li et Lei Liu. « Flame Retarded Polymer Foams for Construction Insulating Materials ». Dans Flame Retardant Polymeric Materials, 235–58. Boca Raton : CRC Press, [2020] | Series : Series in materials science and engineering : CRC Press, 2019. http://dx.doi.org/10.1201/b22345-12.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Ogura, K., et H. Shiigi. « Conducting-Insulating Polymer Composites : Selectively Sensing Materials for Humidity and CO2 ». Dans ACS Symposium Series, 88–102. Washington, DC : American Chemical Society, 2002. http://dx.doi.org/10.1021/bk-2003-0832.ch007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Zhu, Yuanwei, Peng Wei, Zichao Shen, Huize Cui, Yu Jing, Dongfan Li, Zihao Wang, Dongri Xie, Guanghao Lu et Shengtao Li. « Charge Traps Depended Space Charge Dynamics and Electrical Breakdown Characteristics of Polymer Insulating Materials ». Dans Lecture Notes in Electrical Engineering, 1077–86. Cham : Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31676-1_101.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Zha, Jun-Wei, Ming-Sheng Zheng, Wei-Kang Li, George Chen et Zhi-Min Dang. « Polypropylene Insulation Materials for HVDC Cables ». Dans Polymer Insulation Applied for HVDC Transmission, 77–96. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9731-2_4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Zhang, Tiandong, et Qingguo Chi. « High Temperature Dielectric Materials for Electrical Energy Storage ». Dans Polymer Insulation Applied for HVDC Transmission, 653–74. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9731-2_26.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Zha, Jun-Wei, Ming-Sheng Zheng, Wei-Kang Li, George Chen et Zhi-Min Dang. « Correction to : Polypropylene Insulation Materials for HVDC Cables ». Dans Polymer Insulation Applied for HVDC Transmission, C1. Singapore : Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9731-2_27.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Li, Jin, Wendong Li, Boxue Du et Guanjun Zhang. « Promising Functional Graded Materials for Compact Gaseous Insulated Pipelines ». Dans Polymer Insulation Applied for HVDC Transmission, 525–47. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9731-2_20.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Ran, Zhaoyu, Boxue Du, Wenbo Zhu et Jin Li. « Surface Molecular Structure Modified Epoxy Resin Materials for HVDC GIL Spacer ». Dans Polymer Insulation Applied for HVDC Transmission, 467–98. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9731-2_18.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Xu, Hang, B. X. Du et Zhonglei Li. « Effect of Mechanical Stress on Space Charge Behaviors of PP Insulation Materials ». Dans Polymer Insulation Applied for HVDC Transmission, 127–49. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9731-2_6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Liang, Hucheng, Boxue Du, Cheng Zhang et Jin Li. « Electric Field Regulation Along Gas–Solid Interface in HVDC GIL with Nonlinear Conductivity Material ». Dans Polymer Insulation Applied for HVDC Transmission, 433–65. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-9731-2_17.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Actes de conférences sur le sujet "Insulating polymer materials"

1

Afia, Ramy S. A., Ehtasham Mustafa et Zoltan Adam Tamus. « Mechanical Stresses on Polymer Insulating Materials ». Dans 2018 International Conference on Diagnostics in Electrical Engineering (Diagnostika). IEEE, 2018. http://dx.doi.org/10.1109/diagnostika.2018.8526097.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Du, B. X., L. Gu et Yong Liu. « Luminescence in tracking test of polymer insulating materials ». Dans 2008 International Symposium on Electrical Insulating Materials (ISEIM). IEEE, 2008. http://dx.doi.org/10.1109/iseim.2008.4664600.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Doyle, Lucia, et Ingo Weidlich. « Recyclable Insulating Foams for High Temperature Applications ». Dans The First International Conference on “Green” Polymer Materials 2020. Basel, Switzerland : MDPI, 2020. http://dx.doi.org/10.3390/cgpm2020-07200.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Gorur, Ravindranath S., Edward A. Cherney et Reuben Hackam. « Electrical performance of polymer insulating materials : Effect of material and filler type ». Dans Conference on Electrical Insulation & Dielectric Phenomena - Annual Report 1985. IEEE, 1985. http://dx.doi.org/10.1109/ceidp.1985.7728292.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Taygun, M. Erol, I. Akkaya, S. Ö. Gönen et S. Küçükbayrak. « Polymer/glass nanocomposite fiber as an insulating material ». Dans PROCEEDINGS OF THE 6TH INTERNATIONAL ADVANCES IN APPLIED PHYSICS AND MATERIALS SCIENCE CONGRESS & EXHIBITION : (APMAS 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4975428.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Boxue Du et Yu Gao. « Surface charge measurement of gamma-rays irradiated polymer insulating materials ». Dans 2007 Annual Report - Conference on Electrical Insulation and Dielectric Phenomena. IEEE, 2007. http://dx.doi.org/10.1109/ceidp.2007.4451592.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
7

Du, B., N. Chen, Y. Gao et Xiangjin Zhang. « Carbonization Migration of Polymer Insulating Material Under Magnetic Field ». Dans 2006 IEEE 8th International Conference on Properties and applications of Dielectric Materials. IEEE, 2006. http://dx.doi.org/10.1109/icpadm.2006.284205.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Ikeda, Isamu, Saki Hikosaka et Yoshimichi Ohki. « Superiority of syndiotactic polystyrene as an electrical insulating polymer ». Dans 2011 International Symposium on Electrical Insulating Materials (ISEIM). IEEE, 2011. http://dx.doi.org/10.1109/iseim.2011.6826294.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Gao, Y., B. X. Du et J. W. Zhang. « Measurement of surface resistivity on gamma-ray irradiated polymer insulating materials ». Dans 2011 International Symposium on Electrical Insulating Materials (ISEIM). IEEE, 2011. http://dx.doi.org/10.1109/iseim.2011.6826374.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Du, B. X., et Yi Li. « Fractal analysis on insulation degradation of polymer insulation material ». Dans Proceedings of 2005 International Symposium on Electrical Insulating Materials, 2005. (ISEIM 2005). IEEE, 2005. http://dx.doi.org/10.1109/iseim.2005.193587.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Rapports d'organisations sur le sujet "Insulating polymer materials"

1

SUGAMA, T. RESTORING A DAMAGED 16-YEAR -OLD INSULATING POLYMER CONCRETE DIKE OVERLAY : REPAIR MATERIALS AND TECHNOLOGIES. Office of Scientific and Technical Information (OSTI), janvier 2007. http://dx.doi.org/10.2172/909953.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Kukacka, L. Development of polymer concrete for dike insulation at LNG facilities : Phase 4, Low cost materials. Office of Scientific and Technical Information (OSTI), janvier 1991. http://dx.doi.org/10.2172/5949432.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Yang, Arthur, Roman Domszy et Jeff Yang. A New Generation of Building Insulation by Foaming Polymer Blend Materials with CO2. Office of Scientific and Technical Information (OSTI), mars 2016. http://dx.doi.org/10.2172/1244652.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Kukacka, L. Development of polymer concrete for dike insulation at LNG facilities : Phase 4, Low cost materials. Final report, September 1, 1987--April 30, 1990. Office of Scientific and Technical Information (OSTI), janvier 1991. http://dx.doi.org/10.2172/10119216.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie