Littérature scientifique sur le sujet « Influenza A Virus, NMR »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Influenza A Virus, NMR ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Influenza A Virus, NMR"
Sabesan, Subramaniam, Jens O. Duus, Susana Neira, Peter Domaille, Soerge Kelm, James C. Paulson et Klaus Bock. « Cluster sialoside inhibitors for influenza virus : synthesis, NMR, and biological studies. » Journal of the American Chemical Society 114, no 22 (octobre 1992) : 8363–75. http://dx.doi.org/10.1021/ja00048a004.
Texte intégralJadhav, P., M. Borkar, K. Malbari, M. Joshi et M. Kanyalkar. « DESIGN, SYNTHESIS AND MOLECULAR MECHANISM OF FEW NEURAMINIDASE INHIBITORS IN TREATMENT OF H1N1 BY NMR TECHNIQUES ». INDIAN DRUGS 56, no 02 (26 février 2019) : 7–15. http://dx.doi.org/10.53879/id.56.02.11584.
Texte intégralCheong, H. « Structure of influenza virus panhandle RNA studied by NMR spectroscopy and molecular modeling ». Nucleic Acids Research 27, no 5 (1 mars 1999) : 1392–97. http://dx.doi.org/10.1093/nar/27.5.1392.
Texte intégralSABESAN, S., J. OE DUUS, S. NEIRA, P. DOMAILLE, S. KELM, J. C. PAULSON et K. BOCK. « ChemInform Abstract : Cluster Sialoside Inhibitors for Influenza Virus : Synthesis, NMR, and Biological Studies. » ChemInform 24, no 7 (20 août 2010) : no. http://dx.doi.org/10.1002/chin.199307273.
Texte intégralChang, S., J. Zhang, X. Liao, X. Zhu, D. Wang, J. Zhu, T. Feng et al. « Influenza Virus Database (IVDB) : an integrated information resource and analysis platform for influenza virus research ». Nucleic Acids Research 35, Database (3 janvier 2007) : D376—D380. http://dx.doi.org/10.1093/nar/gkl779.
Texte intégralToraya, S., A. Naito, S. Tuzi et H. Saito. « pH-dependent Fusogenic Mechanism of Influenza Virus Hemagglutinin2(1-27)Using Solid-state NMR ». Seibutsu Butsuri 41, supplement (2001) : S132. http://dx.doi.org/10.2142/biophys.41.s132_3.
Texte intégralCheong, H. « Secondary structure of the panhandle RNA of influenza virus A studied by NMR spectroscopy ». Nucleic Acids Research 24, no 21 (1 novembre 1996) : 4197–201. http://dx.doi.org/10.1093/nar/24.21.4197.
Texte intégralElkins, Matthew R., Jonathan K. Williams, Martin D. Gelenter, Peng Dai, Byungsu Kwon, Ivan V. Sergeyev, Bradley L. Pentelute et Mei Hong. « Cholesterol-binding site of the influenza M2 protein in lipid bilayers from solid-state NMR ». Proceedings of the National Academy of Sciences 114, no 49 (20 novembre 2017) : 12946–51. http://dx.doi.org/10.1073/pnas.1715127114.
Texte intégralZhang, Yun, Brian D. Aevermann, Tavis K. Anderson, David F. Burke, Gwenaelle Dauphin, Zhiping Gu, Sherry He et al. « Influenza Research Database : An integrated bioinformatics resource for influenza virus research ». Nucleic Acids Research 45, no D1 (26 septembre 2016) : D466—D474. http://dx.doi.org/10.1093/nar/gkw857.
Texte intégralLiao, Yu-Chieh, Chin-Yu Ko, Ming-Hsin Tsai, Min-Shi Lee et Chao A. Hsiung. « ATIVS : analytical tool for influenza virus surveillance ». Nucleic Acids Research 37, suppl_2 (8 mai 2009) : W643—W646. http://dx.doi.org/10.1093/nar/gkp321.
Texte intégralThèses sur le sujet "Influenza A Virus, NMR"
Lai, Chun-cheong, et 黎振昌. « STD-NMR as a novel method to study influenza virus-receptor interactions ». Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B47849745.
Texte intégralpublished_or_final_version
Microbiology
Doctoral
Doctor of Philosophy
MACCHI, ELEONORA. « NMR as a tool for structural characterization of carbohydrates and glycan-protein interactions ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2015. http://hdl.handle.net/10281/69274.
Texte intégralLiao, Shu-Yu Ph D. Massachusetts Institute of Technology. « Structure and dynamics of full-length M2 protein of influenza A virus from solid-state NMR ». Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/113974.
Texte intégralCataloged from PDF version of thesis.
Includes bibliographical references.
Solid-state nuclear magnetic resonance (SSNMR) has been frequently used to elucidate the structure and dynamics of membrane proteins and fibrils that are difficult to characterize by Xray crystallography or solution NMR. This thesis focuses on the structure determination and the proton conduction mechanism of the full-length matrix protein 2 (M2) of influenza A virus. The M2 membrane protein can be separated into three domains: an N-terminal ectodomain (1-2 1), an cc-helical transmembrane domain (TM) (22-46) connected to an amphipathic helix (AH) and a Cterminal cytoplasmic tail (63-97). The TM domain of M2 is responsible for proton conduction ant the ectodomain has been the target for vaccine development. The cytoplasmic tail has been implicated in M2 interaction with other viral proteins from mutagenesis studies. Given the importance of both N- and C-termini, it is essential to determine the structure and the dynamics of M2FL. Furthermore, we are interested in how the cytoplasmic tail affects proton conduction and the interaction of the anti-viral drug amantadine with M2 in the presence of the C-terminus. Using uniformly ¹³C, ¹⁵N-labeled M2FL, our water-selected 2D ¹³C-¹³C correlation experiment indicated that N- and C- termini are on the surface of the lipid bilayer moreover combining with chemical shift prediction, we determined that these two domains are mostly disordered. Deleting the ectodomain of M2FL (M2(21-97)) proved that a small [beta]-strand is located at the N-terminus only in the DMPC-bound state. The M2 conformation is found to be cholesterol-dependent since [beta]-strand is not found in cholesterol-rich membranes. M2(21-97) shows cationic histidine at higher pH, in contrast to M2TM, indicating that the cytoplasmic tail shifts the His37 pKa equilibria. Quantification of the ¹⁵N intensities revealed two pKa's as opposed to of four in M2TM suggesting cooperative proton binding. A possible explanation is that the large number of positively charged residues in the cytoplasmic tail facilitates proton conduction. The cytoplasmic tail was also found to restore drug-binding as amantadine no longer binds to M2(21-61) a in virus-mimetic membrane. These results have extended our understanding of the influence of the cytoplasmic domain on the structure and proton conduction of M2.
by Shu-Yu Liao.
Ph. D.
Hornick, Emma E. L. « Contributions of NLRS to pathogenic and protective immune responses during influenza virus infection ». Diss., University of Iowa, 2018. https://ir.uiowa.edu/etd/6139.
Texte intégralWilliams, Jonathan K., Alexander A. Shcherbakov, Jun Wang et Mei Hong. « Protonation equilibria and pore-opening structure of the dual-histidine influenza B virus M2 transmembrane proton channel from solid-state NMR ». AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 2017. http://hdl.handle.net/10150/626055.
Texte intégralHarter, Cordula. « Zum Mechanismus der Interaktion der Ektodomäne von Influenza Virus Hämagglutinin mit Liposomen / ». Zürich, 1988. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=8739.
Texte intégralDelaforge, Elise. « Dynamique structurale et fonctionnelle du domaine C-terminal de la protéine PB2 du virus de la grippe A ». Thesis, Université Grenoble Alpes (ComUE), 2015. http://www.theses.fr/2015GREAV037/document.
Texte intégralThe ability of avian influenza viruses to cross the species barrier and become dangerously pathogenic to mammalian hosts represents a major threat for human health. In birds the viral replication is carried out in the intestine at 40°C, while in humans it occurs in the cooler respiratory tract at 33°C. It has been shown that temperature adaption of the influenza virus occurs through numerous mutations in the viral polymerase, in particular in the C-terminal domain 627-NLS of the PB2 protein. This domain has already been shown to participate in host adaptation and is involved in importin alpha binding and therefore is required for entry of the viral polymerase into the nucleus [Tarendeau et al., 2008]. Crystallographic structures are available for 627-NLS and the complex importin alpha/NLS, however, a steric clash between importin alpha and the 627 domain becomes apparent when superimposing the NLS domain of the two structures, indicating that another conformation of 627-NLS is required for binding to importin alpha [Boivin and Hart, 2011]. Here we investigate the molecular basis of inter-species adaptation by studying the structure and dynamics of human and avian 627-NLS. We have identified two conformations of 627-NLS in slow exchange (10-100 s-1), corresponding to an apparently open and closed conformation of the two domains. We show that the equilibrium between closed and open conformations is strongly temperature dependent. We propose that the open conformation of 627-NLS is the only conformation compatible with binding to importin alpha and that the equilibrium between closed and open conformations may play a role as a molecular thermostat, controlling the efficiency of viral replication in the different species. The kinetics and domain dynamics of this important conformational behaviour and of the interaction between 627-NLS and importin alpha have been characterized using nuclear magnetic resonance chemical shifts, paramagnetic relaxation enhancement, spin relaxation and chemical exchange saturation transfer, in combination with X-ray and neutron small angle scattering and Förster resonance energy transfer. Also, we have determined the affinities of various evolutionnary mutants of 627-NLS to importin alpha and of avian and human 627-NLS to different isoforms of importin alpha, showing that the observed affinities are coherent with the preferred interactions seen in vivo
Höfer, Chris Tina. « Influenza virus assembly ». Doctoral thesis, Humboldt-Universität zu Berlin, Lebenswissenschaftliche Fakultät, 2015. http://dx.doi.org/10.18452/17251.
Texte intégralInfluenza A viruses have a segmented single-stranded RNA genome, which is packed in form of viral ribonucleoprotein (vRNP) complexes. While the viral genome is replicated and transcribed in the host cell nucleus, assembly and budding of mature virus particles take place at the apical plasma membrane. Efficient virus formation requires delivery of all viral components to this site. While intrinsic apical targeting signals of the viral transmembrane proteins have been identified, it still remains poorly understood how the viral genome is transported and targeted into progeny virus particles. In this study, potential targeting mechanisms were investigated like the ability of vRNPs to associate with lipid membranes and the intrinsic ability of the viral nucleoprotein (NP) – which is the major protein component of vRNPs – for subcellular targeting. It could be shown that vRNPs are not able to associate with model membranes in vitro, which was demonstrated by flotation of purified vRNPs with liposomes of different lipid compositions. Results indicated, however, that the matrix protein M1 can mediate binding of vRNPs to negatively charged lipid bilayers. Intrinsic subcellular targeting of NP was further investigated by expression of fluorescent NP fusion protein and fluorescence photoactivation, revealing that NP by itself does not target cytoplasmic structures. It was found to interact extensively with the nuclear compartment instead and to target specific nuclear domains with high affinity, in particular nucleoli and small interchromatin domains that frequently localized in close proximity to Cajal bodies and PML bodies. An experimental approach was finally established that allowed monitoring the transport of vRNP-like complexes in living infected cells by fluorescence detection. It was possible to perform single particle tracking and to describe different stages of vRNP transport between the nucleus and the plasma membrane. A model of three-stage transport is suggested.
Green, P. C. « Serological and immunocytochemical studies on influenza virus and influenza virus infected cells ». Thesis, University of Manchester, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.356114.
Texte intégralMorgan, David John. « Defective interfering influenza virus reverses the immunopathological effects of standard influenza virus in mice ». Thesis, University of Bristol, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.332491.
Texte intégralLivres sur le sujet "Influenza A Virus, NMR"
Kawaoka, Yoshihiro, et Gabriele Neumann, dir. Influenza Virus. Totowa, NJ : Humana Press, 2012. http://dx.doi.org/10.1007/978-1-61779-621-0.
Texte intégralYamauchi, Yohei, dir. Influenza Virus. New York, NY : Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-8678-1.
Texte intégralSpackman, Erica, dir. Animal Influenza Virus. New York, NY : Springer US, 2020. http://dx.doi.org/10.1007/978-1-0716-0346-8.
Texte intégralSpackman, Erica, dir. Avian Influenza Virus. Totowa, NJ : Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-279-3.
Texte intégralSpackman, Erica, dir. Animal Influenza Virus. New York, NY : Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4939-0758-8.
Texte intégralAnimal influenza virus. New York : Humana Press, 2014.
Trouver le texte intégralErica, Spackman, dir. Avian influenza virus. Totowa, NJ : Humana Press, 2008.
Trouver le texte intégralInfluenza virus : Methods and protocols. New York : Humana, 2012.
Trouver le texte intégralMorgan, David John. Dejective interfering influenza virus reverses the immunopathological effects of standard influenza virus in mice. [s.l.] : typescript, 1992.
Trouver le texte intégralvon Itzstein, Mark, dir. Influenza Virus Sialidase - A Drug Discovery Target. Basel : Springer Basel, 2012. http://dx.doi.org/10.1007/978-3-7643-8927-7.
Texte intégralChapitres de livres sur le sujet "Influenza A Virus, NMR"
Zinserling, Vsevolod A., et Vladimir A. Dedov. « Influenza Virus ». Dans Infectious Disease and Parasites, 179–82. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30009-2_1042.
Texte intégralKradin, Richard L., et Jay A. Fishman. « Influenza Virus ». Dans Viruses and the Lung, 79–86. Berlin, Heidelberg : Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-40605-8_9.
Texte intégralKlenk, Hans Dieter. « Influenza-Virus ». Dans Lexikon der Infektionskrankheiten des Menschen, 441–46. Berlin, Heidelberg : Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-39026-8_512.
Texte intégralShahab, Shamsa Z., et W. Paul Glezen. « Influenza Virus ». Dans Clinical Perspectives in Obstetrics and Gynecology, 215–23. New York, NY : Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4612-2640-6_12.
Texte intégralHayden, Frederick G., et Peter Palese. « Influenza Virus ». Dans Clinical Virology, 1009–58. Washington, DC, USA : ASM Press, 2016. http://dx.doi.org/10.1128/9781555819439.ch43.
Texte intégralMatsubara, Teruhiko, et Toshinori Sato. « Influenza Virus ». Dans Diamond Electrodes, 237–48. Singapore : Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-7834-9_15.
Texte intégralSuarez, David L. « Influenza A virus ». Dans Animal Influenza, 1–30. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781118924341.ch1.
Texte intégralVirmani, Nitin, S. Pavulraj, B. C. Bera, Taruna Anand, R. K. Singh et B. N. Tripathi. « Equine Influenza Virus ». Dans Emerging and Transboundary Animal Viruses, 215–38. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0402-0_9.
Texte intégralLuo, Ming. « Influenza Virus Entry ». Dans Viral Molecular Machines, 201–21. Boston, MA : Springer US, 2011. http://dx.doi.org/10.1007/978-1-4614-0980-9_9.
Texte intégralNagarajan, S., Manoj Kumar, H. V. Murugkar, C. Tosh et V. P. Singh. « Avian Influenza Virus ». Dans Livestock Diseases and Management, 111–33. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2651-0_5.
Texte intégralActes de conférences sur le sujet "Influenza A Virus, NMR"
Ejima, Miho, Keiko Haraguchi, Tadashi Yamamoto et Ayae Honda. « Effect of PB1c45 on Influenza Virus Replication ». Dans 2006 IEEE International Symposium on MicroNanoMechanical and Human Science. IEEE, 2006. http://dx.doi.org/10.1109/mhs.2006.320241.
Texte intégralUeda, Ryuta, Akihiko Ichkawa, Mariko Kusunoki, Miho Ejima, Fumito Arai, Toshio Fukuda et Ayae Honda. « Influenza virus selects cell phase for infection ». Dans 2007 International Symposium on Micro-NanoMechatronics and Human Science. IEEE, 2007. http://dx.doi.org/10.1109/mhs.2007.4420821.
Texte intégralLee, Dongjin, Yogesh Chander, Sagar M. Goyal et Tianhong Cui. « Carbon Nanotubes Swine Influenza (H1N1) Virus Sensors ». Dans ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-40735.
Texte intégralMehrbod, Parvaneh, Aini Ideris, Abdul Rahman Omar et Mohd Hair Bejo. « Statins as antiviral drugs against influenza virus ». Dans 3rd Annual International Conference on Advances in Biotechnology (BioTech 2013). Global Science and Technology Forum, 2013. http://dx.doi.org/10.5176/2251-2489_biotech13.70.
Texte intégralMarriott, HM, MK Whyte et DH Dockrell. « Macrophage Apoptosis after Influenza A Virus Infection. » Dans American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a5168.
Texte intégralPongsumpun, Puntani. « Local Stability of Influenza Virus with Vaccination ». Dans ICISDM 2020 : 2020 the 4th International Conference on Information System and Data Mining. New York, NY, USA : ACM, 2020. http://dx.doi.org/10.1145/3404663.3404684.
Texte intégralZavyalova, Elena G., Alexandra S.Gambaryan, Andrei Yu Olenin, Gleb A. Zhdanov, Vladimir I. Kukushkin, Georgii V. Lisichkin, Dmitry A. Gribanyov et Oganes A. Ambartsumyan. « Optical nanostructured aptasensors for influenza virus detection ». Dans 2021 International Conference on Information Technology and Nanotechnology (ITNT). IEEE, 2021. http://dx.doi.org/10.1109/itnt52450.2021.9649402.
Texte intégralEjima, Miho, Ryuta Ueda, Shinichiro Kume, Daisuke Okazaki, Takefumi Yamakawa, Hitoshi Shiku et Ayae Honda. « Ebp1 expression is induced by influenza virus infection ». Dans 2008 International Symposium on Micro-NanoMechatronics and Human Science (MHS). IEEE, 2008. http://dx.doi.org/10.1109/mhs.2008.4752452.
Texte intégralSaleem, S., E. Shah, M. Corpuz et M. Karwa. « Intractable Ventricular Fibrillation Following Influenza A Virus Infection ». Dans American Thoracic Society 2019 International Conference, May 17-22, 2019 - Dallas, TX. American Thoracic Society, 2019. http://dx.doi.org/10.1164/ajrccm-conference.2019.199.1_meetingabstracts.a6583.
Texte intégralChronopoulos, J., E. Pernet, Y. Ishii, U. Fujii, M. Divangahi et J. G. Martin. « Immunity to Influenza A Virus Infection During Pregnancy ». Dans American Thoracic Society 2020 International Conference, May 15-20, 2020 - Philadelphia, PA. American Thoracic Society, 2020. http://dx.doi.org/10.1164/ajrccm-conference.2020.201.1_meetingabstracts.a2936.
Texte intégralRapports d'organisations sur le sujet "Influenza A Virus, NMR"
Perk, Shimon, Maricarmen Garcia, Alexander Panshin, Caroline Banet-Noach, Irina Gissin, Mark W. Jackwood et David Stallknecht. Avian Influenza Virus H9N2 : Characterization and Control Strategies. United States Department of Agriculture, juin 2007. http://dx.doi.org/10.32747/2007.7709882.bard.
Texte intégralDimitrova, Adriana, Milka Mileva, Dimo Krastev, Ivan Kindekov et Angel G. Galabov. Multiorgan Pathological Changes Caused by Experimental Influenza Virus Infection in Mice. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, octobre 2021. http://dx.doi.org/10.7546/crabs.2021.10.07.
Texte intégralPerk, Simon, Egbert Mundt, Alexander Panshin, Irit Davidson, Irina Shkoda, Ameera AlTori et Maricarmen Garcia. Characterization and Control Strategies of Low Pathogenic Avian Influenza Virus H9N2. United States Department of Agriculture, novembre 2012. http://dx.doi.org/10.32747/2012.7697117.bard.
Texte intégralChen, Qi, Ryan Vander Veen, Darin M. Madson et D. L. Hank Harris. Immunization for Influenza A Virus by Intranasal Administration of Alphavirus Replicon Particles. Ames (Iowa) : Iowa State University, janvier 2013. http://dx.doi.org/10.31274/ans_air-180814-29.
Texte intégralDiaz, Leyla. Phase I Human Safety Studies of FGI-101-1A6 to Combat HINI Influenza Virus. Fort Belvoir, VA : Defense Technical Information Center, juin 2013. http://dx.doi.org/10.21236/ada607997.
Texte intégralBosworth, Brad T., Matthew M. Erdman, Christa Irwin, Alan T. Loynachan et D. L. Hank Harris. Evaluation of a Virus-like Replicon Particle Vaccine Expressing Proteins of Swine Influenza Virus in Pigs With and Without Maternally Derived Antibodies. Ames (Iowa) : Iowa State University, janvier 2009. http://dx.doi.org/10.31274/ans_air-180814-644.
Texte intégralSchat, Karel Antoni, Irit Davidson et Dan Heller. Chicken infectious anemia virus : immunosuppression, transmission and impact on other diseases. United States Department of Agriculture, 2008. http://dx.doi.org/10.32747/2008.7695591.bard.
Texte intégralElbers, Armin R. W., Evelien A. Germeraad, José L. Gonzales, Thomas J. Hagenaars et Clazien J. de Vos. Omgevingstransmissie van aviaire influenza virus door de lucht via wilde watervogels naar commercieel gehouden pluimvee : met een focus op transmissie vanuit HPAIV-gecontamineerde uitwerpselen van wilde watervogels via de lucht of vanuit een aerosol geproduceerd door uitademen of proesten van HPAIV-besmette wilde watervogels. Lelystad : Wageningen Bioveterinary Research, 2021. http://dx.doi.org/10.18174/556247.
Texte intégralLees, Shelley, et Mark Marchant. Key Considerations : Cross-Border Dynamics Between Uganda and Tanzania in the Context of the Outbreak of Ebola, 2022. Institute of Development Studies, décembre 2022. http://dx.doi.org/10.19088/sshap.2022.046.
Texte intégralHealth hazard evaluation report : HETA-2009-0206-3117, evaluation of 2009 pandemic influenza A (H1N1) virus exposure among internal medicine housestaff and fellows, University of Utah School of Medicine, Salt Lake City, Utah. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, octobre 2010. http://dx.doi.org/10.26616/nioshheta200902063117.
Texte intégral