Littérature scientifique sur le sujet « Infiltration process »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Infiltration process ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Infiltration process"
Dr N P Sonaje, Dr N. P. Sonaje. « Modeling of Infiltration Process – A Review ». Indian Journal of Applied Research 3, no 9 (1 octobre 2011) : 226–30. http://dx.doi.org/10.15373/2249555x/sept2013/69.
Texte intégralSu, Li Zheng, Le Hua Qi, Ji Ming Zhou, Yu Shan Wang et Fang Yang. « Numerical Simulation of Heat and Mass Transfer of the Infiltration in Liquid Infiltration Extrusion Process ». Materials Science Forum 532-533 (décembre 2006) : 953–56. http://dx.doi.org/10.4028/www.scientific.net/msf.532-533.953.
Texte intégralSAITO, Hirotaka. « Modeling infiltration process during rainfall ». Journal of Groundwater Hydrology 62, no 3 (31 août 2020) : 361–62. http://dx.doi.org/10.5917/jagh.62.361.
Texte intégralQI, Le-hua, Rui XU, Li-zheng SU, Ji-ming ZHOU et Jun-tao GUAN. « Dynamic measurement on infiltration process and formation mechanism of infiltration front ». Transactions of Nonferrous Metals Society of China 20, no 6 (juin 2010) : 980–86. http://dx.doi.org/10.1016/s1003-6326(09)60245-4.
Texte intégralUnami, Koichi, Tomoki Izumi, Chie Imagawa, Toshihiko Kawachi, Shigeya Maeda et Junichiro Takeuchi. « Infiltration Process in Rainfed Rice Field Soil of Ghanaian Inland Valley ». Journal of Rainwater Catchment Systems 15, no 2 (2010) : 17–20. http://dx.doi.org/10.7132/jrcsa.kj00006069058.
Texte intégralZhang, Changjuan, Yun Bai, Shixin Xu et Xingye Yue. « Homogenization for chemical vapor infiltration process ». Communications in Mathematical Sciences 15, no 4 (2017) : 1021–40. http://dx.doi.org/10.4310/cms.2017.v15.n4.a5.
Texte intégralSeyboldt, Christoph, Mathias Liewald et Daniel Heydt. « Production of Aluminium Based Interpenetrating Phase Composites Using Semi-Solid Forming ». Key Engineering Materials 716 (octobre 2016) : 502–9. http://dx.doi.org/10.4028/www.scientific.net/kem.716.502.
Texte intégralDzurňák, Róbert, Augustin Varga, Gustáv Jablonský, Miroslav Variny, Réne Atyafi, Ladislav Lukáč, Marcel Pástor et Ján Kizek. « Influence of Air Infiltration on Combustion Process Changes in a Rotary Tilting Furnace ». Processes 8, no 10 (15 octobre 2020) : 1292. http://dx.doi.org/10.3390/pr8101292.
Texte intégralZhang, Gui-rong, Ya-jun Qian, Zhang-chun Wang et Bo Zhao. « Analysis of Rainfall Infiltration Law in Unsaturated Soil Slope ». Scientific World Journal 2014 (2014) : 1–7. http://dx.doi.org/10.1155/2014/567250.
Texte intégralVESNIN, Vladimir I. « AIR INFILTRATION AND ROOM HEAT LOSS THROUGH WINDOW OPENINGS ». Urban construction and architecture 6, no 3 (15 septembre 2016) : 10–16. http://dx.doi.org/10.17673/vestnik.2016.03.2.
Texte intégralThèses sur le sujet "Infiltration process"
Dopler, Thomas. « Low pressure infiltration process modeling ». Châtenay-Malabry, Ecole centrale de Paris, 1999. http://www.theses.fr/1999ECAP0673.
Texte intégralWang, Xuelei. « Level set model of microstructure evolution in the chemical vapor infiltration process ». Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/29845.
Texte intégralWannasin, Jessada 1977. « Centrifugal infiltration of particulate metal matrix composites : process development and fundamental studies/ ». Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/32267.
Texte intégralIncludes bibliographical references (p. 118-125).
A high-pressure liquid infiltration process utilizing centrifugal force was designed and laboratory equipment developed. In this process, a mold containing reinforcing materials was located at the end of an elongated runner, which was filled with a molten metal. Rotation of the runner created centrifugal force driving infiltration. To obtain high pressures, the metal head was controlled to be long and constant throughout the process. Threshold pressures required for infiltration of several packed ceramic powders were determined using the laboratory equipment built. Achievable pressures were up to 150 atm for Sn-15 wt% Pb. The pressures allowed SiC, TiC, and A1203 powders ranging in sizes from 25 [mu]m to 300 [mu]m, packed to a high volume fraction, to be infiltrated by Sn-15 wt% Pb. Threshold pressure results obtained agree well with experimental results previously reported, and with calculated values. Observations of the resulting composite structures showed layering and porosity defects. Layering defects, but no porosity defects, were observed in the composite samples containing coarse powders. In contrast, the composites containing fine powders possess porosity defects, but not layering defects. The layering defect was attributed to the depacking mechanism of the powders during the cold pressing process. The porosity defect was attributed to insufficient applied pressures. A new packing process was proposed to avoid layering in coarse powders. Macrosegregation and microsegregation were limited in all samples. The interparticle spacings of these composites were smaller than the dendrite arm spacing would have been at equivalent cooling rates; thus, dendrite formation and microsegregation were effectively suppressed.
(cont.) Commercial viability of the process was assessed. Results show that the centrifugal infiltration process has several attributes, including a higher production rate and larger part size when compared with gas pressure infiltration and a wider variety of part geometry, part sizes, and materials systems capable of being produced when compared with squeeze casting. A feasibility study shows that an industrial-scale centrifuge would be able to fabricate aluminum metal matrix composites (MMCs) containing both coarse and fine reinforcements at a high volume fraction. The process should also be scalable to higher melting point MMCs.
by Jessada Wannasin.
Ph.D.
Vaidyaraman, Sundararaman. « Carbon/carbon composites by forced flow-thermal gradient chemical vapor infiltration (FCVI) process ». Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/10028.
Texte intégralHammond, Vincent H. « Verification of a two-dimensional infiltration model for the resin transfer molding process ». Thesis, Virginia Tech, 1993. http://hdl.handle.net/10919/41537.
Texte intégralThe compaction behavior for several textile preforms was determined by experimental methods. A power law regression model was used to relate fiber volume fraction to the applied compaction pressure. Results showed a large increase in fiber volume fraction with the initial application of pressure. However, as the maximum fiber volume fraction was approached, the amount of compaction pressure required to decrease the porosity of the preform rapidly increased.
Similarly, a power law regression model was used to relate permeability to the fiber volume fraction of the preform. Two methods were used to measure the permeability of the textile preform. The first, known as the steady state method, measures the permeability of a saturated preform under constant flow rate conditions. The second, denoted the advancing front method, determines the permeability of a dry preform to an infiltrating fluid. Water, corn oil, and an epoxy resin, Epon 815, were used to determine the effect of fluid type and viscosity on the steady state permeability behavior of the preform. Permeability values measured with the different fluids showed that fluid viscosity had no influence on the permeability behavior of 162 E-glass and TTI IM7/8HS preforms.
Permeabilities measured from steady state and advancing front experiments for the warp direction of 162 E-glass fabric were similar. This behavior was noticed for tests conducted with corn oil and Epon 815. Comparable behavior was observed for the warp direction of the TTl 1M7/8HS preform and corn oil.
Fluid/fiber interaction was measured through the use of the single fiber pull-out test. The surface tension of both the corn oil and Epon 815 was determined. The contact angle between these two fluids and glass and carbon fibers was also measured. These tests indicated that the glass fiber had a lower contact angle than the carbon fiber and therefore is wet out better than the carbon fiber by both fluids. This result is attributed to the sizing commonly used on the carbon fibers.
Mold filling and flow visualization experiments were performed to verify the
analytical computer model. Frequency dependent electromagnetic sensors were used
to monitor the resin flow front as a function of time. For the flow visualization tests,
a video camera and high resolution tape recorder were used to record the
experimental flow fronts. Comparisons between experimental and model predicted
flow fronts agreed well for all tests. For the mold filling tests conducted at constant
flow rate injection, the model was able to accurately predict the pressure increase at
the mold inlet during the infiltration process. A kinetics model developed to predict
the degree of cure as a function of time for the injected resin accurately calculated
the increase in the degree of cure during the subsequent cure cycle.
Master of Science
Weideman, Mark H. « An infiltration/cure model for manufacture of fabric composites by the resin infusion process ». Thesis, This resource online, 1991. http://scholar.lib.vt.edu/theses/available/etd-03032009-040744/.
Texte intégralRenier, Mark C. « Equipment and process development for fabrication of rhenium-based composites by chemical vapor infiltration ». Thesis, Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/18915.
Texte intégralBarradas, Martinez Juan Alfredo 1974. « Process-based cost modeling of tool-steels parts by transient liquid-phase infiltration of powder-metal preforms ». Thesis, Massachusetts Institute of Technology, 2004. http://hdl.handle.net/1721.1/28869.
Texte intégralIncludes bibliographical references (leaves 74-75).
(cont.) cost between these two processes was related mainly to their powder scrap rates, 15 % for the Pressing-TLI and 80% for the 3DP-TLI. The high scrap rate value of the 3DP process originates from the fact that powder is sieved before printing, eliminating the coarse and very fine particles. A possible option to decrease this value is to recycle or sell the extra powder, which will reduce the fabrication cost significantly. The model also shows that the main cost for both processes is the powder cost. TLI technical parameters such as heating and cooling rates were included in the model in order to predict the cost behavior when those are manipulated. Because the powder cost dominates the total fabrication cost, variations in the heating and cooling rates do not significantly affect the cost.
Tool steels are iron-based alloys that are melted and processed to develop characteristics useful in the working and shaping of other metals. Tools for such processes must withstand high loads without breaking and without undergoing excessive wear or deformation. Fabrication of direct tool steel parts with complex geometry is possible using Transient Liquid-Phase Infiltration (TLI) in conjunction with Three-Dimensional Printing (3DP). Tool steel parts can also be manufactured using TLI in combination with Cold Powder Methods such as Uniaxial Pressing. Both approaches produce a final part of homogenous composition without significant dimensional change, offering advantages over-traditional infiltration and full-density sintering [1]. Now that the expertise in the TLI has been developed in the MIT laboratories, an economic evaluation represents a complementary action for introducing TLI in the commercial market of Rapid Prototyping and Powder Metallurgy. A process-based cost model was developed to describe and measure the performance of the 3DP-TLI and Pressing-TLI combined processes. Operating conditions such as cycle time, material cost, labor cost, production volume and financial parameters were introduced into the model in order to calculate a total fabrication cost per part. Different charts showing cost behaviors and their relations with production volume, batch size, effectiveness in the powder utilization, and weight of the part are presented. The results show that the optimum point in the cost-production volume curve was located at 13,000 parts per year with a fabrication cost of $19.90 per part, for the Pressing-TLI case, and $61.73 per part for the 3DP-TLI alternative (based on a one-half pound D2 tool steel part). The difference in cost
by Juan Alfredo Barradas Martinez.
M.Eng.
馬, 賢鎬, Hyun-Ho MA, 法美 水谷, Norimi MIZUTANI, 周. 江口 et Shu EGUCHI. « 礫浜斜面上の流速場と漂砂移動機構に関する研究 ». 土木学会, 2005. http://hdl.handle.net/2237/8607.
Texte intégralKütemeyer, Marius [Verfasser], et D. [Akademischer Betreuer] Koch. « Development of Ultra High Temperature Matrix Composites using a Reactive Melt Infiltration Process / Marius Kütemeyer ; Betreuer : D. Koch ». Karlsruhe : KIT-Bibliothek, 2021. http://d-nb.info/1230475699/34.
Texte intégralLivres sur le sujet "Infiltration process"
1968-, Hammond Vincent H., et United States. National Aeronautics and Space Administration., dir. Verification of a two-dimensional infiltration model for the resin transfer molding process. Blacksburg, Va : Center for Composite Materials, Virginia Polytechnic and State University, 1993.
Trouver le texte intégral1968-, Hammond Vincent H., et United States. National Aeronautics and Space Administration., dir. Verification of a two-dimensional infiltration model for the resin transfer molding process. Blacksburg, Va : Center for Composite Materials, Virginia Polytechnic and State University, 1993.
Trouver le texte intégralCenter for Environmental Research Information (U.S.), United States. Environmental Protection Agency. Office of Water Program Operations et United States. Environmental Protection Agency. Office of Research and Development, dir. Process design manual for land treatment of municipal wastewater : Supplement on rapid infiltration and overland flow. Cincinnati, Ohio : U.S. Environmental Protection Agency, Center for Environmental Research Information, 1985.
Trouver le texte intégralKing, R. B. Overview and bibliography of methods for evaluating the surface-water-infiltration component of the rainfall-runoff process. Urbana, Ill : U.S. Dept. of the Interior, U.S. Geological Survey, 1992.
Trouver le texte intégralKing, R. B. Overview and bibliography of methods for evaluating the surface-water-infiltration component of the rainfall-runoff process. Urbana, Ill : U.S. Dept. of the Interior, U.S. Geological Survey, 1992.
Trouver le texte intégralKing, R. B. Overview and bibliography of methods for evaluating the surface-water-infiltration component of the rainfall-runoff process. Urbana, Ill : U.S. Dept. of the Interior, U.S. Geological Survey, 1992.
Trouver le texte intégralauthor, Stinnett Melanie Wachtell, dir. Captured : The corporate infiltration of American democracy. The New Press, 2017.
Trouver le texte intégralVerification of a two-dimensional infiltration model for the resin transfer molding process. Blacksburg, Va : Center for Composite Materials, Virginia Polytechnic and State University, 1993.
Trouver le texte intégralAn Infiltration/cure model for manufacture of fabric composites by the resin infusion process. Blacksburg, Va : College of Engineering, Virginia Polytechnic Institute and State University, 1992.
Trouver le texte intégralGrundy, Seamus. Pleural effusion. Sous la direction de Patrick Davey et David Sprigings. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780199568741.003.0019.
Texte intégralChapitres de livres sur le sujet "Infiltration process"
Chiodi, M., et M. Valle. « Fast Infiltration Process for In-Line Continuous Siliconization ». Dans Developments in Strategic Materials and Computational Design V, 201–10. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2015. http://dx.doi.org/10.1002/9781119040293.ch17.
Texte intégralSu, Li Zheng, Le Hua Qi, Ji Ming Zhou, Yu Shan Wang et Fang Yang. « Numerical Simulation of Heat and Mass Transfer of the Infiltration in Liquid Infiltration Extrusion Process ». Dans Materials Science Forum, 953–56. Stafa : Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-421-9.953.
Texte intégralGarzón, Edwin Ocaña, Jorge Lino Alves et Rui J. Neto. « Post-process Influence of Infiltration on Binder Jetting Technology ». Dans Advanced Structured Materials, 233–55. Cham : Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-50784-2_19.
Texte intégralKobayashi, Yoshihiro, Makoto Kobashi et Naoyuki Kanetake. « Fabrication of Oxide Ceramics Composite by Reactive Infiltration Process ». Dans Advanced Materials Research, 321–24. Stafa : Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-463-4.321.
Texte intégralYin, Fa Zhang, Cheng Chang Jia, Xuezhen Mei, Bin Ye, Yanlei Ping et Xuan Hui Qu. « Manufacture of Al/SiC Composites by Pressure Infiltration Process ». Dans Materials Science Forum, 913–16. Stafa : Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-960-1.913.
Texte intégralvan Beek, L. P. H., et Th W. J. van Asch. « A combined conceptual model for the effects of fissure-induced infiltration on slope stability ». Dans Process Modelling and Landform Evolution, 147–67. Berlin, Heidelberg : Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/bfb0009724.
Texte intégralLee, S. P., Y. Katoh et A. Kohyama. « Development of SiCf /SiC Composites by the Melt Infiltration Process ». Dans Ceramic Transactions Series, 115–22. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118406014.ch10.
Texte intégralWang, Bo, et Krishna M. Pillai. « Numerical Simulation of Pressure Infiltration Process for Making Metal Matrix Composites : Effect of Process Parameters ». Dans Supplemental Proceedings, 823–30. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118356074.ch103.
Texte intégralRoder, Kristina, Andreas Todt, Daisy Nestler et Bernhard Wielage. « Evaluation of Different Carbon Precursors for the Liquid Silicon Infiltration Process ». Dans Ceramic Transactions Series, 409–15. Hoboken, NJ, USA : John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118932995.ch44.
Texte intégralTodisco, Francesca, Lorenzo Vergni et Rita Ceppitelli. « Conceptual Interpretation of Infiltration Under Sealing Process by Membrane Fouling Models ». Dans AIIA 2022 : Biosystems Engineering Towards the Green Deal, 191–99. Cham : Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-30329-6_20.
Texte intégralActes de conférences sur le sujet "Infiltration process"
Okumiya, Masahiro, Koichiro Nambu, Sou Mizutani, Kaname Ito, Makoto Fujita, Masashi Yoshida et Junji Miyamoto. « Improvement of Mechanical Properties by Austenitic Nitriding and Quenching ». Dans IFHTSE 2024, 84–88. ASM International, 2024. http://dx.doi.org/10.31399/asm.cp.ifhtse2024p0084.
Texte intégralBaukal, Charles E., et Wesley R. Bussman. « Process Heater Air Infiltration ». Dans ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-39988.
Texte intégralEcker, Lynne, Jacopo Saccheri, Biays Bowerman, James Ablett, Laurence Milian, Jay Adams, Hans Ludwig et Michael Todosow. « An Infiltration Manufacturing Process for Nuclear Fuels ». Dans Fourth International Topical Meeting on High Temperature Reactor Technology. ASMEDC, 2008. http://dx.doi.org/10.1115/htr2008-58204.
Texte intégralKuraz, Michal. « Inverse modeling of soil infiltration process ». Dans INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4992448.
Texte intégralJames, Sagil, et Cristian Navarro. « Molecular Dynamics Simulation of Nanoparticle Infiltration During Binder Jet Printing Additive Manufacturing Process : A Preliminary Study ». Dans ASME 2019 14th International Manufacturing Science and Engineering Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/msec2019-2872.
Texte intégralWang, Xiao, Yongtu Liang, Shengli Liu et Mengyu Wu. « Analysis of Products Pipeline Accident Infiltration Process in Surface Soil Condition ». Dans ASME 2019 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/pvp2019-93069.
Texte intégralIlegbusi, Olusegun J., et Jijin Yang. « Effect of Si-Al Alloy on Kinetics of Reaction-Bonded SiC Infiltration Process ». Dans ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-1255.
Texte intégralPrzesmycki, Rafal, Marek Bugaj et Marian Wnuk. « Multimedia Projector in the Process of Electromagnetic Infiltration ». Dans 2019 PhotonIcs & Electromagnetics Research Symposium - Spring (PIERS-Spring). IEEE, 2019. http://dx.doi.org/10.1109/piers-spring46901.2019.9017388.
Texte intégralMorris, Charles D., et Kurtis Eisenbath. « Modeling Infiltration / Inflow Using a Disaggregated Stochastic Process ». Dans Ninth International Conference on Urban Drainage (9ICUD). Reston, VA : American Society of Civil Engineers, 2002. http://dx.doi.org/10.1061/40644(2002)126.
Texte intégralPrzesmycki, Rafal. « RS232 interface in the process of electromagnetic infiltration ». Dans 2017 Progress in Electromagnetics Research Symposium - Fall (PIERS - FALL). IEEE, 2017. http://dx.doi.org/10.1109/piers-fall.2017.8293162.
Texte intégralRapports d'organisations sur le sujet "Infiltration process"
Guan, Jiajing, Sophia Bragdon et Jay Clausen. Predicting soil moisture content using Physics-Informed Neural Networks (PINNs). Engineer Research and Development Center (U.S.), août 2024. http://dx.doi.org/10.21079/11681/48794.
Texte intégralCriner, Nichole Marie, Manuel Salmeron, Xin Zhang, Shirley J. Dyke, Julio A. Ramirez et Benjamin Eric Wogen. Predictive Analytics for Quantifying the Long-Term Costs of Defects During Bridge Construction. Purdue University, 2023. http://dx.doi.org/10.5703/1288284317615.
Texte intégralFlint, L. E., et A. L. Flint. Shallow infiltration processes at Yucca Mountain, Nevada - neutron logging data 1984-93. Office of Scientific and Technical Information (OSTI), novembre 1995. http://dx.doi.org/10.2172/123208.
Texte intégralFlint, L. E., et A. L. Flint. Shallow infiltration processes at Yucca Mountain, Nevada : Neutron logging data 1984--1993. Office of Scientific and Technical Information (OSTI), décembre 1995. http://dx.doi.org/10.2172/207604.
Texte intégralPruess, K. Analysis of flow processes during TCE infiltration in heterogeneous soils at the Savannah River Site, Aiken, South Carolina. Office of Scientific and Technical Information (OSTI), juin 1992. http://dx.doi.org/10.2172/10161637.
Texte intégralGLASS, JR, ROBERT J., et M. J. NICHOLL. Field Investigation of Flow Processes Associated with Infiltration into an Initially Dry Fracture Network at Fran Ridge, Yucca Mountain, Nevada : A Photo Essay and Data Summary. Office of Scientific and Technical Information (OSTI), mai 2002. http://dx.doi.org/10.2172/809983.
Texte intégralWieting, Celeste, Sara Rathburn et John Kemper. Evaluation of gully erosion for archaeological preservation in Wupatki National Monument. National Park Service, 2024. http://dx.doi.org/10.36967/2302447.
Texte intégralLawrence, David, Mike Tercek, Amber Runyon et Jeneva Wright. Historical and projected climate change for Grand Canyon National Park and surrounding areas. National Park Service, 2024. http://dx.doi.org/10.36967/2301726.
Texte intégralZhang, Renduo, et David Russo. Scale-dependency and spatial variability of soil hydraulic properties. United States Department of Agriculture, novembre 2004. http://dx.doi.org/10.32747/2004.7587220.bard.
Texte intégralOverview and bibliography of methods for evaluating the surface-water infiltration component of the rainfall-runoff process. US Geological Survey, 1992. http://dx.doi.org/10.3133/wri924095.
Texte intégral