Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Inferenza statistica.

Articles de revues sur le sujet « Inferenza statistica »

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Inferenza statistica ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Ludbrook, John, et Hugh Dudley. « ISSUES IN BIOMEDICAL STATISTICS : STATISTICAL INFERENCE ». ANZ Journal of Surgery 64, no 9 (septembre 1994) : 630–36. http://dx.doi.org/10.1111/j.1445-2197.1994.tb02308.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
2

Loosmore, N. Bert, et E. David Ford. « STATISTICAL INFERENCE USING THEGORKPOINT PATTERN SPATIAL STATISTICS ». Ecology 87, no 8 (août 2006) : 1925–31. http://dx.doi.org/10.1890/0012-9658(2006)87[1925:siutgo]2.0.co;2.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Curran-Everett, Douglas. « Explorations in statistics : the bootstrap ». Advances in Physiology Education 33, no 4 (décembre 2009) : 286–92. http://dx.doi.org/10.1152/advan.00062.2009.

Texte intégral
Résumé :
Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This fourth installment of Explorations in Statistics explores the bootstrap. The bootstrap gives us an empirical approach to estimate the theoretical variability among possible values of a sample statistic such as the sample mean. The appeal of the bootstrap is that we can use it to make an inference about some experimental result when the statistical theory is uncertain or even unknown. We can also use the bootstrap to assess how well the statistical theory holds: that is, whether an inference we make from a hypothesis test or confidence interval is justified.
Styles APA, Harvard, Vancouver, ISO, etc.
4

Barber, Stuart. « All of Statistics : a Concise Course in Statistical Inference ». Journal of the Royal Statistical Society : Series A (Statistics in Society) 168, no 1 (janvier 2005) : 261. http://dx.doi.org/10.1111/j.1467-985x.2004.00347_18.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Craigmile, Peter F. « All of Statistics : A Concise Course in Statistical Inference ». American Statistician 59, no 2 (mai 2005) : 203–4. http://dx.doi.org/10.1198/tas.2005.s30.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Zhang, Jingwen, Joseph Ibrahim, Tengfei Li et Hongtu Zhu. « A Powerful Global Test Statistic for Functional Statistical Inference ». Proceedings of the AAAI Conference on Artificial Intelligence 33 (17 juillet 2019) : 5765–72. http://dx.doi.org/10.1609/aaai.v33i01.33015765.

Texte intégral
Résumé :
We consider the problem of performing an association test between functional data and scalar variables in a varying coefficient model setting. We propose a functional projection regression model and an associated global test statistic to aggregate relatively weak signals across the domain of functional data, while reducing the dimension. An optimal functional projection direction is selected to maximize signal-to-noise ratio with ridge penalty. Theoretically, we systematically study the asymptotic distribution of the global test statistic and provide a strategy to adaptively select the optimal tuning parameter. We use simulations to show that the proposed test outperforms all existing state-of-the-art methods in functional statistical inference. Finally, we apply the proposed testing method to the genome-wide association analysis of imaging genetic data in UK Biobank dataset.
Styles APA, Harvard, Vancouver, ISO, etc.
7

Xu, Jinfeng, Lincheng Zhao et Chenlei Leng. « Statistical inference for induced L-statistics : a random perturbation approach ». Journal of Nonparametric Statistics 21, no 7 (octobre 2009) : 863–76. http://dx.doi.org/10.1080/10485250902980584.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Subba Rao, Suhasini. « Statistical inference for spatial statistics defined in the Fourier domain ». Annals of Statistics 46, no 2 (avril 2018) : 469–99. http://dx.doi.org/10.1214/17-aos1556.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Rohana, Rohana, et Yunika Lestaria Ningsih. « STUDENTS’ STATISTICAL REASONING IN STATISTICS METHOD COURSE ». Jurnal Pendidikan Matematika 14, no 1 (31 décembre 2019) : 81–90. http://dx.doi.org/10.22342/jpm.14.1.6732.81-90.

Texte intégral
Résumé :
The role of statistics is wide and crucial in daily life, making statistics important. Many students have difficulty understanding statistics. This study aims to determine students' statistical reasoning about inference statistics, which is limited to the subject matter of the testing hypotheses about two-sample hypotheses testing. This study used descriptive research method. The subjects were 25 students of third-year Mathematics Education Departement at Universitas PGRI Palembang in the academic year 2018/2019. Data were collected through tests and interviews. Data were analyzed through descriptive quantitative. The results of data analysis showed that 32% of students had level 1 statistical reasoning (the lowest level), 20% were at level 2, 28% at level 3, 12% at level 4 and 8% at level 5 (highest level). Based on the result, it can conclude that students' statistical reasoning ability in learning statistical method is not satisfactory, students are still very lacking in reasoning.
Styles APA, Harvard, Vancouver, ISO, etc.
10

Kuchibhotla, Arun K., John E. Kolassa et Todd A. Kuffner. « Post-Selection Inference ». Annual Review of Statistics and Its Application 9, no 1 (7 mars 2022) : 505–27. http://dx.doi.org/10.1146/annurev-statistics-100421-044639.

Texte intégral
Résumé :
We discuss inference after data exploration, with a particular focus on inference after model or variable selection. We review three popular approaches to this problem: sample splitting, simultaneous inference, and conditional selective inference. We explain how each approach works and highlight its advantages and disadvantages. We also provide an illustration of these post-selection inference approaches.
Styles APA, Harvard, Vancouver, ISO, etc.
11

Nordhausen, Klaus, et Hannu Oja. « Robust Nonparametric Inference ». Annual Review of Statistics and Its Application 5, no 1 (7 mars 2018) : 473–500. http://dx.doi.org/10.1146/annurev-statistics-031017-100247.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
12

Mayo-Wilson, Conor. « Statistical Inference as Severe Testing : How to Get beyond the Statistics ». Philosophical Review 130, no 1 (1 janvier 2021) : 185–89. http://dx.doi.org/10.1215/00318108-8699656.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Frühwirth-Schnatter, Sylvia. « On statistical inference for fuzzy data with applications to descriptive statistics ». Fuzzy Sets and Systems 50, no 2 (septembre 1992) : 143–65. http://dx.doi.org/10.1016/0165-0114(92)90213-n.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
14

Baggio, Hugo C., Alexandra Abos, Barbara Segura, Anna Campabadal, Anna Garcia‐Diaz, Carme Uribe, Yaroslau Compta, Maria Jose Marti, Francesc Valldeoriola et Carme Junque. « Statistical inference in brain graphs using threshold‐free network‐based statistics ». Human Brain Mapping 39, no 6 (15 février 2018) : 2289–302. http://dx.doi.org/10.1002/hbm.24007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Rennolls, Keith, P. H. Garthwaite, I. T. Jolliffe et B. Jones. « Statistical Inference. » Journal of the Royal Statistical Society. Series A (Statistics in Society) 159, no 3 (1996) : 622. http://dx.doi.org/10.2307/2983341.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Crowder, Martin, P. H. Garthwaite, I. T. Jolliffe et B. Jones. « Statistical Inference. » Statistician 45, no 3 (1996) : 386. http://dx.doi.org/10.2307/2988478.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Brunson, Barry W., et Vijay K. Rohatgi. « Statistical Inference. » American Mathematical Monthly 94, no 2 (février 1987) : 210. http://dx.doi.org/10.2307/2322441.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
18

Lindley, D. V., et Vijay K. Rohatgi. « Statistical Inference ». Mathematical Gazette 69, no 447 (mars 1985) : 63. http://dx.doi.org/10.2307/3616474.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
19

Rohatgi, V. K. « Statistical Inference. » Biometrics 41, no 4 (décembre 1985) : 1102. http://dx.doi.org/10.2307/2530991.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Ghosh, Malay, George Casella et Roger L. Berger. « Statistical Inference. » Journal of the American Statistical Association 89, no 426 (juin 1994) : 712. http://dx.doi.org/10.2307/2290879.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Casella, G., et R. L. Berger. « Statistical Inference. » Biometrics 49, no 1 (mars 1993) : 320. http://dx.doi.org/10.2307/2532634.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Ziegel, Eric R. « Statistical Inference ». Technometrics 44, no 4 (novembre 2002) : 407–8. http://dx.doi.org/10.1198/tech.2002.s94.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
23

Angus, John E. « Statistical Inference ». Technometrics 33, no 4 (novembre 1991) : 493. http://dx.doi.org/10.1080/00401706.1991.10484898.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
24

Randles, Ronald H., et Vijay K. Rohatgi. « Statistical Inference. » Journal of the American Statistical Association 81, no 393 (mars 1986) : 258. http://dx.doi.org/10.2307/2288010.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Roberts, Rosemary A., et J. G. Kalbfleisch. « Probability and Statistical Inference, Volume 2 : Statistical Inference. » Journal of the American Statistical Association 84, no 407 (septembre 1989) : 842. http://dx.doi.org/10.2307/2289686.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Yun-Shan Sun, Yun-Shan Sun, Hong-Yan Xu Yun-Shan Sun et Yan-Qin Li Hong-Yan Xu. « Missing Data Interpolation with Variational Bayesian Inference for Socio-economic Statistics Applications ». 電腦學刊 33, no 2 (avril 2022) : 169–76. http://dx.doi.org/10.53106/199115992022043302015.

Texte intégral
Résumé :
<p>The information integrity is needed to solving socio-economic statistical problems. However, the information integrity is destroyed by missing data which is caused by various subjective and objective reasons. So the missing data interpolation is used to supplement missing data. In this paper, missing data interpolation with variational Bayesian inference is proposed. This method is combined with Gaussian model to approximate the posterior distribution to obtain complete data. The experiments include two datasets (artificial dataset and actual dataset) based on three missing ratios separately. The missing data interpolation performance of variational Bayesian method is compared with that which is obtained by mean interpolation and K-nearest neighbor interpolation methods separately in MSE (Mean Square Error) and MAPE (Mean Absolute Percentage Error). The experimental results show that the proposed variational Bayesian method is better in MSE and MAPE.</p> <p>&nbsp;</p>
Styles APA, Harvard, Vancouver, ISO, etc.
27

Yun-Shan Sun, Yun-Shan Sun, Hong-Yan Xu Yun-Shan Sun et Yan-Qin Li Hong-Yan Xu. « Missing Data Interpolation with Variational Bayesian Inference for Socio-economic Statistics Applications ». 電腦學刊 33, no 2 (avril 2022) : 169–76. http://dx.doi.org/10.53106/199115992022043302015.

Texte intégral
Résumé :
<p>The information integrity is needed to solving socio-economic statistical problems. However, the information integrity is destroyed by missing data which is caused by various subjective and objective reasons. So the missing data interpolation is used to supplement missing data. In this paper, missing data interpolation with variational Bayesian inference is proposed. This method is combined with Gaussian model to approximate the posterior distribution to obtain complete data. The experiments include two datasets (artificial dataset and actual dataset) based on three missing ratios separately. The missing data interpolation performance of variational Bayesian method is compared with that which is obtained by mean interpolation and K-nearest neighbor interpolation methods separately in MSE (Mean Square Error) and MAPE (Mean Absolute Percentage Error). The experimental results show that the proposed variational Bayesian method is better in MSE and MAPE.</p> <p>&nbsp;</p>
Styles APA, Harvard, Vancouver, ISO, etc.
28

Wasserman, Larry, Aaditya Ramdas et Sivaraman Balakrishnan. « Universal inference ». Proceedings of the National Academy of Sciences 117, no 29 (6 juillet 2020) : 16880–90. http://dx.doi.org/10.1073/pnas.1922664117.

Texte intégral
Résumé :
We propose a general method for constructing confidence sets and hypothesis tests that have finite-sample guarantees without regularity conditions. We refer to such procedures as “universal.” The method is very simple and is based on a modified version of the usual likelihood-ratio statistic that we call “the split likelihood-ratio test” (split LRT) statistic. The (limiting) null distribution of the classical likelihood-ratio statistic is often intractable when used to test composite null hypotheses in irregular statistical models. Our method is especially appealing for statistical inference in these complex setups. The method we suggest works for any parametric model and also for some nonparametric models, as long as computing a maximum-likelihood estimator (MLE) is feasible under the null. Canonical examples arise in mixture modeling and shape-constrained inference, for which constructing tests and confidence sets has been notoriously difficult. We also develop various extensions of our basic methods. We show that in settings when computing the MLE is hard, for the purpose of constructing valid tests and intervals, it is sufficient to upper bound the maximum likelihood. We investigate some conditions under which our methods yield valid inferences under model misspecification. Further, the split LRT can be used with profile likelihoods to deal with nuisance parameters, and it can also be run sequentially to yield anytime-valid P values and confidence sequences. Finally, when combined with the method of sieves, it can be used to perform model selection with nested model classes.
Styles APA, Harvard, Vancouver, ISO, etc.
29

Bowers, Jake, Mark M. Fredrickson et Peter M. Aronow. « Research Note : A More Powerful Test Statistic for Reasoning about Interference between Units ». Political Analysis 24, no 3 (2016) : 395–403. http://dx.doi.org/10.1093/pan/mpw018.

Texte intégral
Résumé :
Bowers, Fredrickson, and Panagopoulos (2013, Reasoning about interference between units: A general framework, Political Analysis 21(1):97–124; henceforth BFP) showed that one could use Fisher's randomization-based hypothesis testing framework to assess counterfactual causal models of treatment propagation and spillover across social networks. This research note improves the statistical inference presented in BFP (2013) by substituting a test statistic based on a sum of squared residuals and incorporating information about the fixed network for the simple Kolmogorov–Smirnov test statistic (Hollander 1999, section 5.4) they used. This note incrementally improves the application of BFP's “reasoning about interference” approach. We do not offer general results about test statistics for multi-parameter causal models on social networks here, but instead hope to stimulate further, and deeper, work on test statistics and sharp hypothesis testing.
Styles APA, Harvard, Vancouver, ISO, etc.
30

KYBURG, HENRY E., et CHOH MAN TENG. « STATISTICAL INFERENCE AS DEFAULT REASONING ». International Journal of Pattern Recognition and Artificial Intelligence 13, no 02 (mars 1999) : 267–83. http://dx.doi.org/10.1142/s021800149900015x.

Texte intégral
Résumé :
Classical statistical inference is nonmonotonic in nature. We show how it can be formalized in the default logic framework. The structure of statistical inference is the same as that represented by default rules. In particular, the prerequisite corresponds to the sample statistics, the justifications require that we do not have any reason to believe that the sample is misleading, and the consequence corresponds to the conclusion sanctioned by the statistical test.
Styles APA, Harvard, Vancouver, ISO, etc.
31

El-Din, M. M. Mohie, Nahed S. A. Ali, M. M. Amein et M. S. Mohamed. « Statistical Inference of Concomitants Based on Morgenstern Family under Generalized Order Statistics ». Mathematical Sciences Letters 5, no 3 (1 septembre 2016) : 243–54. http://dx.doi.org/10.18576/msl/050305.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

El-Deen, M. « Statistical Inference for Kumaraswamy Distribution Based on Generalized Order Statistics with Applications ». British Journal of Mathematics & ; Computer Science 4, no 12 (10 janvier 2014) : 1710–43. http://dx.doi.org/10.9734/bjmcs/2014/9193.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Beutner, E., et U. Kamps. « Order restricted statistical inference for scale parameters based on sequential order statistics ». Journal of Statistical Planning and Inference 139, no 9 (septembre 2009) : 2963–69. http://dx.doi.org/10.1016/j.jspi.2009.01.017.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
34

Chen, E. Jack. « Order Statistics and Clinical-Practice Studies ». International Journal of Computers in Clinical Practice 3, no 2 (juillet 2018) : 13–30. http://dx.doi.org/10.4018/ijccp.2018070102.

Texte intégral
Résumé :
Statistics are essential tools in scientific studies and facilitate various hypothesis tests, such as test administration, response scoring, data analysis, and test interpretation. Order statistics refer to the collection of sample observations sorted in ascending order and are among the most fundamental tools in non-parametric statistics and inference. Statistical inference established based on order statistics assumes nothing stronger than continuity of the cumulative distribution function of the population and is simple and broadly applicable. The authors discuss how order statistics are applied in statistical analysis, e.g., tests of independence, tests of goodness of fit, hypothesis tests of equivalence of means, ranking and selection, and quantile estimation. These order-statistics techniques are key components of many clinical studies.
Styles APA, Harvard, Vancouver, ISO, etc.
35

Schafer, Chad M. « A Framework for Statistical Inference in Astrophysics ». Annual Review of Statistics and Its Application 2, no 1 (10 avril 2015) : 141–62. http://dx.doi.org/10.1146/annurev-statistics-022513-115538.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Low, Mark, Axel Munk et Alexandre Tsybakov. « Adaptive Statistical Inference ». Oberwolfach Reports 11, no 1 (2014) : 721–79. http://dx.doi.org/10.4171/owr/2014/13.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Randles, Ronald H., et Jean Dickinson Gibbons. « Nonparametric Statistical Inference ». Technometrics 28, no 3 (août 1986) : 275. http://dx.doi.org/10.2307/1269084.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Ziegel, Eric R., et Vic Barnett. « Comparative Statistical Inference ». Technometrics 42, no 4 (novembre 2000) : 442. http://dx.doi.org/10.2307/1270977.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Schabes, Yves. « Statistical grammar inference ». Journal of the Acoustical Society of America 92, no 4 (octobre 1992) : 2368. http://dx.doi.org/10.1121/1.404865.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

Shalabh. « Nonparametric Statistical Inference ». Journal of the Royal Statistical Society : Series A (Statistics in Society) 174, no 2 (14 mars 2011) : 508–9. http://dx.doi.org/10.1111/j.1467-985x.2010.00681_6.x.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Katsaounis, T. I. « Introductory Statistical Inference ». Technometrics 50, no 1 (février 2008) : 89–90. http://dx.doi.org/10.1198/tech.2008.s529.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Banerjee, Tathagata. « Introductory Statistical Inference ». Journal of the American Statistical Association 102, no 480 (décembre 2007) : 1474. http://dx.doi.org/10.1198/jasa.2007.s231.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
43

Ziegel, Eric. « Nonparametric Statistical Inference ». Technometrics 30, no 4 (novembre 1988) : 457. http://dx.doi.org/10.1080/00401706.1988.10488449.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
44

Ziegel, Eric R. « Nonparametric Statistical Inference ». Technometrics 35, no 2 (mai 1993) : 239–40. http://dx.doi.org/10.1080/00401706.1993.10485070.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Shanmugam, Ram. « Parametric Statistical Inference ». Technometrics 40, no 2 (mai 1998) : 161. http://dx.doi.org/10.1080/00401706.1998.10485208.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Barnett, Vic. « Comparative Statistical Inference ». Technometrics 42, no 4 (novembre 2000) : 442. http://dx.doi.org/10.1080/00401706.2000.10485741.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Periwal, Vipul. « Geometric statistical inference ». Nuclear Physics B 554, no 3 (août 1999) : 719–30. http://dx.doi.org/10.1016/s0550-3213(99)00278-3.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
48

Malley, James D., et John Hornstein. « Quantum Statistical Inference ». Statistical Science 8, no 4 (novembre 1993) : 433–57. http://dx.doi.org/10.1214/ss/1177010787.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
49

Anscombe, F. J., et Rupert G. Miller. « Simultaneous Statistical Inference. » Journal of the American Statistical Association 80, no 389 (mars 1985) : 250. http://dx.doi.org/10.2307/2288100.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Sukhatme, Shashikala, et Jean Dickinson Gibbons. « Nonparametric Statistical Inference. » Journal of the American Statistical Association 82, no 399 (septembre 1987) : 953. http://dx.doi.org/10.2307/2288823.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Nous offrons des réductions sur tous les plans premium pour les auteurs dont les œuvres sont incluses dans des sélections littéraires thématiques. Contactez-nous pour obtenir un code promo unique!

Vers la bibliographie