Littérature scientifique sur le sujet « Inferenza causale »
Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres
Consultez les listes thématiques d’articles de revues, de livres, de thèses, de rapports de conférences et d’autres sources académiques sur le sujet « Inferenza causale ».
À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.
Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.
Articles de revues sur le sujet "Inferenza causale"
van der Laan, Mark J. « Causal Inference for a Population of Causally Connected Units ». Journal of Causal Inference 2, no 1 (1 mars 2014) : 13–74. http://dx.doi.org/10.1515/jci-2013-0002.
Texte intégralFougère, Denis, et Nicolas Jacquemet. « Causal Inference and Impact Evaluation ». Economie et Statistique / Economics and Statistics, no 510-511-512 (18 décembre 2019) : 181–200. http://dx.doi.org/10.24187/ecostat.2019.510t.1996.
Texte intégralSober, Elliott, et David Papineau. « Causal Factors, Causal Inference, Causal Explanation ». Aristotelian Society Supplementary Volume 60, no 1 (1 juillet 1986) : 97–136. http://dx.doi.org/10.1093/aristoteliansupp/60.1.97.
Texte intégralGlymour, C., P. Spirtes et R. Scheines. « Causal inference ». Erkenntnis 35, no 1-3 (juillet 1991) : 151–89. http://dx.doi.org/10.1007/bf00388284.
Texte intégralRothman, Kenneth J., Stephan Lanes et James Robins. « Causal Inference ». Epidemiology 4, no 6 (novembre 1993) : 555. http://dx.doi.org/10.1097/00001648-199311000-00013.
Texte intégralKuang, Kun, Lian Li, Zhi Geng, Lei Xu, Kun Zhang, Beishui Liao, Huaxin Huang, Peng Ding, Wang Miao et Zhichao Jiang. « Causal Inference ». Engineering 6, no 3 (mars 2020) : 253–63. http://dx.doi.org/10.1016/j.eng.2019.08.016.
Texte intégralStaniloff, Howard M. « Causal Inference ». JAMA : The Journal of the American Medical Association 261, no 15 (21 avril 1989) : 2264. http://dx.doi.org/10.1001/jama.1989.03420150114051.
Texte intégralVandenbroucke, J. P. « Causal Inference is Necessary but Insufficient for Causal Inference. » International Journal of Epidemiology 44, suppl_1 (23 septembre 2015) : i53. http://dx.doi.org/10.1093/ije/dyv097.204.
Texte intégralAiello, Allison E., et Lawrence W. Green. « Introduction to the Symposium : Causal Inference and Public Health ». Annual Review of Public Health 40, no 1 (avril 2019) : 1–5. http://dx.doi.org/10.1146/annurev-publhealth-111918-103312.
Texte intégralMealli, Fabrizia. « Causal Inference Perspectives ». Observational Studies 8, no 2 (octobre 2022) : 105–8. http://dx.doi.org/10.1353/obs.2022.0011.
Texte intégralThèses sur le sujet "Inferenza causale"
HAMMAD, AHMED TAREK. « Tecniche di valutazione degli effetti dei Programmi e delle Politiche Pubbliche. L' approccio di apprendimento automatico causale ». Doctoral thesis, Università Cattolica del Sacro Cuore, 2022. http://hdl.handle.net/10280/110705.
Texte intégralThe analysis of causal mechanisms has been considered in various disciplines such as sociology, epidemiology, political science, psychology and economics. These approaches allow uncovering causal relations and mechanisms by studying the role of a treatment variable (such as a policy or a program) on a set of outcomes of interest or different intermediates variables on the causal path between the treatment and the outcome variables. This thesis first focuses on reviewing and exploring alternative strategies to investigate causal effects and multiple mediation effects using Machine Learning algorithms which have been shown to be particularly suited for assessing research questions in complex settings with non-linear relations. Second, the thesis provides two empirical examples where two Machine Learning algorithms, namely the Generalized Random Forest and Multiple Additive Regression Trees, are used to account for important control variables in causal inference in a data-driven way. By bridging a fundamental gap between causality and advanced data modelling, this work combines state of the art theories and modelling techniques.
ROMIO, SILVANA ANTONIETTA. « Modelli marginali strutturali per lo studio dell'effetto causale di fattori di rischio in presenza di confondenti tempo dipendenti ». Doctoral thesis, Università degli Studi di Milano-Bicocca, 2010. http://hdl.handle.net/10281/8048.
Texte intégralNguyên, Tri Long. « Inférence causale, modélisation prédictive et décision médicale ». Thesis, Montpellier, 2016. http://www.theses.fr/2016MONTT028.
Texte intégralMedical decision-making is defined by the choice of treatment of illness, which attempts to maximize the healthcare benefit, given a probable outcome. The choice of a treatment must be therefore based on a scientific evidence. It refers to a problem of estimating the treatment effect. In a first part, we present, discuss and propose causal inference methods for estimating the treatment effect using experimental or observational designs. However, the evidences provided by these approaches are established at the population level, not at the individual level. Foreknowing the patient’s probability of outcome is essential for adapting a clinical decision. In a second part, we present the approach of predictive modeling, which provided a leap forward in personalized medicine. Predictive models give the patient’s prognosis at baseline and then let the clinician decide on treatment. This approach is therefore limited, as the choice of treatment is still based on evidences stated at the overall population level. In a third part, we propose an original method for estimating the individual treatment effect, by combining causal inference and predictive modeling. Whether a treatment is foreseen, our approach allows the clinician to foreknow and compare both the patient’s prognosis without treatment and the patient’s prognosis with treatment. Within this thesis, we present a series of eight articles
Sun, Xiaohai. « Causal inference from statistical data / ». Berlin : Logos-Verl, 2008. http://d-nb.info/988947331/04.
Texte intégralLIU, DAYANG. « A Review of Causal Inference ». Digital WPI, 2009. https://digitalcommons.wpi.edu/etd-theses/44.
Texte intégralSauley, Beau. « Three Essays in Causal Inference ». University of Cincinnati / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1627659095905957.
Texte intégralLiu, Dayang. « A review of causal inference ». Worcester, Mass. : Worcester Polytechnic Institute, 2009. http://www.wpi.edu/Pubs/ETD/Available/etd-010909-121301/.
Texte intégralMahmood, Sharif. « Finding common support and assessing matching methods for causal inference ». Diss., Kansas State University, 2017. http://hdl.handle.net/2097/36190.
Texte intégralDepartment of Statistics
Michael J. Higgins
This dissertation presents an approach to assess and validate causal inference tools to es- timate the causal effect of a treatment. Finding treatment effects in observational studies is complicated by the need to control for confounders. Common approaches for controlling include using prognostically important covariates to form groups of similar units containing both treatment and control units or modeling responses through interpolation. This disser- tation proposes a series of new, computationally efficient methods to improve the analysis of observational studies. Treatment effects are only reliably estimated for a subpopulation under which a common support assumption holds—one in which treatment and control covariate spaces overlap. Given a distance metric measuring dissimilarity between units, a graph theory is used to find common support. An adjacency graph is constructed where edges are drawn between similar treated and control units to determine regions of common support by finding the largest connected components (LCC) of this graph. The results show that LCC improves on existing methods by efficiently constructing regions that preserve clustering in the data while ensuring interpretability of the region through the distance metric. This approach is extended to propose a new matching method called largest caliper matching (LCM). LCM is a version of cardinality matching—a type of matching used to maximize the number of units in an observational study under a covariate balance constraint between treatment groups. While traditional cardinality matching is an NP-hard, LCM can be completed in polynomial time. The performance of LCM with other five popular matching methods are shown through a series of Monte Carlo simulations. The performance of the simulations is measured by the bias, empirical standard deviation and the mean square error of the estimates under different treatment prevalence and different distributions of covariates. The formed matched samples improve estimation of the population treatment effect in a wide range of settings, and suggest cases in which certain matching algorithms perform better than others. Finally, this dissertation presents an application of LCC and matching methods on a study of the effectiveness of right heart catheterization (RHC) and find that clinical outcomes are significantly worse for patients that undergo RHC.
Guo, H. « Statistical causal inference and propensity analysis ». Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.599787.
Texte intégralFancsali, Stephen E. « Constructing Variables That Support Causal Inference ». Research Showcase @ CMU, 2013. http://repository.cmu.edu/dissertations/398.
Texte intégralLivres sur le sujet "Inferenza causale"
J, Rothman Kenneth, Lanes Stephan F et Society for Epidemiologic Research (U.S.). Meeting, dir. Causal inference. Chestnut Hill, MA : Epidemiology Resources, 1988.
Trouver le texte intégralGeffner, Hector, Rina Dechter et Joseph Y. Halpern, dir. Probabilistic and Causal Inference. New York, NY, USA : ACM, 2022. http://dx.doi.org/10.1145/3501714.
Texte intégralHuynh, Van-Nam, Vladik Kreinovich et Songsak Sriboonchitta, dir. Causal Inference in Econometrics. Cham : Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27284-9.
Texte intégralRohlfing, Ingo. Case Studies and Causal Inference. London : Palgrave Macmillan UK, 2012. http://dx.doi.org/10.1057/9781137271327.
Texte intégralFred, Wilson. Hume's defence of causal inference. Toronto : University of Toronto Press, 1997.
Trouver le texte intégralLu, Rui. Feature Selection for High Dimensional Causal Inference. [New York, N.Y.?] : [publisher not identified], 2020.
Trouver le texte intégralHirshberg, David Abraham. Minimax-inspired Semiparametric Estimation and Causal Inference. [New York, N.Y.?] : [publisher not identified], 2018.
Trouver le texte intégralB, Willett John, dir. Methods matter : Improving causal inference in educational research. New York, NY : Oxford University Press, 2010.
Trouver le texte intégralBennett, Magdalena. Three Essays on Causal Inference for Observational Studies. [New York, N.Y.?] : [publisher not identified], 2020.
Trouver le texte intégralBest, Henning, et Christof Wolf. The SAGE Handbook of Regression Analysis and Causal Inference. 1 Oliver's Yard, 55 City Road, London EC1Y 1SP United Kingdom : SAGE Publications Ltd, 2014. http://dx.doi.org/10.4135/9781446288146.
Texte intégralChapitres de livres sur le sujet "Inferenza causale"
Edwards, David. « Causal Inference ». Dans Introduction to Graphical Modelling, 219–43. New York, NY : Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4612-0493-0_8.
Texte intégralGlymour, C., P. Spirtes et R. Scheines. « Causal Inference ». Dans Erkenntnis Orientated : A Centennial Volume for Rudolf Carnap and Hans Reichenbach, 151–89. Dordrecht : Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3490-3_9.
Texte intégralWasserman, Larry. « Causal Inference ». Dans Springer Texts in Statistics, 251–62. New York, NY : Springer New York, 2004. http://dx.doi.org/10.1007/978-0-387-21736-9_16.
Texte intégralDayal, Vikram. « Causal Inference ». Dans Quantitative Economics with R, 153–223. Singapore : Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2035-8_10.
Texte intégralEtzioni, Ruth, Micha Mandel et Roman Gulati. « Causal Inference ». Dans Springer Texts in Statistics, 149–72. Cham : Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-59889-1_8.
Texte intégralOtsuka, Jun. « Causal Inference ». Dans Thinking About Statistics, 144–71. New York : Routledge, 2022. http://dx.doi.org/10.4324/9781003319061-6.
Texte intégralGranger, C. W. J. « Causal Inference ». Dans The New Palgrave Dictionary of Economics, 1440–43. London : Palgrave Macmillan UK, 2018. http://dx.doi.org/10.1057/978-1-349-95189-5_688.
Texte intégralGranger, C. W. J. « Causal Inference ». Dans The New Palgrave Dictionary of Economics, 1–4. London : Palgrave Macmillan UK, 1987. http://dx.doi.org/10.1057/978-1-349-95121-5_688-1.
Texte intégralMitchell, Renée J. « Causal Inference ». Dans Twenty-one Mental Models That Can Change Policing, 107–13. New York : Routledge, 2021. http://dx.doi.org/10.4324/9780367481520-24.
Texte intégralDablander, Fabian, et Riet van Bork. « Causal Inference ». Dans Network Psychometrics with R, 213–32. London : Routledge, 2022. http://dx.doi.org/10.4324/9781003111238-16.
Texte intégralActes de conférences sur le sujet "Inferenza causale"
Qiu, Ruihong, Sen Wang, Zhi Chen, Hongzhi Yin et Zi Huang. « CausalRec : Causal Inference for Visual Debiasing in Visually-Aware Recommendation ». Dans MM '21 : ACM Multimedia Conference. New York, NY, USA : ACM, 2021. http://dx.doi.org/10.1145/3474085.3475266.
Texte intégralSyrgkanis, Vasilis, Greg Lewis, Miruna Oprescu, Maggie Hei, Keith Battocchi, Eleanor Dillon, Jing Pan et al. « Causal Inference and Machine Learning in Practice with EconML and CausalML ». Dans KDD '21 : The 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. New York, NY, USA : ACM, 2021. http://dx.doi.org/10.1145/3447548.3470792.
Texte intégralGlenski, Maria, et Svitlana Volkova. « Identifying Causal Influences on Publication Trends and Behavior : A Case Study of the Computational Linguistics Community ». Dans Proceedings of the First Workshop on Causal Inference and NLP. Stroudsburg, PA, USA : Association for Computational Linguistics, 2021. http://dx.doi.org/10.18653/v1/2021.cinlp-1.7.
Texte intégralFytas, Panagiotis, Georgios Rizos et Lucia Specia. « What Makes a Scientific Paper be Accepted for Publication ? » Dans Proceedings of the First Workshop on Causal Inference and NLP. Stroudsburg, PA, USA : Association for Computational Linguistics, 2021. http://dx.doi.org/10.18653/v1/2021.cinlp-1.4.
Texte intégralTan, Fiona Anting, Devamanyu Hazarika, See-Kiong Ng, Soujanya Poria et Roger Zimmermann. « Causal Augmentation for Causal Sentence Classification ». Dans Proceedings of the First Workshop on Causal Inference and NLP. Stroudsburg, PA, USA : Association for Computational Linguistics, 2021. http://dx.doi.org/10.18653/v1/2021.cinlp-1.1.
Texte intégralLow, Daniel, Kelly Zuromski, Daniel Kessler, Satrajit S. Ghosh, Matthew K. Nock et Walter Dempsey. « It’s quality and quantity : the effect of the amount of comments on online suicidal posts ». Dans Proceedings of the First Workshop on Causal Inference and NLP. Stroudsburg, PA, USA : Association for Computational Linguistics, 2021. http://dx.doi.org/10.18653/v1/2021.cinlp-1.8.
Texte intégralFounta, Antigoni, et Lucia Specia. « A Survey of Online Hate Speech through the Causal Lens ». Dans Proceedings of the First Workshop on Causal Inference and NLP. Stroudsburg, PA, USA : Association for Computational Linguistics, 2021. http://dx.doi.org/10.18653/v1/2021.cinlp-1.6.
Texte intégralTierney, Graham, et Alexander Volfovsky. « Sensitivity Analysis for Causal Mediation through Text : an Application to Political Polarization ». Dans Proceedings of the First Workshop on Causal Inference and NLP. Stroudsburg, PA, USA : Association for Computational Linguistics, 2021. http://dx.doi.org/10.18653/v1/2021.cinlp-1.5.
Texte intégralWang, Zhao, Kai Shu et Aron Culotta. « Enhancing Model Robustness and Fairness with Causality : A Regularization Approach ». Dans Proceedings of the First Workshop on Causal Inference and NLP. Stroudsburg, PA, USA : Association for Computational Linguistics, 2021. http://dx.doi.org/10.18653/v1/2021.cinlp-1.3.
Texte intégralKeith, Katherine, Douglas Rice et Brendan O’Connor. « Text as Causal Mediators : Research Design for Causal Estimates of Differential Treatment of Social Groups via Language Aspects ». Dans Proceedings of the First Workshop on Causal Inference and NLP. Stroudsburg, PA, USA : Association for Computational Linguistics, 2021. http://dx.doi.org/10.18653/v1/2021.cinlp-1.2.
Texte intégralRapports d'organisations sur le sujet "Inferenza causale"
Finkelstein, Amy, et Nathaniel Hendren. Welfare Analysis Meets Causal Inference. Cambridge, MA : National Bureau of Economic Research, août 2020. http://dx.doi.org/10.3386/w27640.
Texte intégralBernheim, B. Douglas, Daniel Björkegren, Jeffrey Naecker et Michael Pollmann. Causal Inference from Hypothetical Evaluations. Cambridge, MA : National Bureau of Economic Research, décembre 2021. http://dx.doi.org/10.3386/w29616.
Texte intégralGelman, Andrew, et Guido Imbens. Why ask Why ? Forward Causal Inference and Reverse Causal Questions. Cambridge, MA : National Bureau of Economic Research, novembre 2013. http://dx.doi.org/10.3386/w19614.
Texte intégralLee, Sokbae (Simon), et Sung Jae Jun. Causal inference in case-control studies. The IFS, mai 2020. http://dx.doi.org/10.1920/wp.cem.2020.1920.
Texte intégralBaum-Snow, Nathaniel, et Fernando Ferreira. Causal Inference in Urban and Regional Economics. Cambridge, MA : National Bureau of Economic Research, octobre 2014. http://dx.doi.org/10.3386/w20535.
Texte intégralKuroki, Manabu, et Judea Pearl. Measurement Bias and Effect Restoration in Causal Inference. Fort Belvoir, VA : Defense Technical Information Center, octobre 2011. http://dx.doi.org/10.21236/ada557455.
Texte intégralFafchamps, Marcel, et Julien Labonne. Using Split Samples to Improve Inference about Causal Effects. Cambridge, MA : National Bureau of Economic Research, janvier 2016. http://dx.doi.org/10.3386/w21842.
Texte intégralBelloni, Alexandre, Victor Chernozhukov, Ivan Fernandez-Val et Christian Hansen. Program evaluation and causal inference with high-dimensional data. The Institute for Fiscal Studies, mars 2016. http://dx.doi.org/10.1920/wp.cem.2016.1316.
Texte intégralTan, Zhiqiang, Tobias Gerhard et Baoluo Sun. Developing New Methods for Causal Inference in Observational Studies. Patient-Centered Outcomes Research Institute (PCORI), novembre 2021. http://dx.doi.org/10.25302/11.2021.me.151132740.
Texte intégralCard, David, David S. Lee, Zhuan Pei et Andrea Weber. Inference on Causal Effects in a Generalized Regression Kink Design. W.E. Upjohn Institute, janvier 2015. http://dx.doi.org/10.17848/wp15-218.
Texte intégral