Articles de revues sur le sujet « Induction (Logic) »

Pour voir les autres types de publications sur ce sujet consultez le lien suivant : Induction (Logic).

Créez une référence correcte selon les styles APA, MLA, Chicago, Harvard et plusieurs autres

Choisissez une source :

Consultez les 50 meilleurs articles de revues pour votre recherche sur le sujet « Induction (Logic) ».

À côté de chaque source dans la liste de références il y a un bouton « Ajouter à la bibliographie ». Cliquez sur ce bouton, et nous générerons automatiquement la référence bibliographique pour la source choisie selon votre style de citation préféré : APA, MLA, Harvard, Vancouver, Chicago, etc.

Vous pouvez aussi télécharger le texte intégral de la publication scolaire au format pdf et consulter son résumé en ligne lorsque ces informations sont inclues dans les métadonnées.

Parcourez les articles de revues sur diverses disciplines et organisez correctement votre bibliographie.

1

Devesas Campos, Marco, et Marcelo Fiore. « Classical logic with Mendler induction ». Journal of Logic and Computation 30, no 1 (janvier 2020) : 77–106. http://dx.doi.org/10.1093/logcom/exaa004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Abstract We investigate (co-) induction in classical logic under the propositions-as-types paradigm, considering propositional, second-order and (co-) inductive types. Specifically, we introduce an extension of the Dual Calculus with a Mendler-style (co-) iterator and show that it is strongly normalizing. We prove this using a reducibility argument.
2

Kaminsky, Jack. « Logic, Induction, and Ontology ». International Studies in Philosophy 20, no 1 (1988) : 111. http://dx.doi.org/10.5840/intstudphil198820151.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
3

Howson, Colin. « A Logic of Induction ». Philosophy of Science 64, no 2 (juin 1997) : 268–90. http://dx.doi.org/10.1086/392551.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
4

Terwijn, Sebastiaan A. « Probabilistic Logic and Induction ». Journal of Logic and Computation 15, no 4 (1 août 2005) : 507–15. http://dx.doi.org/10.1093/logcom/exi032.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
5

Yamaguchi, Fumihiko, et Masakazu Nakanishi. « Induction in linear logic ». International Journal of Theoretical Physics 35, no 10 (octobre 1996) : 2107–16. http://dx.doi.org/10.1007/bf02302230.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
6

Kuznetsov, Stepan. « Action Logic is Undecidable ». ACM Transactions on Computational Logic 22, no 2 (15 mai 2021) : 1–26. http://dx.doi.org/10.1145/3445810.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Action logic is the algebraic logic (inequational theory) of residuated Kleene lattices. One of the operations of this logic is the Kleene star, which is axiomatized by an induction scheme. For a stronger system that uses an -rule instead (infinitary action logic), Buszkowski and Palka (2007) proved -completeness (thus, undecidability). Decidability of action logic itself was an open question, raised by Kozen in 1994. In this article, we show that it is undecidable, more precisely, -complete. We also prove the same undecidability results for all recursively enumerable logics between action logic and infinitary action logic, for fragments of these logics with only one of the two lattice (additive) connectives, and for action logic extended with the law of distributivity.
7

K.M.MAKWANA, K. M. MAKWANA, Dr B. R. PAREKH Dr.B.R.PAREKH et SHEETAL SHINKHEDE. « Fuzzy Logic Controller Vs Pi Controller for Induction Motor Drive ». Indian Journal of Applied Research 3, no 7 (1 octobre 2011) : 315–18. http://dx.doi.org/10.15373/2249555x/july2013/97.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
8

Dogan, Hamide. « Mathematical induction : deductive logic perspective ». European Journal of Science and Mathematics Education 4, no 3 (15 juillet 2016) : 315–30. http://dx.doi.org/10.30935/scimath/9473.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
9

Greenland, Sander. « Probability Logic and Probabilistic Induction ». Epidemiology 9, no 3 (mai 1998) : 322–32. http://dx.doi.org/10.1097/00001648-199805000-00018.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
10

Arieli, Itai, et Robert J. Aumann. « The logic of backward induction ». Journal of Economic Theory 159 (septembre 2015) : 443–64. http://dx.doi.org/10.1016/j.jet.2015.07.004.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
11

Aehlig, Klaus. « Induction and inductive definitions in fragments of second order arithmetic ». Journal of Symbolic Logic 70, no 4 (décembre 2005) : 1087–107. http://dx.doi.org/10.2178/jsl/1129642116.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
AbstractA fragment with the same provably recursive functions as n iterated inductive definitions is obtained by restricting second order arithmetic in the following way. The underlying language allows only up to n + 1 nested second order quantifications and those are in such a way. that no second order variable occurs free in the scope of another second order quantifier. The amount of induction on arithmetical formulae only affects the arithmetical consequences of these theories, whereas adding induction for arbitrary formulae increases the strength by one inductive definition.
12

Kaye, Richard. « Parameter-Free Universal Induction ». Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 35, no 5 (1989) : 443–56. http://dx.doi.org/10.1002/malq.19890350511.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
13

Athanassopoulos, Evangelos, et Michael Gr Voskoglou. « A Philosophical Treatise on the Connection of Scientific Reasoning with Fuzzy Logic ». Mathematics 8, no 6 (1 juin 2020) : 875. http://dx.doi.org/10.3390/math8060875.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
The present article studies the connection of scientific reasoning with fuzzy logic. Induction and deduction are the two main types of human reasoning. Although deduction is the basis of the scientific method, almost all the scientific progress (with pure mathematics being probably the unique exception) has its roots to inductive reasoning. Fuzzy logic gives to the disdainful by the classical/bivalent logic induction its proper place and importance as a fundamental component of the scientific reasoning. The error of induction is transferred to deductive reasoning through its premises. Consequently, although deduction is always a valid process, it is not an infallible method. Thus, there is a need of quantifying the degree of truth not only of the inductive, but also of the deductive arguments. In the former case, probability and statistics and of course fuzzy logic in cases of imprecision are the tools available for this purpose. In the latter case, the Bayesian probabilities play a dominant role. As many specialists argue nowadays, the whole science could be viewed as a Bayesian process. A timely example, concerning the validity of the viruses’ tests, is presented, illustrating the importance of the Bayesian processes for scientific reasoning.
14

Unver, H. M. « Control freaks [induction furnace logic controller] ». Power Engineer 19, no 3 (2005) : 36. http://dx.doi.org/10.1049/pe:20050307.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
15

Tinkham, Nancy Lynn. « Schema induction for logic program synthesis ». Artificial Intelligence 98, no 1-2 (janvier 1998) : 1–47. http://dx.doi.org/10.1016/s0004-3702(97)00055-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
16

Tiu, Alwen, et Alberto Momigliano. « Cut elimination for a logic with induction and co-induction ». Journal of Applied Logic 10, no 4 (décembre 2012) : 330–67. http://dx.doi.org/10.1016/j.jal.2012.07.007.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
17

Wong, Man Leung, et Kwong Sak Leung. « Evolutionary Program Induction Directed by Logic Grammars ». Evolutionary Computation 5, no 2 (juin 1997) : 143–80. http://dx.doi.org/10.1162/evco.1997.5.2.143.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Program induction generates a computer program that can produce the desired behavior for a given set of situations. Two of the approaches in program induction are inductive logic programming (ILP) and genetic programming (GP). Since their formalisms are so different, these two approaches cannot be integrated easily, although they share many common goals and functionalities. A unification will greatly enhance their problem-solving power. Moreover, they are restricted in the computer languages in which programs can be induced. In this paper, we present a flexible system called LOGENPRO (The LOgic grammar-based GENetic PROgramming system) that uses some of the techniques of GP and ILP. It is based on a formalism of logic grammars. The system applies logic grammars to control the evolution of programs in various programming languages and represent context-sensitive information and domain-dependent knowledge. Experiments have been performed to demonstrate that LOGENPRO can emulate GP and GP with automatically defined functions (ADFs). Moreover, LOGENPRO can employ knowledge such as argument types in a unified framework. The experiments show that LOGENPRO has superior performance to that of GP and GP with ADFs when more domain-dependent knowledge is available. We have applied LOGENPRO to evolve general recursive functions for the even-n-parity problem from noisy training examples. A number of experiments have been performed to determine the impact of domain-specific knowledge and noise in training examples on the speed of learning.
18

Wilmers, George. « Bounded existential induction ». Journal of Symbolic Logic 50, no 1 (mars 1985) : 72–90. http://dx.doi.org/10.2307/2273790.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
The present work may perhaps be seen as a point of convergence of two historically distinct sequences of results. One sequence of results started with the work of Tennenbaum [59] who showed that there could be no nonstandard recursive model of the system PA of first order Peano arithmetic. Shepherdson [65] on the other hand showed that the system of arithmetic with open induction was sufficiently weak to allow the construction of nonstandard recursive models. Between these two results there remained for many years a large gap occasioned by a general lack of interest in weak systems of arithmetic. However Dana Scott observed that the addition alone of a nonstandard model of PA could not be recursive, while more recently McAloon [82] improved these results by showing that even for the weaker system of arithmetic with only bounded induction, neither the addition nor the multiplication of a nonstandard model could be recursive.Another sequence of results starts with the work of Lessan [78], and independently Jensen and Ehrenfeucht [76], who showed that the structures which may be obtained as the reducts to addition of countable nonstandard models of PA are exactly the countable recursively saturated models of Presburger arithmetic. More recently, Cegielski, McAloon and the author [81] showed that the above result holds true if PA is replaced by the much weaker system of bounded induction.However in both the case of the Tennenbaum phenomenon and in that of the recursive saturation of addition the problem remained open as to how strong a system was really necessary to generate the required phenomenon. All that was clear a priori was that open induction was too weak to produce either result.
19

Dybjer, Peter, et Anton Setzer. « Induction–recursion and initial algebras ». Annals of Pure and Applied Logic 124, no 1-3 (décembre 2003) : 1–47. http://dx.doi.org/10.1016/s0168-0072(02)00096-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
20

Borrego-Díaz, Joaquín. « Algebraic combinatorics in bounded induction ». Annals of Pure and Applied Logic 172, no 2 (février 2021) : 102885. http://dx.doi.org/10.1016/j.apal.2020.102885.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
21

Kotlarski, Henryk. « Bounded Induction and Satisfaction Classes ». Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 32, no 31-34 (1986) : 531–44. http://dx.doi.org/10.1002/malq.19860323107.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
22

Abhilash, Kesa. « Scalar Control of Induction motor using Fuzzy logic ». International Journal for Research in Applied Science and Engineering Technology 9, no VI (25 juin 2021) : 2331–38. http://dx.doi.org/10.22214/ijraset.2021.35503.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
The main objective of the paper is to control the speed of an induction machine with scalar control technique using Fuzzy logic controller. Here the PI controller is replaced with Fuzzy Logic controller. By using Fuzzy Logic controller there are wider range of operating conditions can be covered and easier to adapt. For Fuzzy Logic controller some rules are written which play major role to control the speed of induction motor in an effective manner. The errors are evaluated according to rules defined.
23

Priest, Graham. « The Logic of Backwards Inductions ». Economics and Philosophy 16, no 2 (octobre 2000) : 267–85. http://dx.doi.org/10.1017/s0266267100000250.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Backwards induction is an intriguing form of argument. It is used in a number of different contexts. One of these is the surprise exam paradox. Another is game theory. But its use is problematic, at least sometimes. The purpose of this paper is to determine what, exactly, backwards induction is, and hence to evaluate it. Let us start by rehearsing informally some of its problematic applications.
24

Simpson, Stephen G., et Rick L. Smith. « Factorization of polynomials and Σ10 induction ». Annals of Pure and Applied Logic 31 (1986) : 289–306. http://dx.doi.org/10.1016/0168-0072(86)90074-6.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
25

Bigorajska, Teresa. « Universal Induction and True Universal Arithmetic ». Mathematical Logic Quarterly 40, no 1 (1994) : 103–5. http://dx.doi.org/10.1002/malq.19940400114.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
26

Jeřábek, Emil. « The strength of sharply bounded induction ». MLQ 52, no 6 (décembre 2006) : 613–24. http://dx.doi.org/10.1002/malq.200610019.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
27

Schwichtenberg, Helmut. « Dialectica interpretation of well-founded induction ». MLQ 54, no 3 (juin 2008) : 229–39. http://dx.doi.org/10.1002/malq.200710045.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
28

Kelly, Kevin T. « Reichenbach, induction, and discovery ». Erkenntnis 35, no 1-3 (juillet 1991) : 123–49. http://dx.doi.org/10.1007/bf00388283.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
29

Enayat, Ali, et Fedor Pakhomov. « Truth, disjunction, and induction ». Archive for Mathematical Logic 58, no 5-6 (4 février 2019) : 753–66. http://dx.doi.org/10.1007/s00153-018-0657-9.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
30

Talaat, Hossam, Mohamed Ezzat et Ahmed Saleh. « Fuzzy Logic Based Induction Motor Condition Monitoring ». International Conference on Electrical Engineering 9, no 9th (1 mai 2014) : 1–6. http://dx.doi.org/10.21608/iceeng.2014.30380.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
31

Eskande, Mona N. « Fuzzy Logic Control of Saturated Induction Machine ». ERJ. Engineering Research Journal 24, no 4 (1 octobre 2001) : 33–47. http://dx.doi.org/10.21608/erjm.2001.71131.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
32

Gazda, Maciej, et Wan Fokkink. « Modal Logic and the Approximation Induction Principle ». Electronic Proceedings in Theoretical Computer Science 8 (17 novembre 2009) : 41–50. http://dx.doi.org/10.4204/eptcs.8.4.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
33

Sabre, Ru Michael. « Semeiotic logic or, deduction, induction, and semeiotic ». Semiotica 2018, no 222 (25 avril 2018) : 81–85. http://dx.doi.org/10.1515/sem-2016-0164.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
AbstractDeduction, induction, and semeiotic relate by each being a permutation of modus ponens. As deduction providing necessary inference is the means of mathematical proof, and induction establishing sound generalizations is the basis of scientific research, so semeiotic bringing to bear informed responses to experience is the core of human understanding. Semeiotic, specifically semeiosis, is shown to be Peircean abduction in the context of signs, thus producing informed response to experience.
34

GAZDA, MACIEJ, et WAN FOKKINK. « Modal logic and the approximation induction principle ». Mathematical Structures in Computer Science 22, no 2 (28 février 2012) : 175–201. http://dx.doi.org/10.1017/s0960129511000387.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
We prove a compactness theorem in the context of Hennessy–Milner logic and use it to derive a sufficient condition on modal characterisations for the approximation induction principle to be sound modulo the corresponding process equivalence. We show that this condition is necessary when the equivalence in question is compositional with respect to the projection operators. Furthermore, we derive different upper bounds for the constructive version of the approximation induction principle with respect to simulation and decorated trace semantics.
35

Lamma, Evelina, Paola Mello, Michela Milano et Fabrizio Riguzzi. « Integrating induction and abduction in logic programming ». Information Sciences 116, no 1 (mai 1999) : 25–54. http://dx.doi.org/10.1016/s0020-0255(98)10092-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
36

Uyar, Okan, et Mehmet Çunkaş. « Fuzzy logic-based induction motor protection system ». Neural Computing and Applications 23, no 1 (11 février 2012) : 31–40. http://dx.doi.org/10.1007/s00521-012-0862-0.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
37

Cantini, Andrea. « Polytime, combinatory logic and positive safe induction ». Archive for Mathematical Logic 41, no 2 (1 février 2002) : 169–89. http://dx.doi.org/10.1007/s001530100105.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
38

Ta, Quang-Trung, Ton Chanh Le, Siau-Cheng Khoo et Wei-Ngan Chin. « Automated mutual induction proof in separation logic ». Formal Aspects of Computing 31, no 2 (11 octobre 2018) : 207–30. http://dx.doi.org/10.1007/s00165-018-0471-5.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
39

Cameron-Jones, R. Mike, et J. Ross Quinlan. « Efficient top-down induction of logic programs ». ACM SIGART Bulletin 5, no 1 (janvier 1994) : 33–42. http://dx.doi.org/10.1145/181668.181676.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
40

DA COSTA, NEWTON C. A., et STEVEN FRENCH. « Pragmatic Truth and the Logic of Induction ». British Journal for the Philosophy of Science 40, no 3 (1 septembre 1989) : 333–56. http://dx.doi.org/10.1093/bjps/40.3.333.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
41

Erdem, Esra, et Pierre Flener. « Completing open logic programs by constructive induction ». International Journal of Intelligent Systems 14, no 10 (octobre 1999) : 995–1019. http://dx.doi.org/10.1002/(sici)1098-111x(199910)14:10<995 ::aid-int4>3.0.co;2-w.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
42

Abdalla, Turki, Haroution Hairik et Adel Dakhil. « Direct Torque Control System for a Three Phase Induction Motor With Fuzzy Logic Based Speed Controller ». Iraqi Journal for Electrical and Electronic Engineering 6, no 2 (1 décembre 2010) : 131–38. http://dx.doi.org/10.37917/ijeee.6.2.8.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
This paper presents a method for improving the speed profile of a three phase induction motor in direct torque control (DTC) drive system using a proposed fuzzy logic based speed controller. A complete simulation of the conventional DTC and closed-loop for speed control of three phase induction motor was tested using well known Matlab/Simulink software package. The speed control of the induction motor is done by using the conventional proportional integral (PI) controller and the proposed fuzzy logic based controller. The proposed fuzzy logic controller has a nature of (PI) to determine the torque reference for the motor. The dynamic response has been clearly tested for both conventional and the proposed fuzzy logic based speed controllers. The simulation results showed a better dynamic performance of the induction motor when using the proposed fuzzy logic based speed controller compared with the conventional type with a fixed (PI) controller.
43

Beshai, J. A. « Toward a Phenomenology of Trance Logic in Posttraumatic Stress Disorder ». Psychological Reports 94, no 2 (avril 2004) : 649–54. http://dx.doi.org/10.2466/pr0.94.2.649-654.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Some induction procedures result in trance logic as an essential feature of hypnosis. Trance logic is a voluntary state of acceptance of suggestions without the critical evaluation that would destroy the validity of the meaningfulness of the suggestion. Induction procedures in real and simulated conditions induce a conflict between two contradictory messages in experimental hypnosis. In military induction the conflict is much more subtle involving society's need for security and its need for ethics. Such conflicts are often construed by the subject as trance logic. Trance logic provides an opportunity for therapists using the phenomenology of “presence” to deal with the objectified concepts of “avoidance,” “numbing” implicit in this kind of dysfunctional thinking in Posttraumatic Stress Disorder. An individual phenomenology of induction procedures and suggestions, which trigger trance logic, may lead to a resolution of logical fallacies and recurring painful memories. It invites a reconciliation of conflicting messages implicit in phobias and avoidance traumas. Such a phenomenological analysis of trance logic may well be a novel approach to restructure the meaning of trauma.
44

Otero, Margarita. « The amalgamation property in normal open induction. » Notre Dame Journal of Formal Logic 34, no 1 (décembre 1992) : 50–55. http://dx.doi.org/10.1305/ndjfl/1093634563.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
45

Stump, Aaron. « From realizability to induction via dependent intersection ». Annals of Pure and Applied Logic 169, no 7 (juillet 2018) : 637–55. http://dx.doi.org/10.1016/j.apal.2018.03.002.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
46

Adamowicz, Z., et C. Dimitracopoulos. « On A Problem Concerning Parameter Free Induction ». Zeitschrift für Mathematische Logik und Grundlagen der Mathematik 37, no 23-24 (1991) : 363–66. http://dx.doi.org/10.1002/malq.19910372304.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
47

Cropper, Andrew. « Forgetting to Learn Logic Programs ». Proceedings of the AAAI Conference on Artificial Intelligence 34, no 04 (3 avril 2020) : 3676–83. http://dx.doi.org/10.1609/aaai.v34i04.5776.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
Most program induction approaches require predefined, often hand-engineered, background knowledge (BK). To overcome this limitation, we explore methods to automatically acquire BK through multi-task learning. In this approach, a learner adds learned programs to its BK so that they can be reused to help learn other programs. To improve learning performance, we explore the idea of forgetting, where a learner can additionally remove programs from its BK. We consider forgetting in an inductive logic programming (ILP) setting. We show that forgetting can significantly reduce both the size of the hypothesis space and the sample complexity of an ILP learner. We introduce Forgetgol, a multi-task ILP learner which supports forgetting. We experimentally compare Forgetgol against approaches that either remember or forget everything. Our experimental results show that Forgetgol outperforms the alternative approaches when learning from over 10,000 tasks.
48

Joshi, Girisha, et Pinto Pius A J. « ANFIS controller for vector control of three phase induction motor ». Indonesian Journal of Electrical Engineering and Computer Science 19, no 3 (1 septembre 2020) : 1177. http://dx.doi.org/10.11591/ijeecs.v19.i3.pp1177-1185.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
Résumé :
For variable speed drive applications such as electric vehicles, 3 phase induction motor is used and is controlled by fuzzy logic controllers. For the steady functioning of the vehicle drive, it is essential to generate required torque and speed during starting, coasting, free running, braking and reverse operating regions. The drive performance under these transient conditions are studied and presented. In the present paper, vector control technique is implemented using three fuzzy logic controllers. Separate Fuzzy logic controllers are used to control the direct axis current, quadrature axis current and speed of the motor. In this paper performance of the indirect vector controller containing artificial neural network based fuzzy logic (ANFIS) based control system is studied and compared with regular fuzzy logic system, which is developed without using artificial neural network. Data required to model the artificial neural network based fuzzy inference system is obtained from the PI controlled induction motor system. Results obtained in MATLAB-SIMULINK simulation shows that the ANFIS controller is superior compared to controller which is implemented only using fuzzy logic, under all dynamic conditions.
49

Medsalem, Medyahya Ould, et Kazuyuki Tanaka. « Δ3O-determinacy, comprehension and induction ». Journal of Symbolic Logic 72, no 2 (juin 2007) : 452–62. http://dx.doi.org/10.2178/jsl/1185803618.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.
50

Salmon, Wesley C. « Hans Reichenbach's vindication of induction ». Erkenntnis 35, no 1-3 (juillet 1991) : 99–122. http://dx.doi.org/10.1007/bf00388282.

Texte intégral
Styles APA, Harvard, Vancouver, ISO, etc.

Vers la bibliographie